-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Helsingin yliopiston digitaalinen arkisto

DEPARTMENT OFCOMPUTERSCIENCE
SERIES OFPUBLICATION C
REPORTC-2008-50

Framework for evaluating believability of non-player
charactersin games

Tero Hinkkanen, Jaakko Kurhila and Tomi A. Pasanen

UNIVERSITY OF HELSINKI
FINLAND

https://core.ac.uk/display/14900028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Framework for evaluating believability of non-player charactersin game

Tero Hinkkaneh Jaakko Kurhilaand Tomi A. Pasanén

'Gamics Laboratory
Department of Computer Science
P.O. Box 68, Fin-00014 University of Helsinki, Finland

’Department of Computer Science
P.O. Box 68, Fin-00014 University of Helsinki, Finland

Technical report, Series of Publication C, Report C-2008-50
Helsinki, July 2008, 10 pages

Abstract

We present a framework for evaluating believabilitycbéracters in first-person shooter (FPS) games
and look into the development of non-player charasterser-perceived believability. The used

framework is composed of two aspects: firstly, charactevement and animation, secondly, behavior.
Examination of three different FPS games yields tha mlewer the game was, the better the
believability of characters in the game. Moreover, figgults from both the aspects of the framework
were mutually balanced through all games examined.

Computing Reviews (1998) Categories and Subject Descriptors:

[.2.1 Artificial Intelligence: Applications and Expert §gms — games
J.4 Social and Behavioral Science — psychology, sociology

General Terms:
First-person shooter (FPS), believability, movemeniation, behaviour

Additional Key Words and Phrases:

1 INTRODUCTION

First-person shooter (FPS) games have been popular ecer thieir first release in the early 1990’s
(Hovertank 3D1991, Wolfenstein 1992, and Doom 1993 he games are usually straightforward in a
sense that the target is to navigate the player'sactar through different levels of the game and
accomplish different tasks. Normal task is to movemfimoint A to point B and shoot everything that
moves or tries to shoot back. The view to the gamedarhsists of a split screen where the narrow
lower part of the screen is showing player's heallld ammo, and the upper large part of screen
represents player’s eye view to the game world (the lpageis the player's only mean to monitor other
characters in the game and draw conclusions about tiEpending on the game, in-game characters
run by the player or by the computer can have humareliketraints or not. Because games are made
for players’ enjoyment, not every part of real-worlivé and rules are included in the games. For
example, a player must be able to win even the sgstrior enemies in the game alone [8].

Main reason for the popularity of FPS games has besnrelatively high-level graphics together
with a breathtaking pace of interaction. Nowadays, én@w, players have started to expect even more
realism in games, such as unpredictability. Becaus¢th@fgames in this genre, many significant
improvements on the game activities have been attachetatracters run by the computer, in other
words “non-player characters” (NPCs) which the plagetiaracter will meet during the game.

It can be said that the ultimate goal of an NP® ibd indistinguishable from a character run by a
player. However, recent studies show [2, 14] that ptayell notice if their opponent is controlled by a
computer rather than another human player, or if the ogmos too strong or too weak compared with
another human player. According to the studies, teemehts increasing theelievability of NPCs as
human players are natural movement, mistakes and gediureg the game, character appearance and
character movement animation.

An NPC can be seen as an intelligent agent tryingotats best (rational action) in the current
stage [21]. While choosing the rational action for an N&d@ficial intelligence (Al) tries at the same
time to be as entertaining as possible, using even “chieap’t[16, 24]. Cheap tricks are permitted by
the players as long as the player stays relativatyioced of the rationality of the actions.

In this paper, we take a look at how the game industsybleen promoting non-player character’s
(NPC) believability in FPS games and compile a framevorkevaluating believability of the NPCs.
We start by looking at the elements which build believgbih the next section and present the
framework in Section 3. In Section 4, we apply our famrk to three FPS games revealing
improvements along the age of games. We conclude w#hriémarks in the last section, Section 5.

2 BUILDING BELIEVABILITY

Based on different studies among players [2, 14], the bélidyaf the NPCs is most influenced by (1)

the game environment where the NPCs appear, (2) anothesctér or player which the NPC is

compared to, and (3) the players’ cultural background and Begegause we are aiming to a general
framework we skip the last item and divide NPC’s belielitgbinto three main categories: movement,
animation and behavior. Next we consider how game devsldee tackled each of these.

2.1 M ovement

In FPS games, NPCs’ movement usually tries to emdateans’ natural movement: finding the
obvious shortest path and reacting to the game environ@aattypical way of helping an NPC to find
the shortest path is to build a navigation mesh ontgdhge map. Game designers plant varying number
of navigation points or nodes onto the map. When the Ne&ches for the shortest way to its
destination, it actually calls for the search algorithftthe game to find the shortest path between the
two navigation points: the one where the NPC is, andtieewhere it's going to go.

The most commonly used search algorithm is A* [16] and/at$ations. In some FPS games,
designers have eased NPCs’ pathfinding algorithms by outliheagrea(s) where NPCs can move. This
reduces the search space significantly and thus quickessdheh. However, if an NPCs’ destination is
not within its range of movement or otherwise out ®f@éach, A* has to search trough every node in the
search space, which particularly in large maps demaggsaa amount of CPU time. In case that game
designers have not considered this option, the NPC fallthe pathfinding algorithm over and over
again thus slowing the game down. In these cases, NPChéanilled off so that the CPU time will
not be wasted [9].

Even though the performance of computers has been risitggously, optimizing algorithms
are still needed to guarantee the smooth running of everrbiggees [25]. Reducing the navigation
mesh is a simple and fast way to increase the spe&tspbut it leads to a sparse search space and thus
to a clumsy and angular NPCs’ movement.

A good solution to optimize the searches is to cut dtheir number. This can be reached in two
different ways: one is to reuse old searches for dtf®€s and the other is to limit the flooding of A*.
Flooding is understood as the extensive widening of pathfindownd the optimal path.

Even if A* can not find a path to a location, it istrwise to erase this search result from the
computer’s memory. In games where there are several NPi€4$ikely that some other NPC is going to
search for a similar or even the same route at soonet of the game. Now if the failed results are
already in the memory, it saves a lot of the CRuktivhen there is no need to do the same search again
[4]. Keeping a few extra paths in the memory does nahbiptimit the amount of free memory during
the game.

By using path lookup tables, it is possible not to use athfipding algorithms during the game at
all [2]. Every possible path will be stored in the lookupeaakthich is loaded in the memory while the
game begins. Even though the tables will be quite large still faster to look for a path straight from
the table rather than search for the best route ttotation. Major problems with the path lookup tables
are that they require completely static maps and of lisee memory.

Humans tend to move smoothly, that is, they attemforesee the upcoming turns and prevent
too sharp turning. NPCs’ paths can be smoothened in sevayal One is to use weighted nodes, in
which case an NPC is surrounded by four sensors [3, 15]. ®sessor picks up an obstacle or the
gradient changes of the area, the sensor’s value ieaised. If the value exceeds the sensor’s limit
value, the NPC is guided away from the direction ofsesor.

Because an NPC knows which nodes it is going use paits it is possible to foresee where the
NPC has to turn. Smoothening these turns by startinguthebefore the node, game developers have
been able to increase NPCs’ believability [18]. Combinimgdeeing the turn with string-pulling [3,
27], in which every nodeyris removed if it is possible for an NPC to go diredttyn node R; to nu,
produces a very smooth, human-like movement for NPCs.

When several NPCs exist simultaneously, one must pagtiath to how they move in groups.
Problems occur when two or more NPCs try to use theegsaode at the same time. This can be solved
by using reservations [17] in nodes, so that the first KF¥€rves the node to itself, and the other NPCs
have to find alternative paths. The reservation caddme by increasing the cost of one node so high,
that A* ignores it while finding a path.

If several NPCs have to go through one particular mbdiee same time without having alternative
paths, it can form a bottleneck for NPCs’ smooth maxetmOne way to solve this is to let NPCs go
through the bottleneck in a prioritized order [23]. Thevies low-priority NPCs to wonder around while
waiting for their turn.

2.2 Animation

Most of theanimations used by NPCs are made with one of the following threthads [2]. One is to
draw or otherwise gain the frames of the entire animadiad then combine them into to one sequence.
The other method is to draw a couple of keyframes ated tan morph them with computers into one

smooth animation. The third way is to connect sensowis person and record the person’s different
moves onto the computer. Then these moves are fitteditawn character.

Each one of these methods has the same flaw: Onarimation is done, it can only be changed
by recording it again. This obviously can not be done dutieggame. By recording several different
animations for NPCs’ one action, it is possible tongfgabetween different animations if the same action
occurs again and again. This, however, only prolongs th®wd which is that player will notice if
dozens, or even a few, of NPCs limp or dies with inipedg the same way.

Using hierarchically articulated bodies or skeleton ngdePCs’ animations can be adjusted to fit
different situations and actions [2]. The skeleton n®dan also be fitted to different NPCs only by
changing the model's appearance and size. The use akébeton models reduces the amount of
memory needed for animations, because every animatioow done when needed instead of using pre-
recorded sequences.

NPCs’ appearance is very important while their bal@hy is looked into. If gaps occur between
the limbs and the torso, or other oddities can be seeNRCs’ appearance, it decreases their
believability. While the polygon mesh is added over thdeste these flaws can be avoided by paying
attention to how the mesh is connected to the skebetdrby adding padding between the skeleton and
the mesh [2].

The animation controller (AC) has an important radesidering the NPC’s animations. The AC
decides what animation is played with each action andhat speed. In case of two animations are
played sequentially, the AC decides at what point théckwiappens. Some animations have a higher
priority than others. Showing the death animation oveeevery other animation, because it is the last
animation any NPC will ever do.

If NPCs are made with skeleton models, the AC needsdidede/hich bones are to be moved and
how much in order to gain believable movement for an NB@ne animations or movements can be
shown simultaneously with other movements. Thesaud®;l for example, running animation for the
lower part of the body and shooting animation for the ujmaer while face movements for yelling are
shown in the NPC'’s face.

Animations are even used to hide programming bugs in the gameklf-Life when a player
throws a grenade amongst a group of enemy NPCs, NPCHinpitg does not always find paths for
NPCs to run away from the immediate explosion. Pimgnars at Valve Software could not localize this
bug but they could see when the bug occured [13]. They proggdnNPCs to duck and cover every
time this bug appeared, and this solution was warmly weldoloyeplayers saying it added an extra
touch of human behavior to NPCs.

2.3 Behavior

Making mistakes is human, therefore it is not to bpeeted that any NPC’s actions are flawless.
Intentional mistakes, such as two NPCs talking loudlyaichedther or an NPC’s noisy loading of guns,
reveal the NPC'’s location to a player before he/sire @ven see it. NPCs’ far too accurate shooting
tends to frustrate the players so it is recommentatithe first time an NPC sees the player’s charact
it should miss it thus giving the player time to reaat ahoot back [5, 13].

NPCs need reaction time for different actions toalde to imitate the physical properties of
human [5, 14, 20]. These are made by adding one second deé&acfoaction NPCs have, thus making
them appear as if they were controlled by other players.

Both predictability and unpredictability are natural fomfan players [22]. In FPS games, this
becomes apparent when either too weak or too powerful weagenshosen in the game. Emergent
behavior (EB) offers more unpredictability for NPCgs. EB, no simple reason can be given for the
NPC’s known actions and therefore the result ofatigon can benefit either the NPC or the player’s
character.

Emergent behavior occurs mostly when timers and goa&ebdscisions are used to control NPCs’
behavior [19, 22]. Emergent behavior can also be a rieuit several small rules that NPCs follow. A

good example of this is flocking [3, 10, 19]. In flocking, gvemember of a flock or a group follows
exactly the same rules, which can produce more adtemmthe sum of these rules dictates.

Moreover, NPCs should take notice of other NPCs and #wtions, and be aware of their
existence. If game programmers so desire, NPCs cansgmgort to each other or search for cover
together [13]. In the worst case, a guard can walk owefeiow guard without even noticing his dead
corpse on the ground [14]. However, it has been statédhtnanmost important thing for NPCs to notice
is to avoid friendly fire [20, 26].

NPCs can “cheat” by using information they possibly doudt obtain in real life. These include
locations of ammo and health in the game, the locatidhe players’ characters’ or even the charatters
health and fighting capabilities [13, 22]. This informat@an be programmed for the player’'s benefit,
too. By letting the player’s character’s health topdto near zero and then by changing the NPCs from
ultimate killing machines to sitting ducks, the game can tigeplayer a feeling of a sudden success and
thus keep him/her playing the game longer.

Lately, cheating of NPCs has been reduced by game progranmmarder to give the player and
the NPCs equal chances to survive in the game. At time $gne, NPCs’ abilities to autonomously
search for health and ammo through different game deaetl remember where it has or has not been
have increased. Thus the change has been from cheathmgdéduman-like NPCs [6, 12].

NPCs’ behavior is mostly controlled by finite statecimaes [3, 2, 7, 28]. In addition to state
machines, trigger-systems and scripts are used in stasitiovas. A more developed version of the state
machine is a hierarchical state machine, in which evexte 96 divided into smaller state machines
which have their own states and state transitions [2].

3 DESCRIPTION OF FRAMEWORK

A framework for evaluating the believability of charastés a means to evaluate user-perceived NPC
believability in FPS games. It should be noted that flalework is intentionally limited to provide
simplicity and universality in use.

The framework is composed of two main aspects: firsttvement and animation, secondly
behavior. It is based on programming techniques and algorittsed in different FPS games. This
framework does not take a stance on how some requirdrasriteen executed, but only whether or not
it has been implemented so that the player can perdeiv

The basic element of NPCs’ movements and animaisaitsit any NPC can find the most suitable
path to its destination. In most cases, NPCs’ degtimad the current location of the player’s characte
NPCs’ path may not be the shortest, but it must keaaanable suitable path. Because game maps are
divided into smaller blocks to prevent too large searadcap, an NPC has to be able to cross these
borders especially after it has noticed the playdraracter.

When NPCs move, they must move smoothly and be capabieaf running into both static and
dynamic obstacles. The player will not be convincétlieCs’ believability if it cannot move around a
barrel or wait for a moving vehicle to move out of itsyw#/hen two or more NPCs move together, they
must pay attention to each other to avoid collisions.

When observing NPCs’ animations, three different thimgso@importance. First, one should note
whether there are several pre-recorded animations ®motion or not. Secondly, a shift from one pre-
recorded animation to another must be fluent so thatmealistic movements are made in between.
Third, NPCs appearance must be done well enough so tlgapsocan be seen between their limbs or
other unnatural design is apparent.

Tables 1 and 2 show the specific propositions that ai insevaluating the believability of NPC
characters. Propositions equal points, and the poietsadded into a score. Some propositions are
viewed to have a greater impact on the believabilityréfore, some rows in Tables 1 and 2 are counted
for doubling the score, i.e. the points for a single iregquent can be 2 instead of 1. The importance of
some requirements over others is based on the view takieis study.

Table 1. Scores for movement and animation
Requirement for NPC Points
NPC can find the most suitable path (for 1
its destination.

NPC’s movement is not limited to|a 1
certain area, such as one room.

NPC’'s movement is not clumsy pr 2
angular.

NPCs are aware of each other and dgnot 1
collide with each other.
NPC can avoid any dynamic or stati
obstacle in game field.

c 2

NPC has different animations for ohe 1
action.

Shifting from one animation to another 1
is fluent.

NPC's appearance is done carefully and 1
no unnatural features can be found in |t.
Total 10

NPCs’ behavior is based on human’s natural behavior.sNfa@ and should make mistakes, and a
way to make sure of this, is to program them to makentimieal mistakes, vulnerabilities and reaction
times. Emergent behavior gives a good illusion of an Neidg controlled by a human instead of a
computer, and thus if possible, it should be present.

Taking notice of other NPCs can best be seen whetheot NPCs can avoid friendly fire. It is
difficult to see if an NPC cheats. If an NPC doesamect ammo or health during the game, revealing
their location to the NPC does no good to it. Insteadealing the location of the player’s character is
easier to notice. If an NPC knows exactly when tlaggy comes behind the corner, or an NPC shoots
the player’s character without the player noticing NeC first, the NPC has cheated (at least it defined
to be so).

Because of FPS games are typically fast paced, chesamte in constant move. While an NPC
moves, just like the player’s character, it is hardifdo aim correctly and shoot at the target. Pausing
for a moment before shooting at the player gives thgep a fair chance to hide or shoot back. All this is
based on information of human reaction times and aicapgbilities.

Finally NPCs’ behavior should be logical and human.rBheugh it is desirable for an NPC to act
unpredictably, running away from the combat which it was asly going to win leaves the player
perplexed. Running away from the combat which you are doitgse is human, but this characteristic
feature of human behavior is not a typical actioaNPC — NPCs tend to fight till their untimely end.

Table 2. Scores for NPC’s behavior

Requirement for NPC Points
NPC makes intentional mistakes. 2
NPC has human-like reaction times. 2
NPC behaves unpredictably. 1
NPCs are aware of each other. 2

Cheating in a manner that player can |not 1

detect it.

Bad aim when seeing player for the first 1
time

Logical and human behavior 1
Total 10

The overall score for an NPC is made by multiplyingresdrom both aspects. Therefore, the
overall score is always somewhere between 0 and 180gdiod to note that even if a game scores, say,
fair scores of 5 from movement and animation and 5 frehatior, its overall score will be as low as 5
* 5 = 25. Correspondingly, if a game receives an overlte of 81, it should gain very higB1 = 9 on
average from both tables.

Therefore, we split the multiplied score finallyanbne dimension with five grades with text
labels: sub-standard (score of 0-9), weak (10-29), satsfat30-54), good (55-79) and excellent (80-
100). Labeled grades are included because the scores betoithesly more understandable, compared
to the mere numeral score.

The thresholds for each labeled grade differ from edibér, because when the overall score is the
result of the two multiplied sub-scores, it is mdikely to gain a score from somewhere in the middle
than a very low or a very high score. By changing ih@td of the grades or the importance of a
requirement would give different results than those rilessd in this paper.

Despite what the overall grade an NPC receives,dasy to see whether or not its main aspects
are in balance between each other. If they are,y&ptaay place NPCs believability higher than what it
really is. Correspondingly, even if overall grade of PPC is high but the aspects scores differ much,
NPCs may seem more unbelievable to a player than whgtdlde suggests.

The chosen policy to multiply scores results intteeo score if one of believability aspects gives a
zero score. Any self-respecting game developer shouldefedse an FPS game which does not meet
even one requirement of both aspects, because it shoWsng but negligence towards NPC
believability.

4 APPLYING FRAMEWORK

We examined three different FPS games published betweenat@d2001 by our framework. They

were Doom (1993),Quake 11(1996) andTom Glancy’s Ghost Recd2001). The games were chosen
because they represent the timeline of FPS game dewedfrom the player’'s viewpoint. The case
studies were conducted with PC-versions of the games lgynglahe single player mode using the
medium level of the games (Doom 3/5, Quake Il and Ghostrir2/3). Possible differences of NPCs’
believability caused by the levels of difficulty or nitgtayer vs. single-player modes are not included in
the evaluation.

Doomreceived points as follows:

Table 3. Scores for Doom from movement and animation

Requirement for NPC Points
NPC can find most suitable path for jits 1
destination.

NPCs are aware of each other and dgnot 1
collide with each other.
NPC's appearance is done carefully and 1
no unnatural features can be found in |t..

Total 3

Table 4. Scores for Doom from behavior

Requirement for NPC Points
NPC makes intentional mistakes. 2
Cheating in a manner that player can |not 1
detect it.
Total 3

The combined overall grade f@oomis 3*3 = 9, which is sub-standard. The scores from bsplects
appear to be in balance.
Quake llreceived points as follows:

Table5. Scores for Quake Il from movement and animation
Requirement for NPC Points
NPCs are aware of each other and dgnot 1
collide with each other.
NPC can avoid any dynamic or stati
obstacle in game field.
Shifting from one animation to another 1
is fluent.

c 2

NPC's appearance is done carefully and 1
no unnatural features can be found in jt.
Total 5

Table 6. Scores for Quake Il from behavior

Requirement for NPC Points
NPC makes intentional mistakes. 2
NPC has human-like reaction times. 2
Cheating in a manner that player can |not 1
detect it.
Total 5

The combined overall grade f@duake Ilis 5*5 = 25, which is weak. The scores from both aspects
appear to be in balance.
Tom Glancy’s Ghost Recoaceived points as follows:

Table 7. Scores for Ghost Recons movement and animation

Requirement for NPC Points
NPC can find the most suitable path (for 1
its destination.
NPCs are aware of each otherand dgnot 1
collide with each other.
NPC can avoid any dynamic or stdtic 2
obstacle in game field.
NPC has different animations for ope 1
action.
Shifting from one animation to another 1
is fluent.
NPC's appearance is done carefully and 1
no unnatural features can be found in |t.
Total 7
Table 8. Scores for Ghost Recons behavior
Requirement for NPC Points
NPC makes intentional mistakes. 2
NPC has human-like reaction times. 2
Poor targeting when seeing player for 1
the first time
Logical and human behavior 1
Total 6

The combined overall grade f@host Recam is 7*6 = 42, which is satisfactory. Aspects are only 1
point apart from each other, so they are relatively-balanced.

5 SUMMARY

Defining artificial intelligence has never been easyirdurits over 50-year-old history. Today Al
research is based upon defining intelligence as intellipehtwvior. Despite the fact that the first Al
studies were done with board games, gaming has not beenweidmodern academic Al research.
Contrary to academic Al research, game Al developthastpursued to create an illusion of intelligence
instead of trying to create one, ever since the 1970’s Wigefirst arcade games were introduced.

The first two decades in computer games were mostlynptseto increase the quality of graphics
of the games, instead of concentrating on what was bétenglittering surface. Ever since the first FPS
games came to the market in the early 1990’s, NPCs'Vlablity has gained more and more attention
in the development of the games. The ultimate gotdat no player could distinguish a human player
from a computer controlled one.

The means to improve NPCs’ believability can be dividegd three: movement, animation and
behavior. Various algorithms and programming methods have i®duced and used by the game
industry to improve NPCs’ believability.

In this paper, we described a framework for evaluatingutes-perceived believability of NPCs.
The framework is divided into two main aspects, whicthbman be judged independently. The overall
grade which an NPC or a game receives from the evaluabimes when the scores from both main
aspects are multiplied together. The grade can be angvidetween 0 and 100 and is divided into five
verbal grades: sub-standard (0-9), weak (10-29), satisfacd06r$4), good (55-79) and excellent (80-
100).

We applied the framework to three FPS games and thealbweores wereDoom 9 (sub-
standard)Quake It 25 (weak) andom Glancy’s Ghost Reco#2 (satisfying). Based on these results, it
can be concluded that the investments of the game indust€s’ believability since the 1990’s has
produced results: the newer the game, the more belietlabharacters.

The framework is simple, but it is aimed to serveadist step in an area of great importance: to
construct a neutral and general framework for evaluatimgects of digital games. Similar framework
can easily constructed for different games with empleasaltered as needed. The results obtained are
twofolded: first to evaluate existing games and secondflicence to future games

REFERENCES

[1] Christian Baekkelund, Academic Al Research and Reiativith the Games Industry. In Al Game
Programming Wisdom 3, edited by Steve Rabin, Charles RiveiaMiecl, 2006, pp 77-88.

[2] Penny Baillie-De Byl, Programming Believable CharactersGomputer Games. Charles River
Media Inc., 2004.

[3] Mat Buckland, Programming Game Al by Example. WordwareliBhing, Inc., 2005.

[4] Timothy Cain, Practical Optimizations for A* Patheferation. In Al Game Programming
Wisdom, edited by Steve Rabin, Charles River Media R@02, pp 146-152.

[5] Delwin Clarke ja P. Robert Duimering, How Computemntgas Experience the Game Situation: A
Behavioral Study. ACM Computers in Entertainment, vaiet3, June 2006, article 6.

[6] Dongkuy Chong, Tolga Konik, Negin Nejati, Chunki Park amad Pangley, A Believable Agent
for First-Person Shooter Gamda. Artificial Intelligence and Interactive Digital Entertainment
Conferencepp 71-73. June 6 — 8, 2007, Stanford, California.

[7] Dan Fu ja Ryan Houlette, The Ultimate Guide to KBS Games. In Al Game Programming
Wisdom 2, edited by Steve Rabin, Charles River Media 2804, pp 283-302.

[8] Matt Gilgenbach, Fun Game Al Design for Beginners. AInGame Programming Wisdom 3,
edited by Steve Rabin, Charles River Media Inc., 2006, pp 55-63.

[9] Dan Higgins, Pathfinding Design Architecture. In Al Gamegramming Wisdom, edited by
Steve Rabin, Charles River Media Inc., 2002, pp 122-132.

[10] Geraint Johnson, Avoiding Dynamic Obstacles and Hiszdn Al Game Programming Wisdom
2, edited by Steve Rabin, Charles River Media Inc., 2004, pp 161-168.

[11] John E. Laird, It Knows What You're Going to Do: Addimnticipation to Quakebot.
Proceedings of the Fifth International Conference on Autonomous AgentsMa9128-June 1,
2001, pp 385-392. Montréal, Quebec, Canada.

[12] John E. Laird, Research in Human-Level Al Using @atar Games. Communications of the
ACM, vol. 45, nro 1, January 2002, pp 32-35.

[13] Lars Lidén, Artificial Stupidity: The Art of Intdional Mistakes. In Al Game Programming
Wisdom 2, edited by Steve Rabin, Charles River Media 2804, pp 41-48.

[14] Daniel Livingstone, Turing’'s Test and Believable Al inarGes. ACM Computers in
Entertainment, vol. 4, nro. 1, January 2006.

[15] Mike Mika and Chris Charla, Simple, Cheap PathfindimgAl Game Programming Wisdom,
edited by Steve Rabin, Charles River Media Inc., 2002, pp 155-160.

[16] Alexander Nareyek, Al in Computer Games. ACM Quewdyrirary 2004, pp 59-65.

[17] Jeff Orkin, Simple Techniques for Coordinated BehavituAl Game Programming Wisdom 2,
edited by Steve Rabin, Charles River Media Inc., 2004, pp 199-205.

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]

M. Pinter, Realistic Turning between Waypoints. In@ame Programming Wisdom, edited by
Steve Rabin, Charles River Media Inc., 2002, pp 186-192.

Steve Rabin, Common Game Al Techniques. In Al GamgrBnoaming Wisdom 2, edited by
Steve Rabin, Charles River Media Inc., 2004, pp 1-14.

John Reynolds, Team Member Al in an FPS. In Al Gammgi@amming Wisdom 2, edited by
Steve Rabin, Charles River Media Inc., 2004, pp 207-215.

Stuart Russell ja Peter Norvig, Artificial Intelligee — A Modern Approach, second edition,
Prentice Hall, 2003.

Bob Scott, The lllusion of Intelligence. In Al GarRrogramming Wisdom, edited by Steve Rabin,
Charles River Media Inc., 2002, pp 16-20.

David Silver, Cooperative Pathfinding. In Al Game ProgramgmWisdom 3, edited by Steve
Rabin, Charles River Media Inc., 2006, pp 99-111.

Paul Tozour, The Evolution of Game Al. In Al Gameogramming Wisdom, edited by Steve
Rabin, Charles River Media Inc., 2002, pp 1-15.

Paul Tozour, Building a Near-Optimal Navigation Me&i.Al Game Programming Wisdom,
edited by Steve Rabin, Charles River Media Inc., 2002, pp 171-185.

Paul Tozour, The Basics of Ranged Weapon Combal Bame Programming Wisdom, edited
by Steve Rabin, Charles River Media Inc., 2002, pp 411-418.

Paul Tozour, Search Space Representations. IneigEProgramming Wisdom 2, edited by Steve
Rabin, Charles River Media Inc., 2004, pp 85-102.

Billy Yue and Penny de-Byl, The State of the Art in GalsheéStandardisation. Proceedings of the
2006 international conference on Game research and gevetd, ACM International Conference
Proceeding Series, vol 223, pp 41-46.

10

