
Rod photoreceptor cells are capable of reliably signalling

the absorption of a single photon. The response to a photon

appears as a discrete quantal event (the single-quantum

response, SQR) clearly discernible from ‘continuous’

electrical fluctuations. Even in absolute darkness, however,

the rod current exhibits not only continuous fluctuations

symmetrical around the mean level, but also occasional

larger unipolar ‘dark’ events, transient current decreases that

are similar to the SQR in both amplitude and waveform

(Baylor et al. 1980, 1984). These randomly occurring

photon-like events constitute an intrinsic background

noise that appears to set an ultimate limit to the capacity

of the visual system to detect weak light in darkness

(cf. Barlow, 1956; Aho et al. 1988).

Given the high initial amplification as well as the complex

network of reactions that determine the shut-off of the

response, the similarity of SQRs and dark events is strong

evidence that the latter originate at the very input to the

transduction cascade, i.e. in spontaneous (thermal)

activation of the rhodopsin molecule. The SQR depends on

serial activation of some 100 transducins by photoactivated

rhodopsin and subsequent suppression of rhodopsin

catalytic activity by multiple phosphorylation and arrestin

binding (see Leskov et al. 2000; Pugh & Lamb, 2000). It is

extremely improbable that waves indistinguishable from

the SQR repeatedly arise e.g. from concerted spontaneous

activation of hundreds of transducins followed by quenching

that just happens to follow the kinetics of rhodopsin

shutdown.

This seemingly inevitable conclusion, however, is faced

with a serious discrepancy in the apparent energy barrier

of thermal events compared with the photon-driven

process. Estimates of the photoactivation barrier by

photocalorimetry (Cooper, 1979; Birge & Vought, 2000)

as well as less direct methods (Srebro, 1966, Koskelainen et
al. 2000) converge on values around 40_50 kcal mol_1,

whereas measurements of the temperature dependence of

dark event rates suggest not more than 20_24 kcal mol_1

(Baylor et al. 1980; Matthews, 1984; Firsov & Govardovskii,

1990). To reconcile these, it is necessary to assume that

thermal activation and light activation of rhodopsin follow

different molecular paths. The most cogent hypothesis for

a separate low-energy thermal pathway is that of Barlow et
al. (1993), who proposed that the discrete dark events arise

in a small subpopulation of rhodopsins, where the Schiff

base linking the chromophore to the protein part has been
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deprotonated. Molecular computations indicate that the

unprotonated form has a much lower energy barrier

for chromophore isomerization, giving for the whole

deprotonation–isomerization reaction an apparent

activation energy consistent with those found for the

‘dark’ events (Barlow et al. 1993; Birge & Barlow, 1995;

Birge & Vought, 2000). 

Under this hypothesis, the dark event rate should be

strongly pH dependent. The pK of the Schiff base of

vertebrate rhodopsin is very high, a consensus estimate

being pKP >15 (Steinberg et al. 1993; see Ebrey, 2000 for a

recent review). This means that the overwhelming majority

of the molecules are in the protonated state, RhH
+, at

physiological pH:

[Rht][H+]
[RhH

+] = ———— ∆ [Rht],
[H+] + Kp

where Rht denotes total rhodopsin concentration, and Kp

is the protonation constant. Taking into account that

[H+] >> Kp, the concentration of the unprotonated form,

[Rh], is:

[Rht]Kp [Rht]Kp
[Rh] = [Rht] _ [RhH

+] = ———— ∆ ———,
[H+] + Kp [H+]

i.e. the small number of unprotonated molecules is

expected to change in inverse proportion to intracellular

[H+]. For example, one unit of alkaline shift in intracellular

pH (pHi) should increase the number of unprotonated

molecules by a factor of 10, and if thermal activations

occur only in the pool of unprotonated rhodopsin

molecules, this should be evident as a 10-fold increase in

the frequency of electrophysiological dark events. Barlow

et al. (1993) recorded effects of extracellular pH (pHo) on

dark noise in the Limulus lateral eye and found changes in

the predicted direction, although in fact much larger than

expected.

The purpose of the present work was to test the hypothesis

that rhodopsin with unprotonated Schiff base is the

molecular source of discrete dark events in vertebrate rods.

We did this by studying the effect of pH on the frequency

of dark events, using the suction-pipette technique to

record the dark current of single rods of the common toad

Bufo bufo exposed to manipulations of extracellular pH.

To quantify the resulting pH changes ‘seen’ by the pigment

molecules, we measured the pH-dependent interconversion

of rhodopsin photolysis products (metarhodopsins I, II

and III, abbreviated MI, MII, MIII) using fast single-cell

microspectrophotometry (MSP). These measurements

show that pH in the immediate environment of the

rhodopsin molecules would, on average, increase over a

0.9 pH unit range under our experimental changes of pHo.

The hypothesis then predicts an 8-fold increase in the rate

of thermal rhodopsin activation when going from our

lowest to highest pH values. Instead, we detected a small

but statistically significant decrease in the dark event rate.

Thus our results indicate that visual-pigment dark noise

in vertebrate rods does not specifically originate from a

subpopulation of molecules with unprotonated Schiff base. 

METHODS
Animals
The experiments were done on common toads Bufo bufo caught in
the wild in northwestern Russia or southern Finland. Animals
were treated in accordance with the Finland Animal Welfare Act
1986 with guidelines of the Russian Physiological Society. Dark-
adapted animals were decapitated, double-pithed, and enucleated
under dim red light. All further manipulations were done under
infrared video viewing. The eyes were cut open along the equator
and the anterior part and vitreous were removed. A piece of
eyecup with attached retina was cut off and the corresponding
piece of retina was isolated for immediate use. The rest of the
eyecup was put into a light-tight chamber in Ringer solution and
stored at +7 °C for no longer than the following day.

Microspectrophotometry
To assess the intracellular pH shifts ‘seen’ by the rhodopsin
molecules upon changes in perfusion pH, we measured the pH-
dependent interconversion of MI, MII and MIII by fast MSP after
short bleaching exposures. Absorbance spectra were recorded
from single rods with an instrument basically similar to that
described earlier (Govardovskii et al. 2000) but modified to allow
brief bleaching and fast recordings of the absorbance spectra
(Govardovskii & Zueva, 2000). Rhodopsin was bleached with a
short (200–500 ms) pulse of light from a high-intensity green
(525 nm) light-emitting diode (no. 110104, Marl International Ltd,
Ulveston, Cumbria,UK). Nominally, as extrapolated from shorter
exposures, a standard 500 ms light pulse would result in 99.6 %
bleach. However, due to photoreversal reactions the final bleaching
products contained, in addition to MI and MII and depending on
pH, 3_5 % of a photoequilibrium mixture of rhodopsin and
isorhodopsin. The mechanism of fast spectral scanning allowed
the recording of a complete absorbance spectrum from 340 to
700 nm in 400 ms; recording of the first spectrum was started
within 20 ms after the cessation of the bleaching light. The
measuring beam was linearly polarized in the direction parallel to
the disk plane, i.e. perpendicular to the rod outer segment (ROS)
axis.

Two sorts of samples were used. To calibrate the pH dependence
of the MI–MII–MIII conversion, measurements were made on
detached ROSs supposedly lacking active pH regulation. Small
pieces of retina were incubated for 10_15 min in the suitable
solution (see below), and then gently shaken in a drop of the same
solution, to obtain a suspension of detached outer segments. A
small amount of the suspension was transferred to a fresh drop of
the solution on a coverslip, covered with another coverslip, sealed by
vaseline and used for measurements. For calibration measurements
on detached ROS, a pseudointracellular solution was used. It
contained (m): KCl, 100; NaCl, 10; glucose, 10; MgSO4, 1.0 or
10; buffered to desired pH by a 10 m buffer. Between pH 6.5 and
8.0, buffering was achieved by Na-Hepes; at more acidic pH, by
sodium phosphate buffer; at more alkaline pH, by Tris-HCl. The
concentration of free Ca2+ was buffered to 50 n, a value in the
range of cytoplasmic levels, either by EGTA or EDTA with a
calculated amount of CaCl2 added.  Mg2+ (10 m) and EGTA
(10 m) were used at pH 7.5 and higher, when the chelator had
sufficient affinity to Ca2+. At more acidic pH, EGTA was inefficient
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due to the traces of the cation in all chemicals, taking into account
that total [Ca2+] in nominally calcium-free solution was 10 µ.
Thus to achieve 50 n free [Ca2+] at pH 6.5–7.0, we used 5 m
EDTA and reduced [Mg2+] to 1 m. The concentration of free
Ca2+ in the solution was computed with the program BAD
(Brooks & Storey, 1992).

For measurements on intact rods, small pieces of retina were
prepared in the same way as for the electrophysiological recordings.
The pieces were placed in an MSP chamber formed by a narrow
(~200 µm) gap between coverslips with gravity-driven perfusion
with a solution identical to that used for electrophysiological
recordings at the same pH. The recordings were performed on the
outer segments of intact rods protruding from the edge of the
retinal pieces. 

All MSP measurements were made at a standard temperature of
20 ± 0.5 °C.

Suction pipette recordings
The rod membrane current was recorded with the suction-pipette
technique (Baylor et al. 1979). Isolated cells having intact outer
and inner segments and cell bodies, but lacking synaptic processes
were used in most cases. In successful experiments, they could be
held for up to three hours without significant changes in response
properties. Each cell was recorded at only one single pH value. All
isolated cells were recorded in the inner segment in configuration
to ensure that the outer segment containing the visual pigment
(and generating the conductance changes recorded) was effectively
exposed to the perfusion pH. A few recordings were made from
rods still attached to small retinal pieces, so the outer segment was
inside the pipette filled with the same solution as in the bath. No
significant difference in the dark events rate was found between
the two recording configurations, so these six cells are included in
the analysis.

The cells were continuously superfused with a Hepes-based
regular Ringer solution of composition (m): NaCl, 90; KCl, 2.5;
MgSO4, 1; CaCl2, 1; glucose, 10; Hepes, 10; NaHCO3 , 5; EGTA,
0.05; plus bovine serum albumin, 10 mg l_1. After preparation the
pH of the Ringer  solution was adjusted to chosen values by adding
either 1 M NaOH or HCl. pH was also always checked after the
measurements were completed. The difference compared with the
initial value in the experiments, after 4 to 6 h of perfusion, was less
than 0.2 pH units. The temperature in most experiments was
16.5 ± 0.5 °C; four cells were recorded at 21.5 ± 0.5 °C. 

The intensity of light stimuli (20 ms flashes) was controlled by
neutral density filters interposed in the beam from a tungsten
lamp. Interference filters were used to control wavelength: 532 nm
for regular stimulation and the same together with 442 nm for rod
identification (‘red’ 502 nm or ‘green’ 432 nm rod). Nominal
calibration of light intensities was made with a calibrated
photodiode, but a more precise value for photons absorbed was
obtained for each individual cell using the statistics of rod
responses to nominally identical dim flashes (see Baylor et al.
1979; Donner et al. 1990). 

Light stimulation and data recording were under computer
control (LabView, National Instruments, Austin, TX, USA). Light
responses and dark records were low-pass filtered (0_10 Hz),
digitized at a frequency of 100 Hz (10 ms per point) for light
responses and 25 Hz (40 ms per point) for dark records and stored
on the computer hard disk. In most cells the intensity–response
curve was measured. 

Each cell recorded was imaged before and after recordings with
an infrared CCD camera attached to the microscope and a
framegrabber computer card. The volume of the outer segment
that had been recorded from was determined from these images.
To calculate the number of rhodopsin molecules in the outer
segment, the rhodopsin concentration was assumed to be 3 m
(Liebman, 1972; Hárosi, 1975). 

Estimation of the rate of dark events
In 15 of 22 cells used for analysis, the ratio of SQR amplitude
(‘signal’, S) to the standard deviation of the continuous noise
(‘noise’, N), after appropriate filtering (usually DC to 1 Hz), was
high enough to allow counting discrete dark events by eye
(cf. Fig. 3A). However, in seven cells (mostly at low pH), S/N
was insufficient for reliable identification of discrete events
(cf. Fig. 3B). To determine the average frequency of discrete
events in these records, we analysed the current histogram as in
Donner et al. (1990). In principle, the three parameters, namely
variance of the continuous noise, amplitude of the discrete event,
and the number of the events in the record, can be unambiguously
determined from the first, second and third moments of the
record. This estimate, however, is rather sensitive to random
fluctuations and to uncertainties in the position of the zero line.
Thus the result was checked by computing the expected
probability density of Gaussian continuous noise plus discrete
events, p(i), as a convolution of probability densities of the
corresponding components (Donner et al. 1990):

T
(i _ r(t))2

p(i) = ∫exp≤ _ ————≥̆dt.
2s2

0

Here r(t) is the waveform of the SQR estimated from the averaged
response to a series of weak flashes, s2 is the variance of the
continuous component, and T is the average interval between
discrete dark events (= 1/f, where f is the event frequency). The
expected probability density was normalized to the total number
of points and compared with the experimental histogram
(smooth vs. staircase line in Fig. 3C). Small adjustments of
parameters can then be made to achieve the best fit. 

Alternatively, discrete events can be defined as positive-going
peaks that exceed a certain threshold level in the dark records. We
applied a threshold of 3 w .., selected to make the probability
level for the continuous noise to cross sufficiently low (Fig. 3B).
The values thus obtained for T agreed within 10_15 % with those
obtained by analysis of the current histogram as described above.
The event rates from low-S/N records were always determined by
both these methods. In three cells with intermediate S/N, all three
methods (direct count, histogram analysis and threshold crossing)
were applied, giving results that agreed within 10 %. 

Since the cells were studied with different ROS volumes subject to
recording, the averaging of results from different cells deserves
some attention. The number of events counted from each cell was
normalized to the standard number of rhodopsin molecules in an
average ROS (3 w 109). The normalized numbers from all cells
were summed and divided by the total recording duration to
obtain an average event frequency in a standard rod, and thus the
activation rate per rhodopsin molecule. The relative .. was
calculated as 1/«n, where n is the total number of events that had
actually been counted (i.e. prior to any normalizations).
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RESULTS
pH measurements
Figure 1A shows a set of MSP records from a single

detached ROS in darkness and at various times after a

500 ms bleach. The flash bleached almost all the rhodopsin

in the cell and the first scan (covering 20_420 ms after

cessation of the bleaching exposure) reveals a spectrum

with a sharp peak at 380 nm and a shoulder at 475_480 nm

(the trace labelled 0 s). The main peak represents MII, and

the long-wave sub peak is due to MI in equilibrium with

MII, plus some amount of photoregenerated rhodopsin

and isorhodopsin. In the subsequent scans the MII peak

gradually decreases, and the peak at 480 nm first increases

and then decays (traces recorded 30, 100, 200 and 600 s

after the bleach). We tentatively call the emerging 480 nm

product MIII (Baumann, 1972).

The MI–MII equilibrium is pH dependent, with high pH

favouring MI (Matthews et al. 1963). High pH also

facilitates MIII formation (Gyllenberg et al. 1974). Thus

both the fraction of MI in the MI–MII mixture and the

amount of MIII formed can be used as measures of pHi.

Panel B in Fig. 1 shows the pHo dependence of postbleach

spectra of isolated ROSs at 0 s after bleach, and panel C at

100 s after bleach, i.e. approximately at the time when the

MIII content reaches its maximum. In Fig. 2A and B,

averaged ratios of the absorbances at 480 and 380 nm

(A480/A380) are plotted against the pH of the perfusion

solution. For isolated ROSs (filled symbols) we assume

that pHi = pHo. The basis for this assumption is that

(i) observations on salamander rods loaded with the pH-

sensitive dye BCECF show that pH regulation is weak or

lacking in isolated ROSs (K. Donner, A. Koskelainen,
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Figure 1. pH dependence of postbleach spectra of rod outer segments
A, absorbance of a single detached ROS in pseudointracellular solution at pH 7.5, recorded in darkness and at
different times after 500 ms complete bleach. The curve at 0 s postbleach demonstrates equilibrium between
MI (shoulder at 480 nm) and MII (peak at 380 nm). Subesequent spectra, recorded at 30, 100, 200 and 600 s,
show decay of MII and appearance of MIII.  B, pH dependence of MI–MII equilibrium at 0 s postbleach.
C, pH-dependence of MIII formation at 100 s postbleach.  Each curve in B and C is an average from 10_12
isolated ROSs.



E. Ruusuvuori and J. Saarikoski, unpublished results);

(ii) isolated ROSs lack energy metabolism, which a priori
excludes metabolic acid production on one hand, on the

other hand ATP-dependent acid/base transport; (iii) in the

isolated-ROS recordings we used a ‘pseudo-intracellular’

and nominally bicarbonate-free perfusion medium (see

Experimental procedures). This eliminates any possibly

remaining inward Na+ gradient that could drive proton

extrusion and disables bicarbonate-dependent pH

regulation (cf. Koskelainen et al. 1994). Thus we base our

calibration of pHi vs. the absorbance ratio A480/A380 on the

data from isolated ROSs. The calibration curves shown as

continuous lines in the figure are logistic fits to the data.

(The logistic function was chosen so as to provide a smooth

description of the data, appropriate for calibration, and

has no theoretical meaning, see figure legend.)

Open symbols in Fig. 2 mark data from intact rods

attached to retinal pieces, perfused with the same solutions

as used in the electrophysiological experiments. At acidic

pH the A480/A380 ratio was higher than in isolated ROSs,

while the situation was reversed in the alkaline region. This

expresses the ability of intact cells to regulate pHi, i.e. to

prevent it from changing as strongly as pHo (Saarikoski et
al. 1997). Using the calibration curve from isolated ROSs,

we transform the measured A480/A380 ratios into estimates

of pHi and obtain a function relating pHi to pHo in intact

rods (Fig. 2C). Both sets of points, obtained at 0  and 100 s

postbleach, respectively, show that pHi changes by

0.35_0.4 units per unit of pHo change. In particular, when

pHo rises from 6.5 to 9.3 (the range used in the electro-

physiological experiments), pHi rises by 0.9–1.1 units.

Thus, [H+]i is expected to change over an 8- to 12-fold

range in the conditions of our dark noise measurements.

It is worth noting that the pHi vs. pHo curve at 100 s

postbleach is shifted by 0.2 to 0.3 units towards lower pHi

values compared with the curve at 0 s (Fig. 2C). The shift

may reflect an acidification of the cytoplasm as a result of

active hydrolysis of cGMP and GTP after bleaching

(cf. Saarikoski et al. 1997). 

Dark noise recordings
The dark current was recorded and completely analysed in

a total of 22 ‘red’ (502 nm) rods at pHo values of 6.5, 7.5,

8.5 or 9.3. The dark noise contains three components;

instrumentation noise and continuous and discrete

components of rod membrane current fluctuations. In the

frequency band of our filtered recordings (0_1 Hz),

instrumentation noise is significantly smaller than both the

biological components. This was ascertained by comparing

continuous noise in darkness and in the presence of a

steady light, bright enough to shut off all rod current. The

saturating light reduced continuous noise .. by more

than 2.5-fold (range 2.5–5.6; data not shown). This means

that the contribution of the instrumental noise to the ..
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Figure 2. Using the pH dependence of the MI–MII equilibrium and MIII accumulation for
assessing intracellular pH in intact rods
A, ratio of absorbances at 480 and 380 nm (A480/A380) at 0 s postbleach vs. pH of the perfusing solution in
isolated ROS (0) and intact rods protruding from the edge of retinal pieces (1). Isolated ROS were perfused
with a pseudointracellular solution while intact rods were perfused with a normal Ringer solution (see
Methods). The continuous line is a logistic fit that is used as a calibration curve for A480/A380 vs. pHi. The
formula of the fit is A480/A380 = a + b/(1 + (pH/c)_d) where a, b, c, d are constants. Error bars give ±..
B, same as in A, but for spectra recorded at 100 s postbleach, reflecting MIII accumulation. •, isolated ROS;ª, intact rods. C, intracellular (pHi) vs. extracellular (pHo). pH in intact rods at 0 and 100 s postbleach
obtained from the data shown in A and B .



of the ‘dark’ recordings in the worst case does not exceed

10 %. 

Dark events in toad rods at room temperature are rare

enough to be generally well separated from each other

(cf. Baylor et al. 1980; Fyhrquist et al. 1998b) and under

beneficial conditions they can just be counted by eye,

which makes elaborate statistical analysis superfluous.

Thus in most cases the numbers of dark events were

counted by eye. However, in some recordings with a lower

amplitude ratio of discrete events to continuous noise ..

(which we shall refer to as the signal-to-noise ratio, S/N), a

more sophisticated statistical procedure was used to

estimate reliably the number of discrete events (see

Methods). The observed dark event rate was recalculated

to a rate of thermal activations per molecule of visual

pigment on the basis of the volume of outer segment

outside the pipette (i.e. recorded from) measured by video

imaging, and the known packing density of rhodopsin in

the rod.

Figure 3A shows a representative high-S/N record (at

pHi = 9.3) encompassing 43 min of dark current. Over

this time, 22 positive-going quantal events can be

counted, giving a frequency of one event per 116 s or

0.0085 events s_1. This ‘raw’ count is clearly lower than the

rate reported by Fyhrquist et al. (1998b) for the same

species, one event per 50 s (0.02 s_1) rod_1, but the difference

can be explained by the lower recording temperature

(16 vs. 22 °C) and possible difference in the ROS volume.

Figure 3B and C gives an example of the two types of

analysis performed on low-S/N records, where counting

by eye could not be relied upon (see Methods and Donner

et al. 1990). In panel B, the threshold method is applied to a

dark noise record with S/N = 4.2. Seventeen positive-going

bumps cross the criterion level of 3 .. of continuous

noise and are counted as dark events. Panel C shows the

histogram of the current values of the record in B (staircase

line). The histogram is fitted with the predicted probability

density of Gaussian continuous noise plus dark events whose

shape corresponds to the averaged dim-flash response

(smooth bold line). The best fit indicates 16.5 events, in

good agreement with the threshold method. To study

further whether ‘dark events’ defined by threshold crossing

in panel B are indeed similar to the SQR, they were excised,

aligned on the time scale with respect to their peaks, and

averaged. The amplitude of the average dark event,

0.61 pA, virtually coincides with the value obtained from

histogram fitting (0.62 pA), and is consistent with the

amplitude of the SQR estimated from the statistics of dim-

flash responses (0.67 pA). The inset in panel C shows the

averaged dark event (bold line) superimposed on the SQR

scaled to the same amplitude for easier comparison of

waveforms (thin line). The dark event averaged as

described is seen to be slightly wider than the SQR, which
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Figure 3. Sample recordings of dark noise in isolated rods
A, record with high discrete event/continuous noise amplitude
ratio (high S/N): the discrete events can be counted by eye. The
event marked with an arrow probably corresponds to two
superimposed events. The record has been digitally low-pass
filtered at 0.5 Hz. Temperature 16 °C. B, record with lower S/N: a
direct count is unreliable. The dot-dash line marks a criterion level
of 3 .. of the continuous noise. When peaks crossing this level are
considered as discrete events, a total of 17 events during the 605 s
record are counted. The dashed line shows the amplitude of the
single-photon response (0.67 pA) estimated from amplitude
fluctuations of 40 responses to about two-photon flashes (see
Baylor et al. 1979). Temperature 16 °C. C, current amplitude
histogram of the record shown in B, total 15125 points. The central
peak is mostly due to the symmetrical continuous noise while the
unipolar discrete events are responsible for the positive shoulder.
The smooth line is an analytical fit to the histogram computed as a
convolution of probability densities of continuous Gaussian noise
and unipolar photon-like responses (see Methods). Estimated
from the fit, 16.5 discrete events of 0.62 pA amplitude are present
on a background of 0.145 pA . continuous noise, in good
agreement with the thresholding method in B. In the inset, the
average of all dark events identified by the threshold-crossing
method in panel B (thick line) are compared with the SQR (thin
line). To facilitate comparison of waveforms, the SQR amplitude of
0.67 pA has been scaled down to the 0.61 pA amplitude of the
average dark bump. The 10 % discrepancy between the two
amplitude estimates is within statistical error. Note that the dark
events rate in B, as compared to A, is 3-fold higher. This is partly
due to 50 % bigger ROS volume recorded at pH 6.5, and partly due
to the statistical effect of sampling a random sequence of events.
When averaged over total recording time and normalized to ROS
volume, the cell in B shows 30 % higher activation rate than the cell
in A. This reflects a true effect of acidic pH (cf. Fig. 4). 



is plausibly explained by imperfect (due to noise) temporal

synchronization of individual events during averaging.

Thus the threshold-crossing and histogram-fitting methods

of analysis yield very similar results, and both are consistent

with the idea that dark events and SQRs are identical. For

the recording (at pH 6.5) shown in Fig. 3B, the two

estimates of the dark event rate converge on a value of

~0.027 events rod_1 s_1.

Seven of 22 cells were analysed with the threshold-crossing

and histogram-fitting methods, and in three of these, a

reliable direct count was also possible (see Fig. 5). The

event frequencies obtained from the same record with the

different methods agreed within 10 to 15 %. Average thermal

activation rate at near-physiological pHo = 7.5 and 16.5°C

was 5 w 10_12 s_1.

The central result is summarized in Fig. 4. Here the

frequencies of dark events per rhodopsin molecule,

presumed to represent rates of thermal activation of the

visual pigment, are plotted against pHo (open circles and

error bars give mean values ± 3 ..). The bold continuous

line is a parabola fitted to the data points just to illustrate

the general trend. The thin continuous line shows the

prediction of the hypothesis that thermal activation rates

are proportional to the number of available rhodopsin

molecules with unprotonated Schiff base, assuming that

this number varies in inverse proportion to [H+]i and that

pHi follows the 0 s curve of Fig. 2C. It is immediately

obvious that the data deviate strongly from the prediction

and, in fact, do not even show any trend suggestive of

increasing dark event frequencies with rising pH. On the

contrary, there is a slight decline of the frequency at high

pH (see Discussion). 

With respect to other possible effects of pH on rod

properties, the only statistically significant pH dependence

found was an increase in the ratio of the amplitude of

discrete events to continuous noise, i.e. S/N with rising pH.

This is illustrated in Fig. 5. The 1.8-fold difference in S/N

between pH 6.5 and pH 9.3 is significant at P > 0.97

(Student’s paired t test). In individual parameters of the

quantal events (amplitude and time to peak of the SQR

or dark events) or the .. of the continuous noise, no

significant trends could be revealed in the collected data. 

pH and thermal event rates in retinal rodsJ. Physiol. 539.3 843

Figure 5. pH dependence of the ratio of the SQR
amplitude to the .. of continuous noise (S/N)
Each point represents one cell. 0, cells in which the number of dark
events was counted by eye. 1, cells analysed with the threshold-
crossing and the histogram-fitting methods; overlapping 0 and 1
mark cells to which all three methods were applied. 3 with error
bars give means ± ... The least-square straight line shows the
general trend of the data.

Figure 4. Summary of the results on the rate of rhodopsin
thermal activation as a function of pH
Open circles show the frequency of discrete dark events that has
been converted into rates of activation per rhodopsin molecule
using the volume of  ROS recorded (see Methods). The number of
cells and total number of discrete events counted for each data
point are shown in parentheses. Error bars are ±3 .. The bold
continuous line is a parabolic fit to the data. The thin continuous
line shows relative concentrations of the deprotonated form of the
chromophore expected from the average pHi/pHo relation taken
from Fig. 2C (0 s curve). The dashed line (‘best regulators’) shows
the lower limit for changes in the concentration of rhodopsin with
deprotonated Schiff base over this range of pHo, based on the
difference between the most alkaline cell at pHo = 6.5 and the most
acidic cell at pHo = 9.3. 2 at pH 9.3 shows the activation rate
corrected for higher recording temperature in part of pH 9.3 cells
(see Discussion).



DISCUSSION
Calibration of intracellular pH changes
We measured the effect of pHo on pHi using the MI–MII

transition and MIII formation after a bleaching exposure

as pH indicator. On average, changing pHo from 6.5 to 9.3

changed pHi from 7.6 to 8.5 in intact rods. Our valueDpHi/DpHo ∆ 0.35_0.40 for toad rods attached to pieces of

retina is in reasonable agreement with the linear regression

coefficients DpHi/DpHo ∆ 0.4_0.5 measured by Saarikoski

et al. (1997) in isolated salamander (Ambystoma) rods

loaded with the fluorescent pH-sensitive dye BCECF.

However, the absolute level of pHi in the retina-attached

toad rods was clearly higher (by ~0.6 pH units at

pHo = 7.5) than in the isolated salamander rods. 

The capacity to regulate (stabilize) pHi in the face of

external pH changes will vary not only between individual

rods, but also between different types of preparations and

animal and photoreceptor species. If anything, the retina-

attached rods in the MSP measurements are likely to have

more effective pH regulation than the isolated rods we

mostly used in the dark noise measurements. In the latter

experiments, the average change in pHi between pH 6.5

and pH 9.3 perfusion is therefore expected to have

been ≥ 0.9 pH units. To get an absolute lower limit for the

range of pHi changes achieved in our noise recordings, we

may take the values of the ‘best’ pH regulators among all

rods encountered in the MSP recordings. The difference in

pHi between the most acidic cell recorded when pHo = 9.3

and the most alkaline cell when pHo = 6.5 was 0.46 units

(at 0 s after bleach). This lower-limit pHi change

corresponds to a ~3-fold change in [H+]i and hence in

predicted dark event rate, a difference that would have

been readily detected in our experiments (dashed line in

Fig. 4). 

Is there an effect of pH opposite to that predicted?
Unexpectedly, the collected data in Fig. 4 indicate a small

(22 %) but statistically significant (P > 0.97) decrease in

event frequency between the lowest and the highest pHo.

Actual decline must be bigger, however, as it so happened

that the temperature was 21.5 °C in the experiments that

account for half of all dark events recorded at pH 9.3

(4 cells), whereas two cells at pH 9.3 and all the data at the

lower pH (total 18 cells) were collected at 16.5 ± 0.5°C.

Referring all to the common standard temperature 16.5°C

results in a further relative downward shift of the data at

pH 9.3 (2 in Fig. 4, 30 % decline at pH 9.3 vs. pH 6.5) and

an increase in the statistical significance of the decline

(P > 0.99). The temperature correction was based on

measurements in another toad species, Bufo marinus
(activation energy of 22 kcal mol_1; Baylor et al. 1980), and

although B. bufo and B. marinus rhodopsins are very

similar with respect to absorbance spectrum, amino acid

sequence as well as dark event rates (Fyhrquist et al.

1998a, b and the present work), there remains in principle

the possibility of a species difference that might have led us

to ‘over-correct’ and exaggerate the decline. This said, it

must be emphasized that possible uncertainties in the

temperature correction can in no way change the main

conclusion on the lack of increase of the thermal activation

rate at high pH.

Does the Schiff base see the pH changes?
Our method of determining pHi allowed us not only to

measure cytoplasmic changes, it also showed that the

changes really reach the visual pigment molecule, affecting

its conformational states after a bleach. However, crucial

for the test of the ‘pH-hypothesis’ is the question whether

the cytoplasmic protons penetrate the chromophore

binding pocket inside the membrane to affect the Schiff

base. This is almost certainly the case. The binding pocket

is known to contain several water molecules, and water

trafficking between the interior of the molecule and the

surroundings has been studied by Raman spectroscopy in

conjunction with use of heavy water, D2O. This technique

has revealed fast penetration of D2O to interact with the

chromophore in bovine rhodopsin in disk membrane

vesicles (Oseroff & Callender, 1974) as well as in several

other vertebrate visual pigments (see e.g. Mathies, 1999).

Thus, although direct data on toad rhodopsin are lacking,

there is no reason to assume that the protonation state of

the Schiff base specifically in Bufo bufo rhodopsin would be

insensitive to pH changes around the molecule. 

Lack of predicted pH effect on the frequency of dark
events
The main result is that there was no increase in dark event

rate with increasing pH (see Fig. 4). We conclude that the

results are not compatible with the hypothesis that the

main source of thermal activation of the rod visual pigment

is a subpopulation of molecules with deprotonated Schiff

base. 

Before the present study, two abstracts have provided

preliminary reports of experiments done to reveal possible

pH effects on photoreceptor noise in rods of Bufo marinus
and Xenopus laevis (Donner et al. 1997) and red-sensitive

cones of salamander (Sampath & Baylor, 2001). In both

these studies the actual changes in cytoplasmic pH

remained unknown. However, the results are consistent

with the present ones in that changes in external pH could

not be shown to have any effect on rates of thermal

activation of the visual pigment.

It seems that the mechanism for generation of discrete

dark events in vertebrate rods differs from that in Limulus
photoreceptors (Barlow et al. 1993), where pH had a big

effect. We still lack a molecular theory that could

provide a general explanation for the thermal activation of

vertebrate rhodopsin. For example, although activation
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rates show a general correlation with the position of the

absorbance maximum (lmax) (Donner et al. 1990; Firsov &

Govardovskii, 1990; Rieke & Baylor, 2000), significant

differences in dark event rates have been observed between

rods with spectrally similar rhodopsins (Bufo vs. Rana:

Baylor et al. 1980; Donner et al. 1990; Fyhrquist et al.
1998b; present study). This suggests that subtle changes in

the molecular structure of rhodopsin, not directly related

to the chromophoric center, may have substantial effects

on its thermal activation (cf. Fyhrquist et al. 1998a). The

mechanisms of activation in rod and cone visual pigments

are likely to differ even more strongly. The rate of thermal

activation, if extrapolated from rod data (Firsov &

Govardovskii, 1990) to salamander ‘red’ cone pigment,

predicts a value of 4.4 w 10_9 s_1, while Rieke & Baylor

(2000) found approximately 1 w 10_4 s_1. Thus there is a

discrepancy of more than four orders of magnitude. It

seems that the entire event frequency vs. lmax relation is

shifted to higher frequencies in cones. This notion is

consistent with the fact that the dark event frequency of

amphibian blue-sensitive (‘green’) rods (Matthews, 1984),

whose pigment phylogenetically groups among the ‘blue’

cone pigments of other vertebrates (Hisatomi et al. 1999),

is too high to fit the general frequency–lmax relation for

rods. Further, the >1 w 105-fold difference in apparent

thermal activation rate between amphibian L-cone and

rod pigments (Vu et al. 1997; Rieke & Baylor, 2000) seems

not to correlate with a corresponding difference in the

energy barriers for light activation (Koskelainen et al.
2000). 

The basic idea originally proposed by Barlow (1956, 1957)

to explain the difference in sensitivity between rod and

cone vision on the basis of different rates of thermal ‘dark’

activation of the visual pigments has received strong

qualitative support from physiological data gathered in the

two last decades (Baylor et al. 1980, 1984; Matthews, 1984;

Donner et al. 1990; Firsov & Govardovskii, 1990; Fyhrquist

et al. 1998b; Rieke & Baylor, 2000). However, we still have no

comprehensive molecular understanding of this process

that sets the ultimate limit to the sensitivity of vision.
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