
Department of Computer Science

Series of Publications C

Report C-2008-1

Storage and Retrieval of Individual Genomes

and other Repetitive Sequence Collections

Veli Mäkinen, Jouni Sirén, and Niko Välimäki

University of Helsinki

Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14900029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Storage and Retrieval of Individual Genomes and other

Repetitive Sequence Collections

Veli Mäkinen, Jouni Sirén, and Niko Välimäki

Department of Computer Science
P.O. Box 68, FIN-00014 University of Helsinki, Finland
{vmakinen,jltsiren,nvalimak}@cs.helsinki.fi

Technical report, Series of Publications C, Report C-2008-1
Helsinki, February 2008, 18 pages

Abstract

In the near future, biomolecular engineering techniques will reach a state where the se-
quencing of individual genomes becomes feasible. This progress will create huge expecta-
tions for the data analysis domain to reveal new knowledge on the ”secrets of life”. Quite
rudimentary reasons may inhibit such breakthroughs; it may not be feasible to store all
the data in a form that would enable anything but most basic data analysis routines to
be executed. This paper is devoted into studying ways to store massive sets of complete
individual genomes in space-efficient manner so that retrieval of the content as well as
queries on the content of the sequences can be provided time-efficiently. We show that
although the state-of-the-art full-text self-indexes do not yet provide satisfactory space
bounds for this specific task, after carefully engineering those structures it is possible to
achieve very attractive results; the new structures are fully able to exploit the fact that the
individual genomes are highly similar. We confirm the theoretical findings by experiments
on large DNA sequences, and also on version control data, that forms another application
domain for our methods.

Computing Reviews (1998) Categories and Subject Descriptors:
E.4 Coding and Information Theory — data compaction and compression
F.2.2 Analysis of Algorithms and Problem Complexity: Nonnumerical Algorithms and

Problems — pattern matching, sorting and searching

General Terms:
Algorithms, Compression, Data structures

Additional Key Words and Phrases:
combinatorial pattern matching, data structure compression, full-text indexing

Contents

1 Introduction 1

2 Basic Concepts and Background 2

3 Using Runs as a Complexity Measure 4
3.1 Expected case bound . 5
3.2 Worst case bound . 6
3.3 Other types of mutations . 6

4 Compressed Disk Suffix Array 7

5 Run-Length Encoded Wavelet Tree 8

6 Experimental Results 10

7 Discussion and Future Work 15

1 Introduction

Self-indexing [8, 5, 23, 18] is a new proposal for storing and retrieving sequential data.
The idea is to represent the text (a.k.a. sequence or string) compressed so that random
access to the content of the text is maintained, and pattern retrieval queries on the content
of the text are supported as well.

The self-indexing approach becomes especially interesting when applied to collections
of texts. Consider for example a file system that is automatically kept self-indexed. Files
can be uncompressed when accessed and applying ”find” command works in real-time as
queries can be answered efficiently using the index rather than scanning through the files.
Such retrieval functionalities have been available long time for natural language texts by
the well-known inverted indexes, but now the self-indexes make such retrieval possible for
arbitrary texts such as biological sequences that do not consist of separable words.

A special case of a text collection is one which contains several versions of one or
more base sequences. Such collections are not uncommon. For example, a version control
system needs to store several versions of the same file with only small edit differences
between the consecutive entries. If the entries are stored independently of each others, the
version control system will be spending unnecessarily large amounts of memory by time.
If the system stores only the edits, queries on the content of one specific version becomes
non-trivial.

An analogy to the storage and retrieval of version control data is soon becoming reality
in the field of molecular biology. Once the DNA sequencing technologies become faster
and more cost-effective, it may be that in the near future the sequencing of individual
genomes becomes a feasible task [3, 11, 20]. With such data in hand, many fundamental
issues become of top concern, like how to store e.g. 10, 000 Human Genomes not to speak
about analyzing them. For the analysis of such collections of biological sequences, one
would clearly need to use some variant of a generalized suffix tree [10]as that provides a
variety of algorithmic tools to do analyzes in near-linear time. The memory requirement of
such solution is unimaginable with current random access memories and also challenging
in permanent storage.

Self-indexes should, in principle, cope well with the two applications above as both
data types contain high amounts of repetitive structure. In particular, as the main build-
ing blocks of compressed suffix trees [24, 22] they enable compressing the collections in
consideration close to their high-order entropy and enabling flexible analysis tasks to be
executed. However, there is a fundamental problem with the fact that the high-order
entropies are defined by the frequencies of symbols in their fixed-length contexts; these
contexts do not change at all when more identical sequences are added to the collection.
Hence, these self-indexes are not at all able to exploit the fact that the texts in the collec-
tion are highly similar. Also, most self-indexes contain significant sub-linear terms that
disappear very slowly with the collection size growth.

In this paper, we propose new self-indexes that are suitable for storing highly repetitive
collections of texts. We analyze the theoretical space-requirements of these structures and
show that they achieve much better bounds for this specific problem than the existing self-
indexes. We implemented the structures and the experiments show that the theoretical
advantages can also be seen in practice.

The paper is structured as follows. Section 2 introduces the basic concepts and goes
through the related literature. Section 3 derives the bounds for the backbone of the two
data structures that are presented in Sects. 4 and 5. Section 6 gives the experimental

1

results and Sect. 7 discusses the work left for future.

2 Basic Concepts and Background

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (a.k.a. character or letter). Each
symbol is an element of a finite alphabet Σ = {1, 2, . . . , σ}. A substring of S is written
Si,j = sisi+1 . . . sj . A prefix of S is a substring of the form S1,j, and a suffix is a substring
of the form Si,n. If i > j then Si,j = ε, the empty string of length |ε| = 0. A subsequence
of S is any string obtained by deleting zero or more symbols from S.

A text string T = T1,n is a special string with tn = $. The k-context Ci ∈ Σk of a
symbol ti is Ci = ti+1 mod nti+2 mod n · · · ti+k mod n.1 The lexicographical order “<” among
strings is defined in the obvious way.

For discussing the compressibility of text collections we need the following concepts.

Definition 1 The zero-order empirical entropy of text T is defined as

H0 = H0(T) =
∑

c∈Σ,nc>0

nc

n
log

n

nc
,

where nc is the number of occurrences of symbol c in T .

Definition 2 The k-th order empirical entropy of text T is defined as

Hk = Hk(T) =
∑

C∈Σk

|TC |

n
H0(TC), (1)

where TC is the subsequence of T formed by all the symbols whose k-context in T is C.

The k-th order entropy gives a lower bound for the compressibility of T with any
compressor that can use only k-contexts to predict the preceding symbol.

Notice that Hk(T) ≤ Hk−1(T) ≤ · · · ≤ H0 ≤ n log σ bits, where the latter gives the
lower-bound for representing any incompressible text.

The compressors to be discussed are derivatives of the Burrows-Wheeler transform
(BWT) [2]. The transform produces a permutation of T , denoted by T bwt, as follows: (1)
Form a conceptual matrix M whose rows are the cyclic shifts (titi+1 · · · tnt1t2 · · · ti−1 for
1 ≤ i ≤ n) of text T , call F its first column and L its last column; (2) sort the rows ofM
in lexicographic order; (3) the transformed text is T bwt = L.

The BWT is reversible, that is, given T bwt we can obtain T as follows:

1. Compute the array C[1, σ] storing in C[c] the number of occurrences of characters
{$, 1, . . . , c− 1} in the text T .

2. Define the LF mapping as follows: LF (i) = C[L[i]]+rankL[i](L, i), where rankc(L, i)
is the number of occurrences of character c in the prefix L[1, i].

3. Reconstruct T backwards as follows: set s = 1 (sinceM[1] = $T1,n−1) and, for each
n− 1, . . . , 1 do ti ← L[s] and s← LF [s]. Finally put the end marker tn ← $.

We study a generalization of the following problem:

1For technical convenience, T is taken here as a circular string, and Ci is defined as the right context
and not as the more natural left context. Alternative definitions can be handled with small modifications.

2

Definition 3 The basic indexing problem is to store text T in as small space as possible,
so that the following retrieval queries on any given pattern string P = p1p2 · · · pm can be
solved as efficiently as possible:

count(P): How many times P appears as a substring of T?

locate(P): List the occurrence positions of P in T .

display(i, j): Return Ti,j .

We call a solution to the basic indexing problem a self-index if the index does not need T
to solve the three queries above.

A comprehensive solution to the basic indexing problem uses the suffix array A[1, n],
that is an array of pointers to all the suffixes of T in lexicographic order. Then two
binary searches are enough to find the interval A[sp, ep] such that count and locate are
immediately solved [15]. The solution is not as space-efficient as possible, since array A
requires n log n bits, and the solution is not yet a self-index, since T is needed in order to
solve the display query.

A more space-efficient solution to the basic indexing problem derives from the fact that
suffix array A is essentially the matrix M, as sorting the cyclic shifts of T is the same as
sorting its suffixes given the end marker “$”: A[i] = j if and only if the ith row of M
contains the string tjtj+1 . . . tn−1$t1 . . . tj−1.

The FM-index [5] is a self-index based on the Burrows-Wheeler transform. It solves
counting queries by finding the interval A[sp, ep] that contains the occurrences of pattern
P . The FM-index uses the array C and function rankc(L, i) in the so-called backward
search algorithm calling function rankc(L, i) O(m) times. The two other basic indexing
problem queries are solved e.g. using sampling of A and its inverse, and LF -mapping
to derive the unsampled values from the sampled ones. Many variants of the FM-index
have been derived that differ mainly in the way the rankc(L, i)-queries are solved [18].
For example, on small alphabet sizes, it is possible to achieve nHk(1 + o(1)) space with
constant time support for rankc(L, i) [6].

A dual approach to solving the basic indexing problem uses the compressed suffix
array (CSA) [23], that is a self-index based on an earlier succinct data structure [8]. In
the CSA, the suffix array A[1, n] is represented by a sequence of numbers Ψ(i), such that
A[Ψ(i)] = A[i] + 1.2 The sequence Ψ is differentially encoded, Ψ(i + 1) − Ψ(i). Note
that the Ψ values are increasing in the areas of A where the suffixes start with the same
character c, because cX < cY if and only if X < Y in lexicographic order. It is enough
to store those increasing values differentially with a method like Elias coding to achieve
O(nH0) overall space [23]. Some additional information is stored to permit constant time
access to Ψ. This includes the same C array used by the FM-index.

We are now ready to introduce the problem studied in this paper.

Definition 4 Given a collection C of r sequences T k ∈ C such that |T k| = n for each
1 ≤ k ≤ r and

∑r
k=1 |T

k| = N , where T 1, T 2, . . . , T r contain overall s mutations from the
base sequence T 1, the repetitive collection indexing problem is to store C in as small space
as possible such that the following operations are supported as efficiently as possible:

count(P): How many times P appears as a substring of the texts in C?

2Since A[1] = n because T [n, n] = $ is the smallest suffix, it should hold A[Ψ(1)] = n+1. For technical
convenience we set Ψ(1) so that A[Ψ(1)] = 1, which makes Ψ a permutation of [1, n].

3

locate(P): List the occurrence positions of P in C.

display(k, i, j): Return T k
i,j.

The basic collection indexing problem (without the requirement of the items to be
mutated from each others) can be solved easily using the normal self-indexes for the
concatenation T 1#T 2# · · ·T r$, where # is a special symbol not appearing in Σ. However,
the space requirements achieved even with the high-entropy compressed indexes are not
attractive for the case of repetitive collections. For example, the solution by Ferragina
et al. [6] requires NHk(C) + o(N log σ) bits. Notice that with s = 0, Hk(C) ≈ Hk(T

1),
and hence the space is about r times more than what the same solution uses for the basic
indexing problem.

In the sequel, we derive solutions whose space requirement depends on nHk (instead
of NHk) and on s (instead of o(N log σ)). We concentrate only on the count-query for
succinctness. For the same reason, we restrict the analysis to mutations, although other
types of variations are handled with the solutions as well.

3 Using Runs as a Complexity Measure

Self-repetitions are the fundamental source of redundancy in suffix arrays, enabling their
compression. A self-repetition is a maximal interval A[i, i + l] of suffix array A having
a target interval A[j, j + l] such that A[j + r] = A[i + r] + 1 for all 0 ≤ r ≤ l. The
intervals of Ψ corresponding to a self-repetition in the suffix array are called runs. As
Ψ(i) = A−1[A[i] + 1], we have Ψ(i + 1) = Ψ(i) + 1 when both Ψ(i) and Ψ(i + 1) are
contained in the same run.

Let RΨ(T) be the number of runs in Ψ of text T and R(T) = Rbwt(T) the number of
equal letter runs in Tbwt. If the text is evident from the context, we will usually drop T and
write just R, RΨ and Rbwt. There is a strong connection between the quantities RΨ and
Rbwt, namely RΨ ≤ R ≤ RΨ + σ [12], allowing to use them interchangeably under most
circumstances. In addition to the trivial upper bound R ≤ N , the bound R ≤ NHk + σk

for all k by Mäkinen and Navarro [12] is relevant for low entropy texts.

We will now prove some further bounds for texts obtained by repeating and mutating
a basic sequence.

Definition 5 Let # be a new character such that $ < # < c for all c ∈ Σ. The r times
repeated text T = T1,n is T r = T 1T 2 · · · T r, where T r = T and T i = T1,n−1# for all i < r.

Definition 6 The context CT,i of suffix Ti,n relative to text T is its shortest distinguishing
prefix. Note that CT,i defines the position of Ti,n in the suffix array of T . The significant
prefix SPkn+i of suffix T r

kn+i,N is the context of Ti,n relative to T .

Theorem 7 For all texts T and all r ≥ 1, RΨ(T) = RΨ(T r).

Proof. Let A be the suffix array of T and Ar the suffix array of T r. The suffixes of T r

are first sorted by their significant prefixes. As $ < #, suffixes sharing the same significant
prefix are further sorted by their starting positions in descending order. Hence

Ar[r(i− 1) + j] = (r − j)n +A[i] for all 1 ≤ j ≤ r.

4

By the definition of self-repetitions, A[i] and A[i + 1] are contained in the same self-
repetition of A if and only if the sequence Ar[r(i − 1) + 1, r(i + 1)] is contained entirely
in a self-repetition of Ar. Hence there is one-to-one correspondence between the self-
repetitions of A and Ar. �

Next we proceed to simple mutations (single nucleotide polymorphisms), where a single
character in T r is randomly transformed into another character. Our goal is to bound the
number of new runs created by the mutation.

Theorem 8 Let T be a repeated text and T ′ the text created by transforming tj into
another character. Then RΨ(T ′) ≤ RΨ(T) + 2c + 1, where c is the number of significant
prefixes covering tj.

Proof. Let A be the suffix array of T and A′ the suffix array of T ′. We call a suffix
T ′

i,N moved if SPi is not its prefix. Hence the relative position of a moved prefix in A′

differs from the position of the original prefix in A. A moved prefix appearing inside a
self-repetition of A or its target interval can break the self-repetition in two pieces in A′.
Additionally, each moved suffix may end up creating a new self-repetition by itself. As
there are c moved suffixes, up to 2c + 1 new self-repetitions may be created in A′.

The remaining suffixes are sorted by their significant prefixes. The mutation may affect
the order of suffixes sharing the same significant prefix, yet does so in a consistent way
creating no new self-repetitions. Hence a simple mutation can create no more than 2c + 1
new runs. �

3.1 Expected case bound

The above proof does not immediately generalize to multiple mutations. Note that we
used two properties of significant prefixes: (i) SPi is a prefix of Ti,N , and (ii) the suffixes
sharing a significant prefix form a self-repetition in A. To restore those properties after
mutations, we need to update our set of prefixes. Unfortunately we have no easy way
of bounding the length of such prefixes in the terms of original significant prefixes in the
worst case. However, we can get meaningful expected case bounds.

Lemma 9 Let T = T1,n be a random text. The expected length of the longest context in
T is O(logσ n).

Proof. Let Si be a prefix of Ti,n of length l. For all 1 ≤ i < j ≤ n let Xi
j be the indicator

variable for having Si as a prefix of suffix Tj,n. If i + l ≤ j, we have E[Xi
j] ≤ σ−l. By the

linearity of expectation, we have an upper bound of 1
2n2σ−l for the expected number of

non-overlapping repeats of length l.
Consider now the case of where Si appears as a prefix of Tj,n for some i < j < i + l

2 .

Now Si must be a repeating sequence with a period less than l
2 . As there are at most

σl/2 such sequences, we have an upper bound of nσ−l/2 for the expected number of such
sequences occurring as a substring of T .

Finally consider the case where the two occurrences overlap in at most l
2 positions.

For such i and j, we have E[
∑

j Xi
j] ≤ 2σ−l/2. Hence we have an upper bound of 2nσ−l/2

for the expected number of such repeats. By summing the bounds for l = (2 + x) logσ n,
we have

E

∑

1≤i<j≤n

Xi
j

 ≤
n2

2σl
+

3n

σl/2
≈

3

nx/2
= f(x).

5

By Markov’s inequality, f(x) is also a bound for the probability of having at least one
repetition of length l. Hence the length of the longest repeat is at most 3 logσ n for large
enough n. �

Note that if we take a random text, repeat it r times and apply random mutations,
the probability of getting a repeat of length l at different positions of the base sequence
is at most r times the above bound. Hence the expected length of the longest significant
prefix remains logarithmic in n and r.

Theorem 10 Let T r be the random text T = T1,n repeated r times. Let Sr be T r after s
simple mutations at random positions. The expected value of R(Sr) is at most R(T r) +
O(s logσ(rn)). �

3.2 Worst case bound

Although the number of runs can increase rapidly by mutations due to long distinguishing
prefixes, we can obtain worst case bounds considering the k-th order entropy. Recall that

R(T r) = R(T) ≤ nHk(T) + σk = nHk(T
r) + σk.

Consider one mutation in T r at position pn + i producing mutated sequence Sr. In the
worst case, all the k-contexts T r

pn+i−j+1,pn+i−j+k for j = 0, 1, 2, . . . , k change to Cpn+i−j =
Sr

pn+i−j+1,pn+i−j+k such that sr
pn+i−j does not yet appear in the context Cpn+i−j in T r. It

follows that nHk(S
r) ≤ nHk(T

r)+(k+1) log N
k+1 by elementary analysis of the differences

in entropy formulas for T r and Sr. The case of s mutations follows in the obvious way.

Theorem 11 Let T r be the text T repeated r times. Let Sr be T r after s simple mutations
at random positions. The value of R(Sr) is at most nHk(T) + s(k + 1) log N

k+1 + σk. �

3.3 Other types of mutations

The proof of Theorem 8 generalizes to different types of mutations. As long as no new
material is inserted into the text, only those significant prefixes covering the beginning
or the end of the mutation can create new runs. Hence the number of runs is quite
robust with respect to the kinds mutations where the original sequence is cut in pieces
and reassembled in an arbitrary order.

Theorem 12 Let T be a repeated text and T ′ the text created by applying one complex
mutation to T . Let m be the length of the mutation, c the number of significant prefixes of
T covering the beginning of the mutation and d the number of such prefixes covering the
end of the mutation.

1. For insertions, RΨ(T ′) ≤ RΨ(T) + 2(c + m)− 1.

2. For deletions, RΨ(T ′) ≤ RΨ(T) + 2c + 1.

3. For copies of existing substrings, RΨ(T ′) ≤ RΨ(T) + 2(c + d) + 2. �

6

4 Compressed Disk Suffix Array

Let us now describe the Compressed Disk Suffix Array (CDSA), based on the CSA by
Mäkinen, Navarro and Sadakane [13]. We use run-length encoding of the differences
Ψ(i)−Ψ(i−1) to store the array. To facilitate fast access to the array, we sample absolute
Ψ(i) values at a rate depending on the desired time-space trade-off. The resulting structure
supports counting queries and allows an efficient secondary memory implementation.

To encode the run Ψ(i)Ψ(i + 1) · · ·Ψ(i + l), we write two integers: the gap after the
previous run (or a sampled value) Ψ(i)−Ψ(i− 1) and the length of the run l + 1. We use
Elias delta coding to encode the integers. Let b(p) be the binary representation of p. The
encoding of the positive integer p is the binary string

δ(p) = 0|b(t)|−1b(t)b(p− 2t−1),

where t = |b(p)|. The length of the code is

|δ(p)| = log p + 2 log log p− 2 = (1 + o(1)) log p.

Let Ψc be the strictly increasing sequence of Ψ values corresponding to the suffixes of
T = T1,n starting with character c. To bound the total length of codes, we note that the
sum of differences Ψ(i) − Ψ(i − 1) inside each sequence Ψc is at most n. Hence the sum
of all gaps between the runs of Ψ is at most σn. As the total length of all runs is n, the
array takes

R
(

log
σn

R
+ log

n

R

)

(1 + o(1))

bits of space in the worst case. The bound is justified by the concavity of logarithm,
making the worst case to be the one where the gaps are approximately σn

R and the lengths
of runs are approximately n

R .
Let |A| be the size of the array in bits. We build a higher level index by sampling the

first Ψ(i) value of each B-bit block of the array. As we start a new block whenever the

first character of the suffix changes, we have nB ≤
|A|
B + σ blocks in the array. As we need

to write a few integers of size log n for each sample, the index takes O(nB log n) bits of
space.

We implement the counting queries using backward searching on Ψ. To find the first
i with Ψ(i) value at least sp or the last one with value at most ep corresponding to the
endpoints of current interval A[sp, ep], we first use binary search on the index to find
the correct block. This takes O(log nB) time. When the correct block is found, we start
to decode it from the beginning. Since decoding time is linear in B, the query takes
O(m(log nB + B)) time. In a secondary memory implementation, we store the index in
main memory and the array on disk. For each character of P except for the last one, we
may have to retrieve up to two array blocks during the query. This gives us an upper
bound of 2(m− 1) disk accesses per query.

Theorem 13 The CDSA for sequence T = T1,n requires

|A| = R
(

log
σn

R
+ log

n

R

)

(1 + o(1))

bits of space for the array and O(nB log n) bits of space for the index, where nB ≤
|A|
B + σ

is the number of blocks in the array. Counting queries take O(m(log nB + B)) time and
require 2(m− 1) disk accesses. �

7

5 Run-Length Encoded Wavelet Tree

Next we will describe how to construct space-efficient wavelet trees when considering a
collection of multiple genomes. Results are achieved by a novel data structure that we call
Run-Length encoded Wavelet Tree. We start by defining rank and select dictionaries for
bit vectors, and the wavelet tree data structure for sequences.

Entropy-bound structures for bit vectors. For a bit vector B of length u,
rankj(B, i) gives the number of j-bits in B[1, i] for all 1 ≤ i ≤ u and j ∈ {0, 1}. The
inverse function selectj(B,x) gives the position of the x’th j-bit in the bit vector B. The
rank and select queries can be solved in constant time using a succinct dictionary of size
uH0(B) + o(u) [19, 21].

Entropy-bound structures for sequences. Wavelet tree [7] is a binary tree structure
whose leaves represent the symbols in the alphabet. The root is associated with the whole
sequence T = T1,n. In a balanced wavelet tree, the left child (resp. right child) of the root
is a wavelet tree of the sequence T< (resp. T≥) obtained by concatenating all positions
i having ti < σ/2 (resp. ti ≥ σ/2). This subdivision is represented by a bit vector of
length n that marks which positions go to the left subtree (by 0) and which go right
(by 1). Recursion is continued until the concatenated sequence contains a repeat of one
symbol. To recover a symbol ti from the original sequence, we can traverse bit vectors of
the wavelet tree starting from the root: In each internal node we choose either the left or
the right subtree depending on the bit vector’s i’th value. We set i ← rank0(B, i) when
we choose the right subtree, and i← rank1(B, i) otherwise. After O(log σ) recursive steps
we arrive at the leaf node of the symbol c, and we know that the original ti = c.

Let T1,n be an arbitrary sequence from the the alphabet Σ. Function rankc(T, i) gives
the number of times the symbol c appears in the subsequence T1,i. Function selectc(T, x) is
the inverse function of rank. The functions rankc(T, i) and selectc(T, x) can be calculated
from the balanced wavelet tree in O(log σ) recursive steps for any c ∈ Σ. For example
rankc(T, i) can be solved by traversing the wavelet tree according to the symbol c: In each
internal node, we go to the left subtree if c < σ/2 and right otherwise, and update i as
in the previous paragraph. When we reach the leaf node of symbol c, the answer of the
rank query is the value of i.

The space required by a balanced wavelet tree depends on how we encode the rank
structures for the bit vectors. Entropy-bound dictionary structures for bit vectors [19, 21]
can be used to represent the wavelet tree for an arbitrary sequence T in nH0(T)+o(n log σ)
bits [6]. However, when we are constructing the wavelet tree for a BW-transformed se-
quence T bwt, a much better result can be achieved due to implicit compression boosting
[14]: a wavelet tree for the sequence T bwt requires only nHk(T)+o(n log σ) bits of space for
any k ≤ α logσ n− 1 and any constant 0 < α < 1. This is a good result when considering
only one sequence but for a collection of multiple sequences, that are almost identical,
we notice a dependency on the overall length of the sequences. To make wavelet trees
more suitable for these kind of collections, we describe a Run-Length encoded Wavelet
Tree (RLWT) data structure, whose space requirement depends on the number of runs R
instead of the overall length of the collection.

Run-Length encoded Wavelet Tree. Given a collection C and a concatenated se-
quence T1,N of all the sequences T i ∈ C, let R be the number of runs in the BW-transformed

8

sequence T bwt of T . Let Ball be a level-wise concatenated bit vector of all the bit vectors
in the balanced wavelet tree for the sequence T bwt. In the worst case, each run in T bwt

equals one 0/1-bit run on every log σ levels of the wavelet tree, so that the upper-bound
for the number of 0/1-bit runs in Ball is R log σ. Let b ≤ ⌈12R log σ⌉ be the number of
1-bit runs in Ball. The RLWT data structure encodes Ball into two separate bit vectors
B1 and Brl such that the number of 1-bits in both bit vectors is exactly b: bit vector
B1 marks all the starting positions of 1-bit runs in Ball, and bit vector Brl encodes the
run-lengths of these runs in unary coding. More precisely, B1[i] = 1 only if Ball[i] = 1 and
Ball[i − 1] = 0 for all 1 < i ≤ N log σ, and B1[1] = 1 if Ball[1] = 1. Unary code for a bit
run of length j contains j − 1 zero bits concatenated with one 1-bit. The length of Brl is
the sum of the lengths of 1-bit runs in Ball, which is always at most N log σ bits.

Theorem 14 ([9]) Given a bit vector B of u bits containing b 1-bits, a binary searchable
dictionary representation requires gap(B) + O(b log(u/b)/ log b) + O(b log log(u/b)) bits of
space and supports rank queries in AT (u, b) time, where AT (u, b) equals

O

(

min

{
√

log b

log log b
,

log log u

log log log u
· log log b, log log b +

log b

log log u

})

,

and select in O(log log b) time. In the worst case, the gap encoding measure gap(B) is
roughly b log(u/b) bits. �

For the bit vectors B1 and Brl, we have strict upper-bounds of u ≤ N log σ and
b ≤ ⌈12R log σ⌉. Using the above theorem, the bit vectors can be represented in at most

R log σ log
2N

R
+ O

(

R log σ log 2N
R

log R + log log σ

)

+ O

(

R log σ log log
2N

R

)

bits of space, where N
R ≤

r
Hk

and r = |C|. All the wavelet tree queries can be supported

without storing the bit vector Ball itself. Next we will show how to calculate the rank
queries on the bit vector Ball using only the bit vectors B1 and Brl.

Solving rank in RLWT. To calculate rank1(B
all, i) we first set r ← rank1(B

1, i),
which is the number of 1-bit runs that start before or at the position i. If r = 0 then
trivially rank1(B

all, i) = 0. Let j be the starting position of the 1-bit run that precedes
position i, to be exact j ← select1(B

1, r). From the definition of Brl follows that the
number of 1-bits before position j equals

rank1(B
all, j − 1) =

{

0 if r = 1,
select1(B

rl, r − 1) otherwise.

The remaining part is to calculate the number of 1-bits in the closed interval [j, i] of the
bit vector Ball: Let k be the length of the r’th run, that is to say k ← select1(B

rl, r) −
rank1(B

all, j − 1). The number of 1-bits in the closed interval is

rank1(B
all, i) − rank1(B

all, j − 1) =

{

k if i− j ≥ k,
i− j + 1 otherwise.

Finally, the answer to the original rank1(B
all, i) query is just the sum of the values

rank1(B
all, j−1) and rank1(Ball, i)−rank1(B

all, j−1) that we already calculated above.
Solving rank for the bit vector Ball takes AT (u, b) + O(log log b) time overall, and we get
the following theorem for the RLWT structure.

9

0.00 0.01 0.02 0.03 0.04 0.05

0
50

10
0

15
0

20
0

Mutation rate

R
un

s
(M

)

25x1 MB
25x4 MB
25x16 MB
50x1 MB
100x1 MB

Figure 1: The number of runs in Ψ of repeated DNA sequences.

Theorem 15 Given a collection C and a concatenated sequence T of all the sequences
T i ∈ C, let R be the number of runs in the BW-transformed sequence T bwt of T . The
RLWT data structure for the sequence T bwt takes

R log σ log
2N

R
(1 + o(1)) + O

(

R log σ log log
2N

R

)

bits of space, where N = ‖C‖. The queries rankc(T, i), selectc(T, x) and the symbol T bwt
i ,

for all 1 ≤ i ≤ N , are solved in O(log σ · (AT (u, b) + log log b)) time, where u ≤ N log σ
and b ≤ ⌈12R log σ⌉. �

Backward search. Using the result from the above theorem with backward searching
[4], we can count the number of occurrences of a pattern of length m in O(m log σ ·
(AT (u, b) + log log b)) time. The space required for counting queries is the same as in
Theorem 15.

6 Experimental Results

We set our new self-indexes against the existing self-indexes Succinct Suffix Array (SSA)
and Run-Length FM-index (RLFM) [12], where the former uses Huffman-shaped Wavelet
tree directly on the BWT and the latter uses it on the run-length encoded BWT. We also
compare to a self-index based on Lempel-Ziv parsing (LZ-index) [1] and to the alphabet-
friendly FM-index (AFFM) [6] that requires NHk(C) + o(N log σ) bits. Furthermore, we

10

0.00 0.01 0.02 0.03 0.04 0.05

6
7

8
9

10
11

Mutation rate

R
un

s

25x1 MB
25x4 MB
25x16 MB
50x1 MB
100x1 MB

Figure 2: The number of new runs per mutation.

compare against a plain compressor to see how much we pay for the retrieval functionality.
We use a highly efficient LZ77-based compressor p7zip3 with options -mx=9 -md=30. The
compressor uses a window of length up to 1 GB, and can thus compress texts with long
repeats much better than standard Lempel-Ziv based compressors.

In our implementation of CDSA trivial runs of length 1 are encoded only by their gap
values, whereas nontrivial runs of length l+1 are encoded by triples (gap, 1, l). This saves
one bit in trivial runs and wastes one bit in nontrivial ones. The trade-off is usually more
noticeable when there are many trivial runs, making the average number of bits required
to encode a run small. We use 32 kB block size for the CDSA unless otherwise noted.
With such block size, the index size is less than 0.001 times the array size, making it
suitable for secondary memory implementation.

Our implementation of the RLWT data structure uses simpler encoding for the bit
vectors than in Theorem 15. The implemented structure solves counting queries for a
pattern of length m in O(m log σ · (log(b/ log2 b) + log log b)) time, where b ≤ ⌈12R log σ⌉.

For the tests, we use the DNA sequences from Pizza & Chili Corpus.4 We take a 1, 4 or
16 MB prefix and repeat it 25, 50 and 100 times. Note that this is not exactly a repeated
text of Definition 5, as we use no special characters to separate the basic sequences. Each
character is randomly transformed into another character in {A,C,G,T} with probability
corresponding to the mutation rate p. Characters in the first basic sequence are not
mutated. The setting simulates the case of one base sequence and r−1 mutated sequences.

3http://p7zip.sourceforge.net/
4http://pizzachili.di.unipi.it/ or http://pizzachili.dcc.uchile.cl/

11

0.00 0.01 0.02 0.03 0.04 0.05

1
2

5
10

20
50

10
0

20
0

Mutation rate

M
B

25x1 MB
25x4 MB
25x16 MB
50x1 MB
100x1 MB

Figure 3: The size of CDSA on repeated DNA sequences.

Our other data set contains the source code for portable versions of OpenSSH5. We
test our indexes on a 4.44 MB tar archive containing the source code for version 4.7p1,
as well as on another 176.55 MB archive containing the source code for all 75 versions up
to version 4.7p1. The latter contains multiple copies of same files as well as many highly
similar files, making it highly compressible.

By Theorem 7, repetition of a base sequence does not increase the number of runs of
Ψ. When the special characters separating the base sequences are removed, the results
are slightly different. If there are R runs in Ψ of the base sequence, the number of runs
in Ψ of a twice or more repeated sequence is R + c for a (usually small) constant c. For
example, there are 704, 377 runs in Ψ of the 1 MB DNA prefix, whereas the number of
runs increases to 704, 383 when the sequence is repeated. The cause of this is that the last
suffixes of other base sequences are often sorted differently than the corresponding last
suffixes of the last base sequence.

Figure 1 shows the number of runs in Ψ of repeated DNA sequences. The number of
runs grows somewhat sublinearly in the number of mutations. This is further elaborated in
Figure 2. Note that the logarithmic dependence on the length of base sequence predicted

5http://www.openssh.com/

12

0.00 0.01 0.02 0.03 0.04 0.05

1
2

5
10

20
50

10
0

20
0

Mutation rate

M
B

25x1 MB
25x4 MB
25x16 MB
50x1 MB
100x1 MB

Figure 4: The size of RLWT on repeated DNA sequences.

for random texts in Theorem 10 also exhibits here. As the mutation rate or the number of
repetitions increases, the probability of similar mutations increases, making it less likely
for the moved suffixes to create new runs.

Figures 3 and 4 show the sizes of our structures on repeated DNA sequences. Both per-
form similarly, yet as the number of runs grows, CDSA outperforms RLWT, as predicted
by the extra log σ factor in the space bounds.

We will now select the 25 times repeated 16 MB DNA prefix for further comparisons.
As Figure 5 shows, our indexes clearly outperform the existing self-indexes when the
number of mutations is small. Yet as Figure 6 shows, there might still be much room
for improvement. To encode the sequence, p7zip requires approximately one tenth of
the space. When the mutation rate is high, p7zip requires only about 1.2 bits per run,
suggesting some connection between the number of runs in Ψ and the space requirements
of Lempel-Ziv compression.

Next we compare our indexes with existing self-indexes as well as plain compressors
on OpenSSH sources. In addition to p7zip, we use the well-known gzip and bzip2

compressors with parameter -9. Due to their small block sizes, they give an idea of the
traditional entropy-based compressibility of the collection. As seen in Figure 7, our indexes
clearly outperform the existing self-indexes.

13

0.00 0.01 0.02 0.03 0.04 0.05

0
10

0
20

0
30

0
40

0

Mutation rate

M
B

CDSA
RLWT
RLFM
SSA
LZindex
AFFM

Figure 5: A comparison of our indexes with existing self-indexes.

The increased space efficiency of our indexes has been paid in time efficiency. To test
this, we extract 1000 random substrings of length 10 from the 16 MB DNA prefix. We
then repeat the prefix 25 times with mutation rate 0.01 and measure counting query times.
The following table gives average query times and structure sizes on a 3 GHz Intel Pentium
4 Northwood machine with 3 GB RAM.

14

0.00 0.01 0.02 0.03 0.04 0.05

0
5

10
15

20
25

Mutation rate

B
its

p7zip
CDSA
RLWT

Figure 6: The average number of bits required to encode a run.

Structure Time (µs) Size (MB)

CDSA 188.0 71.51
RLWT 1050.0 89.30
RLFM 29.5 156.50
SSA 13.0 116.37
AFFM 19.4 124.15
LZ-index 79203.0 356.59

Note that we have used a main memory implementation of CDSA with 256 byte blocks
here. Because of the smaller block size, the index is now almost 10 percents of the array
size as opposed to less than 0.1 percent in the secondary memory implementation.

7 Discussion and Future Work

The new data structures proposed in this paper do not yet solve the full repetitive collection
indexing problem, but rather give a first building block for such solution; we leave the
locate and display queries for future research (a suitable sampling mechanism that
takes advantage of the similarity of the texts to be indexed can be imagined to work). Also
extending the solution to document retrieval queries [16, 25, 26], and building dynamic
generalized suffix trees [24, 22] on top of the structure are imaginable directions for future
studies. Maintaining a dynamic collection seems feasible by slight changes to the Run-
Length encoded Wavelet Tree -structure.

15

original gzip bzip2 p7zip LZI CDSA RLWT RLFM SSA AFFM

Version 4.7p1
All 75 versions

M
B

0
50

10
0

15
0

20
0

4.
44

17
6.

55

0.
94

41
.1

6

0.
76

32
.2

8

0.
65

1.
97 6.
31

14
7.

12

1.
11 5.
32

2.
09 7.
04

2.
41

62
.8

6

3.
27

12
8.

06

3.
32

86
.7

8

Figure 7: Compression results for OpenSSH sources.

In this study, we have only considered self-indexes based on the Burrows-Wheeler
framework. There is also a family of self-indexes which is based on the Lempel-Ziv parsing,
see [17, 18]. It is easy to see that the parsing of a repetitive text collection consist at most
of P (T 1) + s + 1 phrases, where P (T 1) gives the number of phrases in T 1. It follows
that Lempel-Ziv based indexes like [17] require at most O(n log σ + s log n) bits space.
Hence, they are attractive for the application due to the good space bound; except that
in practice our experiments indicate that the constant factors are quite large. Also, their
functionality is limited to pattern searches and there does not seem to be a way to use
them as building blocks of compressed suffix trees or alike structures.

Acknowledgments

Many of the ideas for the analysis part have had a great impact from the brainstorming
with Gonzalo Navarro and Johannes Fischer when V. M. was visiting the University of
Chile.

References

[1] D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of LZ-
index. In 17th Annual Symposium on Combinatorial Pattern Matching (CPM 2006),
LNCS 4009, pages 319–330. Springer-Verlag, 2006.

[2] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation, 1994.

16

[3] G. M. Church. Genomes for all. Scientific American, 294(1):47–54, 2006.

[4] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, pages 390–398, Washington, DC, USA, 2000. IEEE Computer Society.

[5] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552–581, 2005.

[6] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

[7] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th SODA, pages 841–850, 2003.

[8] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35(2):378–407,
2006.

[9] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Scott Vitter. Compressed data struc-
tures: Dictionaries and data-aware measures. In DCC ’06: Proceedings of the Data
Compression Conference (DCC’06), pages 213–222, 2006.

[10] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[11] N. Hall. Advanced sequencing technologies and their wider impact in microbiology.
The Journal of Experimental Biology, 209:1518–1525, 2007.

[12] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, 2005.

[13] V. Mäkinen, G. Navarro, and K. Sadakane. Advantages of backward searching — effi-
cient secondary memory and distributed implementation of compressed suffix arrays.
In Proc. 15th ISAAC, LNCS 3341, pages 681–692, 2004.

[14] Veli Mäkinen and Gonzalo Navarro. Implicit compression boosting with applications
to self-indexing. In SPIRE’07: Proceedings of the 14th Symposium on String Process-
ing and Information Retrieval, October 2007.

[15] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

[16] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Pro-
ceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA’02), pages 657–666, 2002.

[17] G. Navarro. Indexing text using the ziv-lempel trie. Journal of Discrete Algorithms
(JDA), 2(1):87–114, 2004.

[18] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1):article 2, 2007.

17

[19] Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM
J. Comput., 31(2):353–363, 2001.

[20] E. Pennisi. Breakthrough of the year: Human genetic variation. Science, 21:1842–
1843, December 2007.

[21] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dic-
tionaries with applications to encoding k-ary trees and multisets. In SODA ’02:
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 233–242, 2002.

[22] L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In Proc. 8th
LATIN, LNCS, 2008. To appear.

[23] K. Sadakane. New text indexing functionalities of the compressed suffix arrays. Jour-
nal of Algorithms, 48(2):294–313, 2003.

[24] K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 2007. To appear. DOI 10.1007/s00224-006-1198-x.

[25] K. Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007.

[26] N. Välimäki and V. Mäkinen. Space-efficient algorithms for document retrieval. In
18th Annual Symposium on Combinatorial Pattern Matching (CPM 2007), LNCS
4525, pages 217–228. Springer-Verlag, 2007.

