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1 Introduction

The course Mathematical Methods of Physics III (MMP III) is third in the series

of courses introducing mathematical concepts and tools which are often needed in

physics. The first two courses MMP I-II focused on analysis, providing tools to an-

alyze and solve the dynamics of physical systems. In MMP III the emphasis is on

geometrical and topological concepts, needed for the understanding of the symmetry

principles and topological structures of physics. In particular, we will learn group the-

ory (the basic tool to understand symmetry in physics, especially useful in quantum

mechanics, quantum field theory and beyond), topology (needed for many subtler

effects in quantum mechanics and quantum field theory), and differential geometry

(the language of general relativity and modern gauge field theories). There are also

many more sophisticated areas of mathematics that are also often used in physics,

notable omissions in this course are fibre bundles and complex geometry.

Course material will be available on the course homepage, to which you find a link

from

www.physics.helsinki.fi/∼tfo www/lectures/courses.html
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Let me know of any typos and confusions that you find. The lecture notes often follow

very closely (and often verbatim) the three recommended textbooks:

• H.F. Jones: Groups, Representations and Physics (IOP Publishing, 2nd edition,

1998)

• M. Nakahara: Geometry, Topology and Physics (IOP Publishing, 1990, a 2nd

edition appeared in 2003, both editions will do)

• H. Georgi: Lie Algebras in Particle Physics (Addison-Wesley, 1982)

You don’t necessarily have to rush to buy the books, they can be found in the reference

section of the library in Physicum.

2 Group Theory

2.1 Group

Definition. A group G is a set of elements {a, b, . . .} with a law of composition

(multiplication) which assigns to each ordered pair a, b ∈ G another element ab ∈ G.

(Note: ab ∈ G (closure) is often necessary to check in order for the multiplication to

be well defined). The multiplication must satisfy the following conditions:

G1 (associative law): For all a, b, c ∈ G, a(bc) = (ab)c.

G2 (unit element): There is an element e ∈ G such that for all a ∈ G ae = ea = a.

G3 (existence of inverse): For all a ∈ G there is an element a−1 ∈ G such that

aa−1 = a−1a = e.

If G satisfies G1, it is called a semigroup; if it also satisfies G2, it is called a monoid.

The number of elements in the set G is called the order of the group, denoted by

|G|. If |G| < ∞, G is a finite group. If G is a discrete set, G is a discrete group. If

G is a continuous set, G is a continuous group.

Comments

i) In general ab 6= ba, i.e. the multiplication is not commutative. If ab = ba for all

a, b ∈ G, the group is called Abelian.

ii) The inverse element is unique: suppose that both b, b′ are inverse elements of a.

Then b′ = b′e = b′(ab) = (b′a)b = eb = b.
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Examples

1. Z with ”+” (addition) as a multiplication is a discrete Abelian group.

2. R with ”+” as a multiplication is a continuous Abelian group, e = 0. R \ {0}
with ”·” (product) is also a continuous Abelian group, e = 1. We had to remove

0 in order to ensure that all elements have an inverse.

3. Z2 = {0, 1} with addition modulo 2 is a finite Abelian group with order 2.

e = 0, 1−1 = 1.

Let us also consider the set of mappings (functions) from a set X to a set Y ,

Map(X, Y ) = {f : X → Y |f(x) ∈ Y for all x ∈ X, f(x) is uniquely determined}.
There are special cases of functions:

i) f : X → Y is called an injection (or one-to-one) if f(x) 6= f(x′) ∀x 6= x′.

ii) f : X → Y is called a surjection (or onto) if ∀y ∈ Y ∃x ∈ X s.t. f(x) = y.

iii) if f is both an injection and a surjection, it is called a bijection.

Now take the composition of maps as a multiplication: fg = f◦g, (f◦g)(x) = f(g(x)).

Then (Map(X, X), ◦) (the set of functions f : X → X with ◦ as the multiplication)

is a semigroup. We had to choose Y = X to be able to use the composition, as g

maps to Y but f is defined in X. Further, (Map(X, X), ◦) is in fact a monoid with

the identity map id : id(x) = x as the unit element. However, it is not a group,

unless we restrict to bijections. The set of bijections f : X → X is called the set

of permutations of X, we denote Perm(X) = {f ∈ Map(X,X)|f is a bijection}.
Every f ∈ Perm(X) has an inverse map, so Perm(X) is a group. However, in general

f(g(x)) 6= g(f(x)), so Perm(X) is not an Abelian group. An important special case

is when X has a finite number N of elements. This is called the symmetric group

or the permutation group, and denoted by SN . The order of SN is |SN | = N !

(exercise).

Definitions

i) We denote g2 = gg, g3 = ggg = g2g, . . . , gn =

n︷ ︸︸ ︷
g · · · g for products of the element

g ∈ G.

ii) The order n of the element g ∈ G is the smallest number n such that gn = e.
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2.2 Smallest Finite Groups

Let us find all the groups of order n for n = 1, . . . , 4. First we need a handy defini-

tion. A homomorphism in general is a mapping from one set X to another set Y

preserving some structure. Further, if f is a bijection, it is called an isomorphism.

We will see several examples of such structure-preserving mappings. The first one is

the one that preserves the multiplication structure of groups.

Definition. A mapping f : G → H between groups G and H is called a group

homomorphism if for all g1, g2 ∈ G, f(g1g2) = f(g1)f(g2). Further, if f is also a

bijection, it is called a group isomorphism. If there exists a group isomorphism

between groups G and H, we say that the groups are isomorphic, and denote G ∼= H.

Isomorphic groups have an identical structure, so they can be identified – there is only

one abstract group of that structure.

Now let us move ahead to groups of order n.

Order n = 1. This is the trivial group G = {e}, e2 = e.

Order n = 2. Now G = {e, a}, a 6= e. The multiplications are e2 = e, ea = ae = a.

For a2, let’s first try a2 = a. But then a = ae = a(aa−1) = a2a−1 = aa−1 = e, a

contradiction. So the only possibility is a2 = e. We can summarize this in the

multiplication table or Cayley table:

e a

e e a

a a e

This group is called Z2. You have already seen another realization of it: the set

{0, 1} with addition modulo 2 as the multiplication. Yet another realization of

the group is {1,−1} with product as the multiplication. This illustrates what

was said before: for a given abstract group, there can be many ways to describe

it. Consider one more realization: the permutation group S2 = Perm({1, 2}).
Its elements are

e =




1 2

↓ ↓
1 2


 ≡

(
1 2

1 2

)

a =




1 2

↓ ↓
2 1


 ≡

(
1 2

2 1

)
,

the arrows indicate how the numbers are permuted, we usually use the no-

tation in the right hand side without the arrows. For products of permuta-

tions, the order in which they are performed is ”right to left”: we first perform
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the permutation on the far right, then continue with the next one to the left,

and so one. This convention is inherited from that with composite mappings:

(fg)(x)=f(g(x)). We can now easily show that S2 is isomorphic with Z2. Take

e.g. {1,−1} with the product as the realization of Z2. Then we define the

mapping i : Z2 → S2 : i(1) = e, i(−1) = a. It is easy to see that i is a group

homomorphism, and it is obviously a bijection. Hence it is an isomorphism,

and Z2
∼= S2. There is only one abstract group of order 2.

Order n = 3. Consider now the set G = {e, a, b}. It turns out that there is again

only one possible group of order 3. We can try to determine it by completing

its multiplication table:
e a b

e e a b

a a ? ?

b b ? ?

First, guess ab = b. But then a = a(bb−1) = (ab)b−1 = bb−1 = e, a con-

tradiction. Try then ab = a. But now b = (a−1a)b = a−1(ab) = a−1a = e,

again contradiction. So ab = e. Similarly, ba = e. Then, guess a2 = a.

Now a = aaa−1 = aa−1 = e, doesn’t work. How about a2 = e? Now

b = a2b = a(ab) = ae = a, doesn’t work. So a2 = b. Similarly, can show

b2 = a. Now we have worked out the complete multiplication table:

e a b

e e a b

a a b e

b b e a

Our group is actually called Z3. We can simplify the notation and call b =

a2, so Z3 = {e, a, a2}. Z3 and Z2 are special cases of cyclic groups Zn =

{e, a, a2, . . . , an−1}. They have a single ”generating element” a with order n:

an = e. The multiplication rules are apaq = ap+q(mod n), (ap)−1 = an−p. Some-

times in the literature cyclic groups are denoted by Cn. One possible realiza-

tion of them is by complex numbers, Zn = {e 2πik
n |k = 0, 1, . . .} with product

as a multiplication. This also shows their geometric interpretation: Zn is the

symmetry group of rotations of a regular directed polygon with n sides (see

H.F.Jones). You can easily convince yourself that Zn = {0, 1, . . . , n − 1} with

addition modulo n is another realization.

Order n = 4. So far the groups have been uniquely determined, but we’ll see that

from order 4 onwards we’ll have more possibilities. Let’s start with a definition.
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Definition. A direct product G1 × G2 of two groups is the set of all pairs

(g1, g2) where g1 ∈ G1 and g2 ∈ G2, with the multiplication (g1, g2) · (g′1, g′2) =

(g1g
′
1, g2g

′
2). The unit element is (e1, e2) where ei is the unit element of Gi

(i = 1, 2). It is easy to see that G1×G2 is a group, and its order is |G1×G2| =
|G1||G2|.
Now we can immediately find at least one group of order 4: the direct product

Z2 × Z2. Denote Z2 = {e, f} with f 2 = e, and introduce a shorter notation for

the pairs: E = (e, e), A = (e, f), B = (f, e), C = (f, f). We can easily find

the multiplication table,
E A B C

E E A B C

A A E C B

B B C E A

C C B A E

The group Z2×Z2 is sometimes also called ”Vierergruppe” and denoted by V4.

There is another group of order 4, namely the cyclic group Z4 = {e, a, a2, a3}.
It is not isomorphic with Z2 × Z2. (You can easily check that it has a different

multiplication table.) It can be shown (exercise) that there are no other groups

of order 4, just the above two.

Order n ≥ 5. As can be expected, there are more possible non-isomorphic groups of

higher finite order. We will not attempt to categorize them much further, but

will mention some interesting facts and examples.

Definition. If H is a subset of the group G such that

i) ∀ h1, h2 ∈ H : h1h2 ∈ H

ii) ∀ h ∈ H : h−1 ∈ H ,

then H is called a subgroup of G. Note as a result of i) and ii), every subgroup

must include the unit element e of G.

Trivial examples of subgroups are {e} and G itself. Other subgroups H are called

proper subgroups of G. For those, |H| ≤ |G| − 1.

Example. Take G = Z3. Are there any proper subgroups? The only possibilities

could be H = {e, a} or H = {e, a2}. Note that in order for H to be a group of

order 2, it should be isomorphic with Z2. But since a2 6= e (because a3 = e) and

(a2)2 = a3a = a 6= e, neither is. So Z3 has no proper subgroups.
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2.2.1 More about the permutation groups Sn

It is worth spending some more time on the permutation groups, because on one

hand they have a special status in the theory of finite groups (for a reason that I will

explain later) and on the other hand they often appear in physics.

Let X = {1, 2, . . . , n}. Denote a bijection of X by p : X → X, i 7→ p(i) ≡ pi. We

will now generalize our notation for the elements of Sn, you already saw it for S2. We

denote a P ∈ Sn ≡ Perm(X) by

P =

(
1 2 · · · n

p1 p2 · · · pn

)
.

Recall that the multiplication rule for permutations was the composite operation,

with the ”right to left” rule. In general, the multiplication is not commutative:

PQ =

(
1 2 · · · n

p1 p2 · · · pn

)(
1 2 · · · n

q1 q2 · · · qn

)
6= QP .

So, in general, Sn is not an abelian group. (Except S2.) For example, in S3,

(
1 2 3

1 3 2

)(
1 2 3

3 1 2

)
=

(
1 2 3

2 1 3

)
(1)

but (
1 2 3

3 1 2

)(
1 2 3

1 3 2

)
=

(
1 2 3

3 2 1

)
, (2)

which is not the same.

The identity element is

E =

(
1 2 · · · n

1 2 · · · n

)

and the inverse of P is

P−1 =

(
p1 p2 · · · pn

1 2 · · · n

)
.

An alternative and very useful way of writing permutations is the cycle notation.

In this notation we follow the permutations of one label, say 1, until we get back

to where we started (in this case back to 1), giving one cycle. Then we start again

from a label which was not already included in the previously found cycle, and find

another cycle, and so on until all the labels have been accounted for. The original

permutation has then been decomposed into a certain number of disjoint cycles. This

is best illustrated by an example. For example, the permutation

(
1 2 3 4

2 4 3 1

)
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of S4 decomposes into the disjoint cycles 1 → 2 → 4 → 1 and 3 → 3. Reordering the

columns we can write it as
(

1 2 3 4

2 4 3 1

)
=

(
1 2 4 | 3

2 4 1 | 3

)
=

(
1 2 4

2 4 1

)(
3

3

)
.

In a cycle the bottom row is superfluous: all the information about the cycle (like

1 → 2 → 4 → 1) is already included in the order of the labels in the top row. So we

can shorten the notation by simply omitting the bottom row. The above example is

then written as (
1 2 3 4

2 4 3 1

)
= (124)(3) .

As a further abbreviation of the notation, we omit the 1-cycles (like (3) above), it

being understood that any labels not appearing explicitly just transform into them-

selves. With the new shortened cycle notation, (1) reads

(23)(132) = (12) (3)

and (2) reads as

(132)(23) = (13) . (4)

In general, any permutation can always be written as the product of disjoint cycles.

What’s more, the cycles commute since they operate on different indices, hence the

cycles can be written in any order in the product. In listing the individual permuta-

tions of Sn it is convenient to group them by cycle structure, i.e. by the number and

length of cycles. For illustration, we list the first permutation groups Sn:

n = 2: S2 = {E, (12)}.

n = 3: S3 = {E, (12), (13), (23), (123), (132)}.

n = 4: S4 = {E, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23),

(123), (132), (124), (142), (134), (143), (234), (243),

(1234), (1243), (1324), (1342), (1423), (1432)}.

You can see that the notation makes it quite easy and systematic to write down all

the elements in a concise fashion.

The simplest non-trivial permutations are the 2-cycles, which interchange two

labels. In fact, any permutation can be built up from products of 2-cycles. First, an

r-cycle can be written as the product of r − 1 overlapping 2-cycles:

(n1n2 . . . nr) = (n1n2)(n2n3) · · · (nr−1nr) .

Then, since any permutation is a product of cycles, it can be written as a product of

2-cycles. This allows us to classify permutations as ”even” and ”odd”. First, a 2-cycle
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which involves just one interchange of labels is counted as odd. Then, a product of

2-cycles is even (odd), if there are an even (odd) number 2-cycles. Thus, an r-cycle

is even (odd), if r is odd (even). (Since it is a product of r − 1 2-cycles.) Finally, a

generic product of cycles is even if it contains an even number of odd cycles, otherwise

it is odd. In particular, the identity E is even. This allows us to find an interesting

subgroup of Sn, the alternating group An which consists of the even permutations

of Sn. The order of An is |An| = 1
2
· |Sn|. Hence An is a proper subgroup of Sn. Note

that the odd permutations do not form a subgroup, since any subgroup must contain

the identity E which is even.

To keep up a promise, we now mention the reason why permutation groups have

a special status among finite groups. This is because of the following theorem (we

state it without proof).

Theorem 2.1 (Cayley’s Theorem) Every finite group of order n is isomorphic to

a subgroup of Sn.

Thus, because of Cayley’s theorem, in principle we know everything about finite

groups if we know everything about permutation groups and their subgroups.

As for physics uses of finite groups, the classic example is their role in solid state

physics, where they are used to classify general crystal structures (the so-called crys-

tallographic point groups). They are also useful in classical mechanics, reducing the

number of relevant degrees of freedom in systems of symmetry. We may later study

an example, finding the vibrational normal modes of a water molecule. In addition

to these canonical examples, they appear in different places and roles in all kinds of

areas of modern physics.

2.3 Continuous Groups

Continuous groups have an uncountable infinity of elements. The dimension of a

continuous group G, denoted dim G, is the number of continuous real parameters

(coordinates) which are needed to uniquely parameterize its elements. In the product

g′′ = g′g, the coordinates of g′′ must be continuous functions of the coordinates of g

and g′. (We will make this more precise later when we discuss topology. The above

requirement means that the set of real parameters of the group must be a manifold,

in this context called the group manifold.)

Examples.

1. The set of real numbers R with addition as the product is a continuous group;

dim R = 1. Simple generalization: Rn = {(r1, . . . , rn)|ri ∈ R, i = 1, . . . , n} =
n times︷ ︸︸ ︷

R× · · · ×R, with product (r1, . . . , rn) · (r′1, . . . , r
′
n) = (r1 + r′1, . . . , rn + r′n),

dim Rn = n.
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2. The set of complex numbers C with addition as the product, dim C = 2 (recall

that we count the number of real parameters).

3. The set of n×n real matrices M(n,R) with addition as the product, dim M(n,R) =

n2. Note group isomorphism: M(n,R) ∼= Rn2
.

4. U(1) = {z ∈ C||z|2 = 1}, with multiplication of complex numbers as the

product. dim U(1) = 1 since there’s only one real parameter θ ∈ [0, 2π], z = eiθ.

Note a difference with U(1) and R: both have dim = 1 but the group manifold

of the former is the circle S1 while the group manifold of the latter is the

whole infinite x-axis. A generalization of U(1) is U(1)n =

n times︷ ︸︸ ︷
U(1)× · · · × U(1),

(eiθ1 , . . . , eiθn) · (eiθ′1 , . . . , eiθ′n) = (ei(θ1+θ′1), . . . , ei(θn+θ′n)). The group manifold of

U(1)n is an n-torus

n︷ ︸︸ ︷
S1 × · · · × S1. Again, the n-torus is different from Rn: on

the former it is possible to draw loops which cannot be smoothly contracted to

a point, while this is not possible on Rn.

All of the above examples are actually examples of Lie groups. Their group man-

ifolds must be differentiable manifolds, meaning that we can take smooth (partial)

derivatives of the group elements with respect to the real parameters. We’ll give a

precise definition later – for now we’ll just focus on listing further examples of them.

2.3.1 Examples of Lie groups

1. The group of general linear transformations GL(n,R) = {A ∈ M(n,R)| det A 6=
0}, with matrix multiplication as the product; dim GL(n,R) = n2. While

GL(n,R), M(n,R) have the same dimension, their group manifolds have a dif-

ferent structure. To parameterize the elements of M(n,R), only one coordinate

neighborhood is needed (Rn2
itself). The coordinates are the matrix entries aij:

A =




a11 · · · a1n

...
. . .

...

an1 · · · ann


 .

In GL(n,R), the condition det A 6= 0 removes a hyperplane (a set of measure

zero) from Rn2
, dividing it into two disconnected coordinate regions. In each

region, the entries aij are again suitable coordinates.

2. A generalization of the above is GL(n,C) = {n× n complex matrices with

non− zero determinant}, with matrix multiplication as the product. This has

dim GL(n,C) = 2n2. Note that GL(n,R) is a (proper) subgroup of GL(n,C).

The following examples are subgroups of these two.
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3. The group of special linear transformations SL(n,R) = {A ∈ GL(n,R)| det A =

1}. It is a subgroup of GL(n, R) since det(AB) = det A det B. The dimension

is dim SL(n,R) = n2 − 1.

4. The orthogonal group O(n,R) = {A ∈ GL(n,R)| AT A = 1n}, i.e. the group of

orthogonal matrices. (1n denotes the n× n unit matrix.) AT is the transpose

of the matrix A:

AT =




a11 · · · an1

...
. . .

...

a1n · · · ann


 ,

i.e. if A = (aij) then AT = (aji), the rows and columns are interchanged. Let’s

prove that O(n,R) is a subgroup of GL(n,R):

a) 1T
n = 1n so the unit element ∈ O(n,R)

b) If A,B are orthogonal, then AB is also orthogonal: (AB)T (AB) = BT AT AB =

BT B = 1n.

c) Every A ∈ O(n,R) has an inverse in O(n,R): (A−1)T = (AT )−1 so (A−1)T A−1 =

(AT )−1A−1 = (AAT )−1 = ((AT )T AT )−1 = 1−1
n = 1n.

Note that orthogonal matrices preserve the length of a vector. The length of a

vector ~v is
√

v2
1 + · · · v2

n =
√

~vT~v. A vector ~v gets mapped to A~v, so its length

gets mapped to
√

(A~v)T (A~v) =
√

~vT AT A~v =
√

~vT~v, the same. We can inter-

pret the orthogonal group as the group of rotations in Rn.

What is the dimension of O(n,R)? A ∈ GL(n,R) has n2 independent parame-

ters, but the orthogonality requirement AT A = 1n imposes relations between the

parameters. Let us count how many relations (equations) there are. The diago-

nal entries of AT A must be equal to one, this gives n equations; the entries above

the diagonal must vanish, this gives further n(n − 1)/2 equations. The same

condition is then automatically satisfied by the ”below the diagonal” entries,

because the condition AT A = 1n is symmetric: (AT A)T = AT A = (1n)T = 1n.

Thus there are only n2 − n − n(n − 1)/2 = n(n − 1)/2 free parameters. So

dim O(n,R) = n(n− 1)/2.

Another fact of interest is that det A = ±1 for every A ∈ O(n,R). Proof:

det(AT A) = det(AT ) det A = det A det A = (det A)2 = det 1n = 1 ⇒ det A =

±1. Thus the group O(n, R) is divided into two parts: the matrices with

det A = +1 and the matrices with det A = −1. The former part actually

forms a subgroup of O(n,R), called SO(n,R) (you can figure out why this is

true, and not true for the part with det A=-1). So we have one more example:

5. The group of special orthogonal transformations SO(n,R) = {A ∈ O(n,R)| det A =

1}. dim SO(n,R) = dim O(n, R) = n(n− 1)/2.

13



6. The group of unitary matrices (transformations) U(n) = {A ∈ GL(n, C)|A†A =

1n}, where A† = (A∗)T = (AT )∗: (A†)ij = (Aji)
∗. Note that (AB)† =

B†A†. These preserve the length of complex vectors ~z. The length is de-

fined as
√

z∗1z1 + · · · z∗nzn =
√

~z†~z. Under A this gets mapped to
√

(A~z)†A~z =√
~z†A†A~z =

√
~z†~z. The unitary matrices are rotations in Cn. We leave it as

an exercise to show that U(n) is a subgroup of GL(n,C), and dim U(n) = n2.

Note that U(1) = {a ∈ C| a∗a = 1}, its group manifold is the unit circle S1 on

the complex plane.

7. The special unitary group SU(n) = {A ∈ U(n)| det A = 1}. This is the complex

analogue of SO(n,R), and is a subgroup of U(n). Exercise: dim SU(n) = n2−1.

U(n) and SU(n) groups are important in modern physics. You will probably

first become familiar with U(1), the group of phase transformations in quantum

mechanics, and with SU(2), in the context of spin. Let’s take a closer look at

the latter. It’s dimension is three. What does its group manifold look like?

Let’s first parameterize the SU(2) matrices with complex numbers a, b, c, d:

A =

(
a b

c d

)
, A† =

(
a∗ c∗

b∗ d∗

)
.

Then

det A = ad− bc = 1

A†A =

( |a|2 + |c|2 a∗b + c∗d
b∗a + d∗c |b|2 + |d|2

)
=

(
1 0

0 1

)
.

Let’s first assume a 6= 0. Then b = −c∗d/a∗. Substituting to the determinant

condition gives ad− bc = d(|a|2 + |c|2)/a∗ = d/a∗ = 1 ⇒ d = a∗. Then c = −b∗.
So

A =

(
a b

−b∗ a∗

)
.

Assume then a = 0. Now |c|2 = 1, c∗d = 0 ⇒ d = 0. Then |c|2 = |b|2 = 1.

Write b = eiβ, c = eiγ. Then det A = −bc = ei(β+γ+π) = 1 → γ = −β+(2n+1)π.

Then c = eiγ = e−iβei(2n+1)π = −e−iβ = −b∗. Thus

A =

(
0 b

−b∗ 0

)
.

Let us trade the two complex parameters with four real parameters x1, x2, x3, x4:

a = x1 + ix2, b = x3 + ix4. Then A becomes

A =

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
.
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The determinant condition det A = 1 then turns into the constraint

x2
1 + x2

2 + x2
3 + x2

4 = 1

for the four real parameters. This defines an unit 3-sphere. More generally, we

define an n-sphere Sn = {(x1, . . . , xn+1) ∈ Rn+1| ∑n+1
i=1 x2

i = 1}. The group

manifold of SU(2) is a three-sphere S3. (And the group manifold of U(1) was

a 1-sphere S1. As a matter of fact, these are the only Lie groups with n-sphere

group manifolds.) The n-sphere is an example of so-called pseudospheres. We’ll

meet other examples in an exercise.

8. As an aside, note that O(n, R), SO(n,R), U(n), SU(n) were associated with

rotations in Rn or Cn, keeping invariant the lengths of real or complex vec-

tors. One can generalize from real and complex numbers to quaternions and

octonions, and look for generalizations of the rotation groups. This produces

other examples of (compact) Lie groups, the Sp(2n), G2, F4, E6, E7 and E8. The

symplectic group Sp(2n) plays an important role in classical mechanics, it is as-

sociated with canonical transformations in phase space. The other groups crop

up in string theory.

2.4 Groups Acting on a Set

We already talked about the orthogonal groups as rotations, implying that the group

acts on points in Rn. We should make this notion more precise. First, review the

definition of a homomorphism from p. 4, then you are ready to understand the

following

Definition. Let G be a group, and X a set. The (left) action of G on X is

a homomorphism L : G → Perm(X), G 3 g 7→ Lg ∈ Perm(X). Thus, L satisfies

(Lg2 ◦Lg1)(x) = Lg2(Lg1(x)) = Lg2g1(x), where x ∈ X. The last equality followed from

the homomorphism property. We often simplify the notation and denote gx ≡ Lg(x).

Given such an action, we say that X is a (left) G-space. Respectively, the right

action of G in X is a homomorphism R : G → Perm(X), Rg2 ◦ Rg1 = Rg1g2 (note

order in the subscript!), xg ≡ Rg(x). We then say that X is a right G-space.

Two (left) G-spaces X,X ′ can be identified, if there is a bijection i : X → X ′ such

that i(Lg(x)) = L′g(i(x)) where L,L′ are (left) actions of G on X,X ′. A mathemati-

cian would say this in the following way: the diagram

X
i→ X ′

Lg ↓ ↘ ↓ L′g
X

i→ X ′

commutes, i.e. the map in the diagonal can be composed from the vertical and

horizontal maps through either corner.
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Definition. The orbit of a point x ∈ X under the action of G is the set Ox =

{Lg(x)| g ∈ G}. In other words, the orbit is the set of all points that can be reached

from x by acting on it with elements of G. Let’s put this in another way, by first

introducing a useful concept.

Definition. An equivalence relation ∼ in a set X is a relation between points in

a set which satisfies

i) a ∼ a (reflective) ∀ a ∈ X

ii) a ∼ b ⇒ b ∼ a (symmetric) ∀ a, b ∈ X

iii) a ∼ b and b ∼ c ⇒ a ∼ c (transitive) ∀ a, b, c ∈ X

Given a set X and an equivalence relation∼, we can partition X into mutually disjoint

subsets called equivalence classes. An equivalence class [a] = {x ∈ X| x ∼ a}, the

set of all points which are equivalent to a under ∼. The element a (or any other

element in its equivalence class) is called the representative of the class. Note that

[a] is not an empty set, since a ∼ a. If [a]
⋂

[b] 6= ∅, there is an x ∈ X s.t. x ∼ a

and x ∼ b. But then, by transitivity, a ∼ b and [a] = [b]. Thus, different equivalence

classes must be mutually disjoint ([a] 6= [b] ⇒ [a]
⋂

[b] = ∅). The set of all equivalence

classes is called the quotient space and denoted by X/ ∼.

Example. Let n be a non-negative integer. Define an equivalence relation among

integers r, s ∈ Z: r ∼ s if r−s = 0 (mod n). (Prove that this indeed is an equivalence

relation.) The quotient space is Z/ ∼= {[0], [1], [2], . . . , [n− 1]}. Define the addition

of equivalence classes: [a] + [b] = [a + b(modn)]. Then Z/ ∼ with addition as a

multiplication is a finite Abelian group, isomorphic to the cyclic group: Z/ ∼∼= Zn.

(Exercise: prove the details.)

Back to orbits then. A point belonging to the orbit of another point defines an

equivalence relation: y ∼ x if y ∈ Ox. The equivalence class is the orbit itself:

[x] = Ox. Since the set X is partitioned into mutually disjoint equivalence classes,

it is partitioned into mutually disjoint orbits under the action of G. We denote

the quotient space by X/G. It may happen that there is only one such orbit, then

Ox = X ∀x ∈ X. In this case we say that the action of G on X is transitive, and X

is a homogenous space.

Examples.

1. G = Z2 = {1,−1}, X = R. Left actions: L1(x) = x, L−1(x) = −x. Orbits:

O0 = {0}, Ox = {x,−x} (∀ x 6= 0). The action is not transitive.
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2. G = SO(2, R), X = R2. Parameterize

SO(2, R) 3 g =

(
cos θ − sin θ

sin θ cos θ

)
,

and write

R2 3 x =

(
x1

x2

)
.

Left action:

Lg(x) =

(
cos θ − sin θ

sin θ cos θ

)(
x1

x2

)
=

(
cos θ x1 − sin θ x2

sin θ x1 + cos θ x2

)

(rotate vector x counterclockwise about the origin by angle θ). Orbits are circles

with radius r about the origin: O0 = {0}, Ox6=0 = {x ∈ R2| x2
1 + x2

2 = r2},
r =

√
x2

1 + x2
2. The action is not transitive. R2/SO(2, R) = {r ∈ R| r ≥ 0}.

3. G = GL(n,R), X = Rn. Left action: LA(x) = x′ where x′i =
∑n

j=1 Aijxj.

There are two orbits: The orbit of the origin 0 is O0 = {0}, all other points lie

on the second orbit. So the action is not transitive.

2.4.1 Conjugacy classes and cosets

We can also let the group act on itself, i.e. take X = G. A simple way to define the

left action of G on G is the translation, Lg(g
′) = gg′. Every group element belongs

to the orbit of identity, since Lg(e) = ge = g. So Oe = G, the action is transitive. A

more interesting way to define group action on itself is by conjugation.

Definition. Two elements g1, g2 of a group G are conjugate if there is an element

g ∈ G such that g1 = gg2g
−1. The element g is called the conjugating element.

We then take conjugation as the left action, Lg(g
′) = gg′g−1. In general conju-

gation is not transitive. The orbits have a special name, they are called conjugacy

classes.

It is also very interesting to consider the action of subgroups H of G on G. Define

this time a right action of H on G by translation, Rh(g) = gh. If H is a proper

subgroup, the action need not be transitive.

Definition. The orbits, or the equivalence classes

[g] = {g′ ∈ G| ∃h ∈ H s.t. g′ = gh} = {gh| h ∈ H}
are called left cosets of H, and usually they are denoted gH. The quotient space

G/H = {gH| g ∈ G} is the set of left cosets. (Similarly, we can define the left action

Lh(g) = hg and consider the right cosets Hg. Then the quotient space is denoted

H\G.)
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Comments.

1. ghH = gH for all h ∈ H.

2. If g1H = g2H, there is an h ∈ H such that g2 = g1h i.e. g−1
1 g2 ∈ H.

3. There is a one-one correspondence between the elements of every coset and

between the elements of H itself. The map fg : H → gH, fg(h) = gh is

obviously a surjection; it is also an injection since gh1 = gh2 ⇒ h1 = h2. In

particular, if H is finite, all the orders are the same: |H| = |gH| = |g′H|. This

leads to the following theorem:

Theorem 2.2 (Lagrange’s Theorem) The order |H| of any subgroup H of a finite

group G must be a divisor of |G|: |G| = n|H| where n is a positive integer.

Proof. Under right action of H, G is partitioned into mutually disjoint orbits gH,

each having the same order as H. Hence |G| = n|H| for some n.

Corollary. If p = |G| is a prime number, then G ∼= Zp.

Proof. Pick g ∈ G, g 6= e, denote the order of the element g by m. Then H =

{e, g, . . . gm−1} ∼= Zm is a subgroup of G. But according to Lagrange’s theorem

|G| = nm. For this to be prime, n = 1 or m = 1. But g 6= e, so m > 1 so n = 1 and

|G| = |H|. But then it must be H = G.

Definition. Let the group G act on a set X. The little group of x ∈ X is the

subgroup Gx = {g ∈ G| Lg(x) = x} of G. It contains all elements of G which leave

x invariant. It obviously contains the unit element e, you can easily show the other

properties of a subgroup. The little group is also sometimes called the isotropy

group, stabilizer or stability group.

Back to cosets. The set of cosets G/H is a G-space, if we define the left action

lg : G/H → G/H, lg(g
′H) = gg′H. The action is transitive: if g1H 6= g2H, then

lg1g−1
2

(g2H) = g1H. The inverse is also true:

Theorem 2.3 Let group G act transitively on a set X. Then there exists a subgroup

H such that X can be identified with G/H. In other words, there exists a bijection

i : G/H → X such that the diagram

G/H
i→ X

lg ↓ ↘ ↓ Lg

G/H
i→ X

commutes.
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Proof. Choose a point x ∈ X, denote its isotropy group Gx by H. Define a map

i : G/H → X, i(gH) = Lg(x). It is well defined: if gH = g′H, then g = g′h
with some h ∈ H and Lg(x) = Lg′h(x) = Lg′(Lh(x)) = Lg′(x). It is an injection:

i(gH) = i(g′H) ⇒ Lg(x) = Lg′(x) ⇒ x = Lg−1(Lg′(x)) = Lg−1g′(x) ⇒ g−1g′ ∈ H ⇒
g′ = gh ⇒ gH = g′H. It is also a surjection: G acts transitively so for all x′ ∈ X

there exists g s.t. x′ = Lg(x) = i(gH). The diagram commutes: (Lg ◦ i)(g′H) =

Lg(Lg′(x)) = Lgg′(x) = i(gg′H) = (i ◦ lg)(g
′H).

Corollary. A consequence of the proof is that the orbit of a point x ∈ X, Ox, can

be identified with G/Gx since G acts transitively on any one of its orbits. Thus the

orbits are determined by the subgroups of G, in other words the action of G on X is

determined by the subgroup structure.

Example. G = SO(3, R) acts on R3, the orbits are the spheres |x|2 = x2
1+x2

2+x2
3 =

r2, i.e. S2 when r > 0. Choose the point x = north pole = (0, 0, r) on every orbit

r > 0. Its little group is

Gx =

{(
A2×2 0

0 1

)
| A2×2 ∈ SO(2, R)

}
∼= SO(2, R) .

By Theorem 2.3 and its Corollary, SO(3, R)/SO(2, R) = S2.

2.4.2 Normal subgroups and quotient groups

Since the quotient space G/H is constructed out of a group and its subgroup, it is

natural to ask if it can also be a group. The first guess for a multiplication law would

be

(g1H)(g2H) = g1g2H .

This definition would be well defined if the right hand side is independent of the

labeling of the cosets. For example g1H = g1hH, so we then need g1g2H = g1hg2H

i.e. find h′ ∈ H s.t. g1g2h
′ = g1hg2. But this is not always true. We can circumvent

the problem if H belongs to a particular class of subgroups, so called normal (also

called invariant, selfconjugate) subgroups.

Definition. A normal subgroup H of G is one which satisfies gHg−1 = {ghg−1| h ∈
H} = H for all g ∈ G.

Another way to say this is that H is a normal subgroup, if for all g ∈ G, h ∈ H

there exists a h′ ∈ H such that gh = h′g.

Consider again the problem in defining a product for cosets. If H is a normal

subgroup, then g1hg2 = g1(hg2) = g1(g2h
′) = g1g2h

′ is possible. One can show

that the above multiplication satisfies associativity, existence of identity (it is eH)
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and existence of inverse (gH)−1 = g−1H. Hence G/H is a group if H is a normal

subgroup. When G/H is a group, it is called a quotient group.

Comments:

1. If H is a normal subgroup, its left and right cosets are the same: gH = Hg.

2. If G is Abelian, all of its subgroups are normal.

3. |G/H| = |G|/|H| (follows from Lagrange’s theorem).

Example. Consider G = SU(2), H = {12,−12} ∼= Z2. A12 = 12A for all A ∈
SU(2), hence H is a normal subgroup. One can show that the quotient group G/H =

SU(2)/Z2 is isomorphic with SO(3, R). This is an important result for quantum

mechanics, we will analyze it more in a future problem set.

This is also an example of a center. A center of a group G is the set of all elements

of g′ ∈ G which commute with every element g ∈ G. In other words, it is the set

{g′ ∈ G| g′g = gg′ ∀g ∈ G}. You can show that a center is a normal subgroup, so the

quotient of a group and its center is a group. The center of SU(2) is {12,−12}.
We finish by showing another way of finding normal subgroups and quotient

groups. Let the map µ : G1 → G2 be a group homomorphism. Its image is the

set

Imµ = {g2 ∈ G2| ∃g1 ∈ G1 s.t. g2 = µ(g1)}
and its kernel is the set

Kerµ = {g1 ∈ G1| µ(g1) = e2} .

In other words, the kernel is the set of all elements of G1 which map to the unit

element of G2. You can show that Imµ is a subgroup of G2, Kerµ a subgroup of G1.

Further, Kerµ is a normal subgroup: if k ∈ Kerµ then µ(gkg−1) = µ(g)e2µ(g−1) =

µ(gg−1) = µ(e1) = e2 i.e. gkg−1 ∈ Kerµ. Hence G1/Kerµ is a quotient group. In

fact, it also isomorphic with Imµ !

Theorem 2.4 G1/Kerµ ∼= Imµ.

Proof. Denote K ≡ Kerµ. Define i : G1/K → Imµ, i(gK) = µ(g). If gK = g′K
then there is a k ∈ K s.t. g = g′k. Then i(gK) = µ(g) = µ(g′k) = µ(g′)e2 =

i(g′K) so i is well defined. Injection: if i(gK) = i(g′K) then µ(g) = µ(g′) so e2 =

(µ(g))−1µ(g′) = µ(g−1)µ(g′) = µ(g−1g′) so g−1g′ ∈ K. Hence ∃k ∈ K s.t. g′ = gk

so g′K = gK. Surjection: i is a surjection by definition. Thus i is a bijection.

Homomorphism: i(gKg′K) = i(gg′K) = µ(gg′) = µ(g)µ(g′) = i(gK)i(g′K). i is a

homomorphism and a bijection, i.e. an isomorphism.
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For example, our previous example SU(2)/Z2
∼= SO(3, R) can be shown this

way, by constructing a surjective homomorphism µ : SU(2) → SO(3, R) such that

Kerµ = {12,−12}.

3 Representation Theory of Groups

In the previous section we discussed the action of a group on a set. We also listed

some examples of Lie groups, their elements being n× n matrices. For example, the

elements of the orthogonal group O(n,R) corresponded to rotations of vectors in Rn.

Now we are going to continue along these lines and consider the action of a generic

group on a (complex) vector space, so that we can represent the elements of the group

by matrices. However, a vector space is more than just a set, so in defining the action

of a group on it, we have to ensure that it respects the vector space structure.

3.1 Complex Vector Spaces and Representations

Definition. A complex vector space V is an Abelian group (we denote its mul-

tiplication by ”+” and call it a sum), where an additional operation, scalar mul-

tiplication by a complex number µ ∈ C has been defined, such that the following

conditions are satisfied:

i) µ(~v1 + ~v2) = µ~v1 + µ~v2

ii) (µ1 + µ2)~v = µ1~v + µ2~v

iii) µ1(µ2~v) = (µ1µ2)~v

iv) 1 ~v = ~v

v) 0 ~v = ~0 (~0 is the unit element of V )

We could have replaced complex numbers by real numbers, to define a real vector

space, or in general replaced the set of scalars by something called a ”field”. Complex

vector spaces are relevant for quantum mechanics. A comment on notations: we

denote vectors with arrows: ~v, but textbooks written in English often denote them

in boldface: v. If it is clear from the context whether one means a vector or its

component, one may also simply use the notation v for a vector.

Definition. Vectors ~v1, . . . , ~vn ∈ V are linearly independent, if
∑n

i=1 µi~vi = ~0

only if the coefficients µ1 = µ2 = · · · = µn = 0. If there exist at most n linearly

independent vectors, n is the dimension of V , we denote dim V = n. If dim V = n,

a set {~e1, . . . , ~en} of linearly independent vectors is called a basis of the vector space.

Given a basis, any vector ~v can be written in a form ~v =
∑n

i=1 vi~e
i, where the

components vi of the vector are found uniquely.
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Definition. A map L : V1 → V2 between two vector spaces V1, V2 is linear, if it

satisfies

L(µ1~v1 + µ2~v2) = µ1L(~v1) + µ2L(~v2)

for all µ1, µ2 ∈ C and ~v1, ~v2 ∈ V . A linear map is also called a linear transforma-

tion, or especially in physics context, a (linear) operator. If a linear map is also

a bijection, it is called an isomorphism, then the vector spaces V1 and V2 are iso-

morphic, V1
∼= V2. It then follows that dim V1 = dim V2. Further, all n-dimensional

vector spaces are isomorphic. An isomorphism from V to itself is called an auto-

morphism. The set of automorphisms of V is denoted Aut(V ). It is a group, with

composition of mappings L ◦ L′ as the law of multiplication. (Existence of inverse is

guaranteed since automorphisms are bijections).

Definition. The image of a linear transformation is

imL = f(V1) = {L(~v1)| ~v1 ∈ V1} ⊂ V2

and its kernel is the set of vectors of V1 which map to the null vector ~02 of V2:

ker L = {~v1 ∈ V1| L(~v1) = ~02} ⊂ V1 .

You can show that both the image and the kernel are vector spaces. I also quote a

couple of theorems without proofs.

Theorem 3.1 dim V1 = dim ker L + dim imL.

Theorem 3.2 A linear map L : V → V is an automorphism if and only if ker L =

{~0}.

Note that a linear map is defined uniquely by its action on the basis vectors:

L(~v) = L(
n∑

i=1

vi~e
i) =

∑
i

viL(~ei)

then we expand the vectors L(~ei) in the basis {~ej} and denote the components by

Lji:

L(~ei) =
∑

j

Lji~e
j.

Now

L(~v) =
∑

i

∑
j

viLji~e
j =

∑
j

(∑
i

Ljivi

)
~ej ,
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so the image vector L(~v) has the components L(~v)j =
∑

i Ljivi. Let dim V1 =

dim V2 = n. The above can be written in the familiar matrix language:



L(~v)1

L(~v)2

...

L(~v)n


 =




L11 L12 · · · L1n

L21 L22 · · · Lnn

...
. . .

...

Ln1 · · · Lnn







v1

v2

...

vn


 .

We will often shorten the notation for linear maps and write L~v instead of L(~v), and

L1L2~v instead of L1(L2(~v)). From the above it should also be clear that the group

of automorphisms of V is isomorphic with the group of invertible n × n complex

matrices:

Aut(V ) = {L : V → V | L is an automorphism} ∼= GL(n,C) .

(The multiplication laws are composition of maps and matrix multiplication.)

Now we have the tools to give a definition of a representation of a group. The idea

is that we define the action of a group G on a vector space V . If V were just a set,

we would associate with every group element g ∈ G a permutation Lg ∈ Perm(V ).

However, we have to preserve the vector space structure of V . So we define the action

just as before, but replace the group Perm(V ) of permutations of V by the group

Aut(V ) of automorphisms of V .

Definition. A (linear) representation of a group G in a vector space V is a homo-

morphism D : G → Aut(V ), G 3 g 7→ D(g) ∈ Aut(V ). The dimension of the

representation is the dimension of the vector space dim V .

Note:

1. D is a homomorphism: D(g1g2) = D(g1)D(g2).

2. D(g−1) = (D(g))−1.

We say that a representation D is faithful if KerD = {e}. Then g1 6= g2 ⇒
D(g1) 6= D(g2). Whatever the KerD is, D is always a faithful representation of the

quotient group G/KerD.

A mathematician would next like to classify all possible representations of a group.

Then the first question is when two representations are the same (equivalent).

Definition. Let D1, D2 be representations of a group G in vector spaces V1, V2. An

intertwining operator is a linear map A : V1 → V2 such that the diagram

V1
A→ V2

D1(g) ↓ ↘ ↓ D2(g)

V1
A→ V2
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commutes, i.e. D2(g)A = AD1(g) for all g ∈ G. If A is an isomorphism (we then need

dim V1 = dim V2), the representations D1 and D2 are equivalent. In other words,

there then exists a similarity transformation D2(g) = AD1(g)A−1 for all g ∈ G.

Example. Let dim V1 = n, V2 = Cn. Thus any n-dimensional representation is

equivalent with a representation of G by invertible complex matrices, the homomor-

phism D2 : G → GL(n,C).

Definition. A scalar product in a vector space V is a map V ×V → C, (~v1, ~v2) 7→
〈~v1|~v2〉 ∈ C which satisfies the following properties:

i) 〈~v|µ1~v1 + µ2~v2〉 = µ1〈~v|~v1〉+ µ2〈~v|~v2〉

ii) 〈~v|~w〉 = 〈~w|~v〉∗

iii) 〈~v|~v〉 ≥ 0 and 〈~v|~v〉 = 0 ⇔ ~v = ~0.

Given a scalar product, it is possible to normalize (e.g. by the Gram-Schmidt method)

the basis vectors such that 〈~ei|~ej〉 = δij. Such an orthonormal basis is usually the

most convenient on to use. The adjoint A† of an operator (linear map) A : V → V

is the one which satisfies 〈~v|A† ~w〉 = 〈A~v|~w〉 for all ~v, ~w ∈ V .

Definition. An operator (linear map) U : V → V is unitary if 〈~v|~w〉 = 〈U~v|U ~w〉
for all ~v, ~w ∈ V . Equivalently, a unitary operator must satisfy U †U = idV = 1. It

follows that the corresponding n×n matrix must be unitary, i.e. an element of U(n).

Unitary operators form a subgroup Unit(V ) of Aut(V ) ∼= GL(n,C).

Definition. An unitary representation of a group G is a homomorphism D :

G → Unit(V ).

Definition. If U1, U2 are unitary representations of G in V1, V2, and there exists an

intertwining isomorphic operator A : V1 → V2 which preserves the scalar product,

〈A~v|A~w〉V2 = 〈~v|~w〉V1 for all ~v, ~w ∈ V1, the represenations are unitarily equivalent.

Example. Every n-dimensional unitary representation is unitarily equivalent with

a representation by unitary matrices, a homomorphism G → U(n).

As always after defining a fundamental concept, we would like to classify all pos-

sibilities. The basic problem in group representation theory is to classify all unitary

representations of a group, up to unitary equivalence.
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3.2 Symmetry Transformations in Quantum Mechanics

We have been aiming at unitary representations in complex vector spaces because of

their applications in Quantum Mechanics (QM). Recall that the set of all possible

states of a quantum mechanical system is the Hilbert space H, a complex vector space

with a scalar product. State vectors are usually denoted by |ψ〉 as opposed to our

previous notation ~v, and the scalar product of two vectors |ψ〉, |χ〉 is denoted 〈ψ|χ〉.
Note that usually the Hilbert space is an infinite dimensional vector space, whereas

in our discussion of representation theory we’ve been focusing on finite dimensional

vector spaces. Let’s not be concerned about the possible subtleties which ensue, in

fact in many cases finite dimensional representations will still be relevant, as you will

see.

According to QM, the time evolution of a state is controlled by the Schrodinger

equation,

ı~
d

dt
|ψ〉 = H|ψ〉

where H is the Hamilton operator, the time evolution operator of the system. Suppose

that the system possesses a symmetry, with the symmetry operations forming a group

G. In order to describe the symmetry, we need to specify how it acts on the state

vectors of the system – we need to find its representation in the vector space of

the states, the Hilbert space. The norm of a state vector, its scalar product with

itself 〈ψ|ψ〉 is associated with a probability density and normalized to one, similarly

the scalar product 〈ψ|χ〉 of two states is associated with the probability (density) of

measurements. Thus the representations of the symmetry group G must preserve the

scalar product. In other words, the representations must be unitary. Moreover, in a

closed system probability is preserved under the time evolution. Thus, unitarity of

the representations must also be preserved under the time evolution.

We can summarize the above in a more formal way: if g 7→ Ug is a faithful unitary

representation of a group G in the Hilbert space of a quantum mechanical system,

such that for all g ∈ G

UgHU−1
g = H (5)

where H is the Hamilton operator of the system, the group G is a symmetry group

of the system.

The condition (5) arises as follows. Suppose a state vector |ψ〉 is a solution of the

Schrodinger equation. In performing a symmetry operation on the system, the state

vector is mapped to a new vector Ug|ψ〉. But if the system is symmetric, the new state

Ug|ψ〉 must also be a solution of the Schrodinger equation: i~(d/dt)Ug|ψ〉 = HUg|ψ〉).
But then it must be i~(d/dt)|ψ〉 = i~(d/dt)U−1

g Ug|ψ〉 = U−1
g HUg|ψ〉 = H|ψ〉 ⇒

U−1
g HUg = H.

Consider in particular the energy eigenstates |φn〉 at energy level En:

H|φn〉 = En|φn〉 .
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An energy level may be degenerate, say with k linearly independent energy eigenstates

{|φn1, . . . , |φnk〉}. They span a k-dimensional vector space Hn, a subspace of the full

Hilbert space. If the system is has a symmetry group,

HUg|φn〉 = UgH|φn〉 = EnUg|φn〉

so all states Ug|φn〉 are eigenstates at the same energy level En. Thus the represen-

tation Ug maps the eigenspace Hn to itself; in other words the representation Ug is

a k-dimensional representation of G acting in Hn. By an inverse argument, suppose

that the system has a symmetry group G. Its representations then determine the

possible degeneracies of the energy levels of the system.

3.3 Reducibility of Representations

It turns out that some representations are more fundamental than others. A generic

representation can be decomposed into so-called irreducible representations. That is

our next topic. Again, we start with some definitions.

Definition. A subset W of a vector space V is called a subspace if it includes all

possible linear combinations of its elements: if ~v, ~w ∈ W then λ~v + µ~w ∈ W for all

λ, µ ∈ C.

Let D be a representation of a group G in vector space V . The representation

space V is also called a G-module. (This terminology is used in Jones.) Let W be

a subspace of V . We say that W is a submodule if it is closed under the action of

the group G: ~w ∈ W ⇒ D(g)~w ∈ W for all g ∈ G. Then, the restriction of D(g) in

W is an automorphism D(g)W : W → W .

Definition. A representation D : G → Aut(V ) is irreducible, it the only submod-

ules are {~0} and V . Otherwise the representation is reducible.

Example. Choose a basis {~ei} in V , let dim V = n. Suppose that all the matrices

D(g)ij = 〈~ei|D(g)vej〉 turn out to have the form

D(g) =

(
M(g) S(g)

0 T (g)

)
(6)

where M(g) is a n1× n1 matrix, T (g) is a n2× n2 matrix, n1 + n2 = n, and S(g) is a

n1 × n2 matrix. Then the representation is reducible, since

W =





(
~v
~0

)
| ~v =




v1

...

vn1








(7)
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is a submodule:

D(g)

(
~v
~0

)
=

(
M(g)~v + S(g)~0

T (g)~0

)
=

(
M(g)~v

~0

)
∈ W. (8)

If in addition S(g) = 0 for all g ∈ G, the representation is obviously built up by

combining two representations M(g) and T (g). It is then an example of a completely

reducible representation. We’ll give a formal definition shortly.

Definition. A direct sum V1⊕V2 of two vector spaces V1 and V2 consists of all pairs

(v1, v2) with v1 ∈ V1, v2 ∈ V2, with the addition of vectors and scalar multiplication

defined as

(v1, v2) + (v′1, v
′
2) = (v1 + v′1, v2 + v′2)

λ(v1, v2) = (λv1, λv2)

It is simple to show that dim(V1 ⊕ V2) = dim V1 + dim V2. If a scalar product has

been defined in V1 and V2, one can define a scalar product in V1 ⊕ V2 by

〈(v1, v2)|(v′1, v′2)〉 = 〈v1, v
′
1〉+ 〈v2|v′2〉 .

Suppose D1, D2 are representations of G in V1, V2, one can then define a direct sum

representation D1 ⊕D2 in V1 ⊕ V2:

(D1 ⊕D2)(g)(v1, v2) = (D1(g)v1, D2(g)v2) .

In this case it is useful to adopt the notation

V1 =

{(
~v1

~0

)}
; V2 =

{(
~0

~v2

)}

so that

V1 ⊕ V2 =

{(
~v1

~v2

)}
= {(~v1, ~v2)} .

Now the matrices of the direct sum representation are of the block diagonal form

(D1 ⊕D2)(g) =

(
D1(g) 0

0 D2(g)

)
.

Definition. A representation D in vector space V is completely reducible if

for every submodule W ⊂ V there exists a complementary submodule W ′ such that

V = W ⊕W ′ and D ∼= DW ⊕DW ′ .
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Comments.

1. According to the definition, we need to show that D is equivalent with the

direct sum representation DW ⊕ DW ′ . For the matrices of the representation,

this means that there must be a similarity transformation which maps all the

matrices D(g) into a block diagonal form:

AD(g)A−1 =

(
DW (g) 0

0 DW ′(g)

)
.

2. Strictly speaking, according to the definition also an irreducible representation

is completely reducible, as W = V, W ′ = {0} or vice versa satisfy the require-

ments. We will exclude this case, and from now on by completely reducible

representations we mean those which are not irreducible.

The goal in the reduction of a representation is to decompose it into irreducible

pieces, such that

D ∼= D1 ⊕D2 ⊕D3 ⊕ · · ·
(then dim D =

∑
i dim Di). This is possible if D is completely reducible. So, given

a representation, how do we know if it is completely reducible or not? Interesting

representations from quantum mechanics point of view turn out to be completely

reducible:

Theorem 3.3 Unitary representations are completely reducible.

Proof. Since we are talking about unitary representations, it is implied that the

representation space V has a scalar product. Let W be a submodule. We define

its orthogonal complement W⊥ = {~v ∈ V | 〈~v|~w〉 = 0 ∀~w ∈ W}. I leave it as an

excercise to show that V ∼= W ⊕ W⊥. We then only need to show that W⊥ is also

a submodule (closed under the action of G). Let ~v ∈ W⊥, and denote the unitary

representation by U . For all ~w ∈ W and g ∈ G 〈U(g)~v|~w〉 = 〈U(g)~v|U(g)U−1(g)~w〉 =

〈~v|U †(g)U(g)U−1(g)~w〉 a
= 〈~v|U−1(g)~w〉 = 〈~v|U(g−1)~w〉 b

= 〈~v|~w′〉 c
= 0, where the step a

follows since U is unitary, step b since W is a G-module, and the step c is true since

~v ∈ W⊥. Thus U(g)~v ∈ W⊥ so W⊥ is closed under the action of G.

If G is a finite group, we can say more.

Theorem 3.4 Let D be a finite dimensional representation of a finite group G, in

vector space V . Then there exists a scalar product in V such that D is unitary.
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Proof. We can always define a scalar product in a finite dimensional vector space,

e.g. by choosing a basis and defining 〈~v|~w〉 =
∑n

i=1 v∗i wi where vi, wi are the compo-

nents of the vectors. Given a scalar product, we then define a ”group averaged” scalar

product 〈〈~v|~w〉〉 = 1
|G|

∑
g′∈G〈D(g′)~v|D(g′)~w〉. It is straightforward to show that 〈〈|〉〉

satisfies the requirements of a scalar product. Further,

〈〈D(g)~v|D(g)~w〉〉 =
1

|G|
∑

g′∈G

〈D(g′)D(g)~v|D(g′)D(g)~w〉

=
1

|G|
∑

g′∈G

〈D(g′g)~v|D(g′g)~w〉

=
1

|G|
∑

g′′∈G

〈D(g′′)~v|D(g′′)~w〉 = 〈〈~v|~w〉〉 .

In other words, D is unitary with respect to the scalar product 〈〈|〉〉.
Since we have previously shown that unitary representations are completely re-

ducible, we have shown the following fact, called Maschke’s theorem.

Theorem 3.5 (Maschke’s Theorem) Every finite dimensional representation of a

finite group is completely reducible.

3.4 Irreducible Representations

Now that we have shown that many representations of interest are completely re-

ducible, and can be decomposed into a direct sum of irreducible representations, the

next task is to classify the latter. We will first develop ways to identify inequivalent

irreducible representations. Before doing so, we must discuss some general theorems.

Theorem 3.6 (Schur’s Lemma) Let D1 and D2 be two irreducible representations

of a group G. Every intertwining operator between them is either a null map or an

isomorphism; in the latter case the representations are equivalent, D1
∼= D2.

Proof. Let A be an intertwining operator between the representations, i.e. the

diagram

V1
A→ V2

D1(g) ↓ ↘ ↓ D2(g)

V1
A→ V2

commutes: D2(g)A = AD1(g) for all g ∈ G. Let’s first examine if A can be an

injection. Note first that if KerA ≡ {~v ∈ V1| A~v = ~02} = {~01}, then A is an injection

since if A~v = A~w then A(~v − ~w) = 0 ⇒ ~v − ~w ∈ KerA = {~01} ⇒ ~v = ~w. So

what is KerA? Recall that KerA is a subspace of V1. Is it also a submodule, i.e.

closed under the action of G? Let ~v ∈ KerA. Then AD1(g)~v = D2(g)A~v = ~02,

29



hence D1(g)~v ∈ KerA i.e. KerA is a submodule. But since D1 is an irreducible

representation, either KerA = V1 or KerA = {~01}. In the former case all vectors of

V1 map to the null vector of V2, so A is a null map A = 0. In the latter case, A is

an injection. We then use a similar reasoning to examine if A is also a surjection.

Let ~v2 ∈ ImA ≡ {~v ∈ V2| ∃~v1 ∈ V1 s.t. ~v = A~v1}. Then we can write ~v2 = A~v1.

Then D2(g)~v2 = D2(g)A~v1 = A(D1(g)~v1) so also D2(g)~v2 ∈ ImA. Thus, ImA is a

submodule of V2. But since D2 is irreducible, either ImA = {~02} i.e. A = 0, or

ImA = V2 i.e. A is a surjection. To summarize, either A = 0 or A is a bijection i.e.

an isomorphism (since it is also a linear operator).

Corollary. If D is an irreducible representation of a group G in (complex) vector

space V , then the only operator which commutes with all D(g) is a multiple of the

identity operator.

Proof. If ∀g ∈ G AD(g) = D(g)A, then for all µ ∈ C also (A − µ1)D(g) =

D(g)(A− µ1). According to Schur’s lemma, either (A− µ1)−1 exists for all µ ∈ Cor

(A − µ1) = 0. However, it is always possible to find at least one µ ∈ C such

that (A − µ1) is not invertible. In the finite dimensional case this is follows from

the fundamental theorem of algebra, which guarantees that the polynomial equation

det(A− µ1) = 0 has solutions for µ. (The infinite dimensional case is more delicate,

but turns out to be true as well). So it must be A = µ1.

We will next discuss a sequence of theorems, starting from the rather abstract

fundamental orthogonality theorem and then moving towards its more intuitive and

user-friendly forms. Since we are interested in applications, I will cut some corners

and skip the proof of the fundamental orthogonality theorem. It can be found in the

literature (or in Montonen’s handwritten notes) if you are interested in the details.

Theorem 3.7 (Fundamental Orthogonality Theorem) Let U1 and U2 be two

unitary irreducible representations of a group G in vector spaces V1 and V2. Then

∑
g∈G

〈~w1|U1(g)~v1〉∗V1
〈~w2|U2(g)~v2〉V2 =

{
0, if U1 and U2 are not equivalent
|G|

dim V
〈~w1|~w2〉∗〈~v1|~v2〉, if U1 = U2, V1 = V2 = V

for all ~v1, ~w1 ∈ V1, ~v2, ~w2 ∈ V2. In the latter case also dim V < ∞.

Note that in the latter case V1 = V2 = V , so ~v1, ~v2, ~w1, ~w2 ∈ V and the scalar

products on the right hand side are those of V . While this is the generic form of the

theorem, it is more insightful to consider a special case. In the latter case, pick an

orthonormal basis {~ei} in V and choose ~w1 = ~ei, ~v1 = ~ej, ~w2 = ~ek, ~v2 = ~el. Then, in

the left hand side appear the matrices of the representation, D(α)(g)kl = 〈~ek|Uα(g)~el〉
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and the right hand side reduces to a product of Kronecker deltas. In other words, the

FOGT takes the basis-dependent form

∑
g∈G

D
(α)∗
ij (g)D

(β)
kl (g) =

|G|
dim D(α)

δαβδikδjl . (9)

The left hand side can be interpreted as a scalar product of two vectors, then the

right hand side is an orthogonality relation for them. Namely, consider a given repre-

sentation (labeled by α), and the ijth elements of its representation matrices. They

form a |G|-component vector (D
(α)
ij (g1), D

(α)
ij (g2), . . . , D

(α)
ij (g|G|)) where gi are all the

elements of the group G. So we have a collection of vectors, labeled by α, i, j. Then

(9) is an orthogonality relation for the vectors, with respect to the scalar product

〈~v|~v′〉 =
∑|G|

i=1 v∗i v
′
i. However, in a |G| dimensional vector space there can be at most

|G| mutually orthogonal vectors. The index pair ij has (dim D(α))2 possible values,

so the upper bound on the total number of the above vectors is

∑
α

(dim D(α))2 ≤ |G| ,

where the sum is taken over all possible unitary inequivalent representations (labeled

by α). In fact (you can try to show it), the sum turns out to be equal to the order

|G|. This theorem is due to Burnside:

Theorem 3.8 (Burnside’s Theorem)
∑

α(dim D(α))2 = |G|.

Burnside’s theorem helps to rule out possibilities for irreducible representations.

Consider e.g. G = S3, |S3| = 6. The possible dimensions of inequivalent irreducible

representations are 2,1,1 or 1,1,1,1,1,1. It turns out that S3 has only two inequivalent

irreducible representations (show it). So the irreps have dimensions 2,1,1.

3.5 Characters

Characters are a convenient way to classify inequivalent irreducible representations.

To start with, let {~e1, . . . , ~en} be an orthonormal basis in a n-dimensional vector

space V with respect to scalar product 〈|〉.

Definition. A trace of a linear operator A is

tr A ≡
n∑

i=1

〈~ei|A~ei〉 .

31



Note. Trace is well defined, since it is independent of a choice of basis. Let

{~e′1, . . . , ~e′n} be another basis. Then tr A =
∑

i〈~ei|A~ei〉 =
∑

ij〈~ei|~e′j〉〈~e′j|A~ei〉 =∑
ij〈A†~e

′j|~ei〉〈~ei|~e′j〉 =
∑

ij〈A†~e
′j|e′j〉 =

∑
j〈~e

′j|A~e
′j〉. Recall also that associated

with the operator A is a n× n matrix with components Aij = 〈~ei|A~ej〉. Thus tr A is

equal to the trace of the matrix.

Now, let D(α)(g) be an unitary representation of a finite group G in V .

Definition. The character of the representation D(α) is the map

χ(α) : G → C, χ(α)(g) = tr D(α)(g) .

Note. Equivalent representations have the same characters: tr (AD(α)A−1) = tr (A−1AD(α)) =

tr D(α), where we used cyclicity of the trace: tr ABC = tr CAB = tr BCA etc.

Recall that conjugation Lg(g0) = gg0g
−1 is one way to define how G acts on itself,

the orbits {gg0g
−1| g ∈ G} were called conjugacy classes. Since tr D(gg0g

−1) =

tr (D(g)D(g0)D
−1(g)) = tr D(g0), group elements related by conjugation have the

same character (again, use cyclicity of trace). So characters can be interpreted as

mappings

χ(α) : {conjugacy classes of G} → C

Note also that the character of the unit element is the same as the dimension of the

representation: χ(α)(e) = tr D(α)(e) = tr idV = dim V = dim D(α).

Recall then the fundamental orthogonality theorem, in its basis-dependent form

(9). Now we are going to set i = j, k = l in (9) and sum over i and k. The left hand

side becomes

∑
g∈G

∑
i

D
(α)∗
ii (g)

∑

k

D
(β)
kk (g) =

∑
g∈G

χ(α)∗(g)χ(β)(g) .

The right hand side becomes

|G|
dim D(α)

δαβ

∑

ik

δikδik =
|G|

dim D(α)
δαβ

∑
i

δii = |G| δαβ .

We have derived an orthogonality theorem for characters:

∑
g∈G

χ(α)∗(g)χ(β)(g) = |G| δαβ . (10)

It can be used to analyze the reduction of a representation. In the reduction of

a representation D, it may happen that an irreducible representation D(α) appears

multiple times in the the direct sum:

D = D(1) ⊕D(1) ⊕D(1) ⊕D(2) ⊕D(3) ⊕ · · ·

32



Then we shorten the notation and multiply each irreducible representation by an

integer nα to account for how many times D(α) appears:

D = 3D(1) ⊕D(2) ⊕D(3) ⊕ · · · =
⊕

α

nαD(α) .

nα is called the multiplicity of the representation D(α) in the decomposition. Since

tr is a linear operation, obviously the characters of the representation satisfy

χ =
∑

α

nαχ(α)

with the same coefficients nα. If we know the character χ of the reducible representa-

tion D, and all the characters χ(α) of the irreducible representations, we can calculate

the multiplicities of each irreducible representation in the decomposition by using the

orthogonality theorem of characters:

nα =
1

|G|
∑

g

χ(α)∗(g)χ(g) .

Then, once we know all the multiplities, we know what is the decomposition of the

representation D. In practise, characters of finite groups can be looked up from

character tables. You can find them e.g. in Atoms and Molecules, by M. Weissbluth,

pages 115-125. For more explanation of construction of character tables, see Jones,

section 4.4. You will work out some character tables in a problem set.

Again, the orthogonality of characters can be interpreted as an orthogonality

relation for vectors, with useful consequences. Let C1, C2, . . . , Ck be the conjugacy

classes of G, denote the number of elements of Ci by |Ci|. Then (10) implies

∑

{Ci}
|Ci|χ(α)∗(Ci)χ

(β)(Ci) = |G| δαβ . (11)

Consider then the vectors ~vα = (
√
|C1|χ(α)(C1), . . . ,

√
|Ck|χ(α)(Ck)). The number of

such vectors is the same as the number of irreducible representations. On the other

hand, (11) tells that the vectors are mutually orthogonal, so the can be no more of

them than the dimension of the vector space k, the number of conjugacy classes.

Again, it can be show that the numbers are actually the same:

Theorem 3.9 The number of unitary irreducible representations of a finite group is

the same as the number of its conjugacy classes.

If the group is Abelian, the conjugacy class of each element contains only the

element itself: gg0g
−1 = g0gg−1 = g0. So the number of conjugacy classes is the
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same as the order of the group |G|, this is then also the number of unitary irreducible

representations. On the other hand, according to Burnside’s theorem,

|G|∑
α=1

(dim D(α))2 = |G| .

Since there are |G| terms on the left hand side, it must be dim D(α) = 1 for all α.

Hence:

Theorem 3.10 All unitary irreducible representations of an Abelian group are one

dimensional.

This fact can be shown to be true even for continuous Abelian groups. (Hence no

word ”finite” in the above.)

4 Differentiable Manifolds

4.1 Topological Spaces

The topology of a space X is defined via its open sets.

Let X= set, τ = {Xα}α∈I a (finite or infinite) collection of subsets of X. (X, τ) is a

topological space, if

T1 ∅ ∈ τ, X ∈ τ

T2 all possible unions of Xα’s belong to τ
(⋃

α∈I′ Xα ∈ τ, I ′ ⊆ I
)

T3 all intersections of a finite number of Xα’s belong to τ . (
⋂n

i=1 Xαi
∈ τ)

The Xα are called the open sets of X in topology τ , and τ is said to give a topology

to X.

So: topology =̂ specify which subsets of X are open.

The same set X has several possible definitions of topologies (see examples).

Examples

(i) τ = {∅, X} ”trivial topology”

(ii) τ = {all subsets of X} ”discrete topology”

(iii) Let X = R, τ = {open intervals ]a, b[ and their unions} ”usual topology”

(iv) X = Rn, τ = { ]a1, b1[× . . .× ]an, bn[ and unions of these.}
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Definition: A metric on X is a function d : X ×X → R such that

M1 d(x, y) = d(y, x)

M2 d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

M3 d(x, y) + d(y, z) ≥ d(x, z) ”triangle inequality”

Example:

X = Rn, dp(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

, p > 0

If p = 2 we call it the Euclidean metric.

If X has a metric, then the metric topology is defined by choosing all the ”open

disks”

Uε(x) = { y ∈ X| d(x, y) < ε }
and all their unions as open sets.

The metric topology of Rn with metric dp is equivalent with the usual topology (for

all p > 0 !)

Let (X, τ) be a topological space, A ⊂ X a subset. The topology τ induces the

relative topology τ ′ in A,

τ ′ = { Ui ∩ A | Ui ∈ τ }

This is how we obtain a topology for all subsets of Rn (like Sn).

4.1.1 Continuous Maps

Let (X, τ) and (Y, σ) be topological spaces. A map f : X → Y is continuous if the

inverse image of every open set V ∈ σ, f−1(V ) = { x ∈ X | f(x) ∈ V }, is an open

set in X: f−1(V ) ∈ τ .

A function f : X → Y is a homeomorphism if f is continuous, and has an inverse

f−1 : Y → X which is also continuous.

If there exists a homeomorphism f : X → Y , then we say that X is homeomorphic

to Y and vice versa. Denote X ≈ Y .

This (≈) is an equivalence relation.
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Intuitively : X and Y are homeomorphic if we can continuously deform X to Y

(without cutting or pasting).

Example: coffee cup ≈ doughnut.

[
The fundamental question of topology : classify all homeomorphic spaces.

]

One method of classification: topological invariants i.e. quantities which are in-

variant under homeomorphisms.

If a topological invariant for X1 6= for X2 then X1 ≈/ X2.

The neighbourhood N of a point x ∈ X is a subset N ⊂ X such that there exists

an open set U ∈ τ, x ∈ U and U ⊂ N .

(N does not have to be an open set).

(X, τ) is a Hausdorff space if for an arbitrary pair x, x′ ∈ X, x 6= x′, there always

exists neighbourhoods N 3 x, N ′ 3 x′ such that N ∩N ′ = ∅.
We’ll assume from now on that all topological spaces (that we’ll consider) are Haus-

dorff.

Example: Rn with the usual topology is Hausdorff.

All spaces X with metric topology are Hausdorff.

A subset A ⊂ X is closed if its complement X − A = {x ∈ X | x /∈ A } is open.

N.B. X and ∅ are both open and closed.

A collection {Ai} of subsets Ai ⊂ X is called a covering of X if
⋃

i Ai = X.

If all Ai are open sets in the topology τ of X, {Ai} is an open covering.

A topological space (X, τ) is compact if, for every open covering { Ui | i ∈ I} there

exists a finite subset J ⊂ I such that { Ui | i ∈ J} is also a covering of X, i.e. every

open covering has a finite subcovering.

X is connected if it cannot be written as X = X1

⋃
X2, with X1, X2 both open,

nonempty and disjoint, i.e. X1

⋂
X2 = ∅.

A loop in topological space X is a continuous map f : [0, 1] → X such that

f(0) = f(1). If any loop in X can be continuously shrunk to a point, X is called

simply connected.

Examples: R2 is simply connected.
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The torus T 2 is not simply connected.

Examples of topological invariants = quantities or properties invariant under home-

omorphisms:

1. Connectedness

2. Simply connectedness

3. Compactness

4. Hausdorff

5. Euler characteristic (see below)

Let X ⊂ R3, X ≈ polyhedron K. (monitahokas)

Euler characteristic:

χ(X) = χ(K) = (# vertices in K)− (# edges in K) + (# faces in K)

( = K:n kärkien lkm.−K:n sivujen lkm. + K:n tahkojen lkm.)

Example: χ(T 2) = 16− 32 + 16 = 0.

χ(S2) = χ(cube) = 8− 12 + 6 = 2.

4.2 Homotopy Groups

4.2.1 Paths and Loops

Let X be a topological space, I = [0, 1] ⊂ R.

A continuous map α : I → X is a path in X. The path α starts at α0 = α(0) and

ends at α1 = α(1).

If α0 = α1 ≡ x0, then α is a loop with base point x0. We will focus on loops.

Definition: A product of two loops α, β with the same base point x0, denoted by

α ∗ β, is the loop

(α ∗ β)(t) =

{
α(2t) 0 ≤ t ≤ 1

2

β(2t− 1) 1
2
≤ t ≤ 1

4.2.2 Homotopy

Let α, β be two loops in X with base point x0. α and β are homotopic, α ∼ β, if

there exists a continuous map F : I × I → X such that

F (s, 0) = α(s) ∀s ∈ I

F (s, 1) = β(s) ∀s ∈ I

F (0, t) = F (1, t) = x0 ∀t ∈ I.
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F is called a homotopy between α and β.

Homotopy is an equivalence relation:

1. α ∼ α: choose F (s, t) = α(s) ∀t ∈ I

2. α ∼ β, homotopy F (s, t) ⇒ β ∼ α, homotopy F (s, 1− t)

3. α ∼ β, homotopy F (s, t); β ∼ γ, homotopy G(s, t). Then choose

H(s, t) =

{
F (s, 2t) 0 ≤ t ≤ 1

2

G(s, 2t− 1) 1
2
≤ t ≤ 1

⇒ H(s, t) is a homotopy between α and γ, so α ∼ γ.

The equivalence class [α] is called the homotopy class of α.

([α] = { all paths homotopic with α }).

Lemma: If α ∼ α′ and β ∼ β′, then α ∗ β ∼ α′ ∗ β′.
Proof: Let F (s, t) be a homotopy between α and α′ and let G(s, t) be a homotopy

between β and β′. Then

H(s, t) =

{
F (2s, t) 0 ≤ s ≤ 1

2

G(2s− 1, t) 1
2
≤ s ≤ 1

is a homotopy between α ∗ β and α′ ∗ β′. ¤

By the lemma, we can define a product of homotopy classes: [α] ∗ [β] ≡ [α ∗ β].

Theorem: The set of homotopy classes of loops at x0 ∈ X, with the product defined

as above, is a group called the fundamental group (or first homotopy group) of

X at x0. It is denoted by Π1(X, x0)

Proof:

(0) Closure under multiplication: For all [α], [β] ∈ Π1(X, x0) we have [α] ∗ [β] =

[α ∗ β] ∈ Π1(X, x0), since α ∗ β is also a loop at x0.

(1) Associativity: We need to show (α ∗ β) ∗ γ ∼ α ∗ (β ∗ γ).

Homotopy F (s, t) =





α
(

4s
1+t

)
0 ≤ s ≤ 1+t

4

β(4s− t− 1) 1+t
4
≤ s ≤ 2+t

4

γ
(

4s−t−2
2−t

)
2+t
4
≤ s ≤ 1

⇒ [(α ∗ β) ∗ γ] = [α ∗ (β ∗ γ)] ≡ [α ∗ β ∗ γ].
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(2) Unit element: Let us show that the unit element is e = [Cx0 ], where Cx0 is the

constant path Cx0(s) = x0 ∀s ∈ I. This follows since we have the homotopies:

α ∗ Cx0 ∼ α : F (s, t) =

{
α

(
2s

1+t

)
0 ≤ s ≤ 1+t

2

x0
1+t
2
≤ s ≤ 1

Cx0 ∗ α ∼ α : F (s, t) =

{
x0 0 ≤ s ≤ 1−t

2

α
(

2s−1+t
1+t

)
1−t
2
≤ s ≤ 1

.

⇒ [α ∗ Cx0 ] = [Cx0 ∗ α] = [α].

(3) Inverse: Define α−1(s) = α(1 − s). We need to show that α−1 is really the

inverse of α: [α ∗ α−1] = [Cx0 ]. Define:

F (s, t) =

{
α(2s(1− t)) 0 ≤ s ≤ 1

2

α(2(1− s)(1− t)) 1
2
≤ s ≤ 1

Now we have F (s, 0) = α ∗ α−1 and F (s, 1) = Cx0 so α ∗ α−1 ∼ Cx0 . Similarly

α−1 ∗ α ∼ Cx0 so we have proven the claim: [α−1 ∗ α] = [α ∗ α−1] = [Cx0 ]. ¤

4.2.3 Properties of the Fundamental Group

1. If x0 and x1 can be connected by a path, then Π1(X, x0) ∼= Π1(X, x1). If X is

arcwise connected, then the fundamental group is independent of the choice of

x0 up to an isomorphism: Π1(X, x0) ∼= Π1(X).

(A space X is arcwise connected if any two points x0, x1 ∈ X can be

connected with a path. It can be shown that an arcwise connected space

is always connected, but the converse is not true.)

2. Π1(X) is a topological invariant: X ≈ Y ⇒ Π1(X) ∼= Π1(Y ).

3. Examples:

• Π1(R2) = 0 (= the trivial group)

• Π1(T
2) = Π1(S

1 × S1) = Z× Z.

(One can show that Π1(X × Y ) = Π1(X)×Π1(Y ) for arcwise connected spaces

X and Y .)

The real projective space is defined as RP n = { lines through the origin in Rn+1}. If

x = (x0, x1, . . . , xn) 6= 0, then x defines a line. All y = λx for some nonzero λ ∈ R
are on the same line and thus we have an equivalence relation: y ∼ x ⇔ y = λx, λ ∈
R− {0} ⇔ (x and y are on the same line.)

So RP n = {[x]| x ∈ Rn+1 − 0} with the above equivalence relation.

Example: RP 2 ≈ (S2 with opposite points identified)

Π1(RP 2) = Z2.
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4.2.4 Higher Homotopy Groups

Define: In = {(s1, . . . , sn)| 0 ≤ si ≤ 1, 1 ≤ i ≤ n}
∂In = boundary of In = {(s1, . . . , sn)| some si = 0 or 1}

A map α : In → X which maps every point on ∂In to the same point x0 ∈ X

is called an n-loop at x0 ∈ X. Let α and β be n-loops at x0. We say that α is

homeotopic to β, α ∼ β, if there exists a continuous map F : In × I → X such that

F (s1, . . . , sn, 0) = α(s1, . . . , sn)

F (s1, . . . , sn, 1) = β(s1, . . . , sn)

F (s1, . . . , sn, t) = x0 ∀t ∈ I when (s1, . . . , sn) ∈ ∂In.

Homotopy α ∼ β is again an equivalence relation with respect to homotopy classes

[α].

Define: α ∗ β : α ∗ β(s1, . . . , sn) =

{
α(2s1, s2, . . . , sn) 0 ≤ s1 ≤ 1

2

β(2s1 − 1, s2, . . . , sn) 1
2
≤ s1 ≤ 1.

α−1 : α−1(s1, . . . , sn) = α(1− s1, . . . , sn)

[α] ∗ [β] = [α ∗ β]

⇒ Πn(X, x0), the nth homotopy group of X at x0. (This classifies continuous maps

Sn → X.)

Example: Π2(S
2) = Z.

4.3 Differentiable Manifolds

Definition: M is an m-dimensional differentiable manifold if

(i) M is a topological space

(ii) M is provided with a family of pairs {(Ui, ϕi)}, where {Ui} is an open covering

of M :
⋃

i Ui = M , and every ϕi : Ui → U ′
i ⊂ Rm, U ′

i open, is a homeomorphism.

- The pair (Ui, ϕi) is called a chart, {(Ui, ϕi)} an atlas, Ui the coordinate

neighbourhood and ϕi the coordinate function.

ϕ(p) = (x1(p), . . . , xm(p)), p ∈ Ui are the coordinate(s) of p.

(iii) Given Ui and Uj such that Ui

⋂
Uj 6= ∅, the map ψij = ϕi◦ϕ−1

j from ϕj(Ui

⋂
Uj)

to ϕi(Ui

⋂
Uj) is infinitely differentiable (or: C∞ or smooth).

- ψij is called a transition function.

Recall: f : Rm → Rn is Ck if the partial derivatives

∂kf l

∂(x1)k1 · · · ∂(xm)km
, f = (f 1, . . . , fn),

l = 1, . . . , n

k1 + k2 + . . . + kn = k
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exist and are continuous. The function f is C∞ if all partial derivatives exist and are

continuous for any k. We also call a C∞ function f smooth.

The number m is the dimension of the manifold: dim M = m.

If the union of two atlases {(Ui, ϕi)}, {(Vi, ψi)} is again an atlas, they are said to be

compatible. This gives an equivalence relation among atlases, the equivalence class

is called a differentiable structure.

A given differentiable manifold M can have several different differentiable structures:

for example S7 has 28 and R4 has infinitely (!) many differentiable structures.

Examples of differentiable manifolds: Sn

Let’s realize Sn as a subset of Rn+1: Sn = {x ∈ Rn+1|∑n
i=0(x

i)2 = 1}.
One possible atlas:

• coordinate neighbourhoods:

Ui+ ≡ {x ∈ Sn|xi > 0}
Ui− ≡ {x ∈ Sn|xi < 0}

• coordinates:

ϕi+(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn) ∈ Rn

ϕi−(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn) ∈ Rn

(so these are projections on the plane xi = 0.)

The transition functions (i 6= j, α = ±, β = ±),

ψiαjβ =ϕiα ◦ ϕ−1
jβ ,

(x0, . . . ,xi, . . . , xj−1, xj+1, . . . , xn)

7→ (x0, . . . , xi−1, xi+1, . . . , xj−1, β

√
1−

∑

k 6=j

(xk)2, xj+1, . . . , xn)

are C∞.

There are other compatible atlases, e.g. the stereographic projection.

4.3.1 Manifold with a Boundary

Let H be the ”upper” half-space: Hm = {(x1, . . . , xm) ∈ Rm | xm ≥ 0}.
Now require for the coordinate functions: ϕi : Ui → U ′

i ⊂ Hm, where U ′
i is open in
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Hm. (The topology on Hm is the relative topology induced from Rm.)

Points with coordinate xm = 0 belong to the boundary of M (denoted by ∂M). The

transition functions must now satisfy: ψij : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are C∞ in an

open set of Rm which contains ϕj(Ui ∩ Uj). .

4.4 The Calculus on Manifolds

4.4.1 Differentiable Maps

Let M,N be differentiable manifolds with dimensions dim M = m and dim N = n.

Let f be a map f : M → N, p 7→ f(p). Take charts (U,ϕ) and (V, ψ) such that p ∈ U

and f(p) ∈ V . If the combined map ψ ◦ f ◦ ϕ−1 : Rm → Rn is C∞ at ϕ(p), then f

is differentiable at p. The definition is independent of the choice of charts, since if

(U1, ϕ1) is some other chart at p, then

ψ ◦ f ◦ ϕ−1
1 =

C∞︷ ︸︸ ︷
ψ ◦ f ◦ ϕ−1 ◦

C∞︷ ︸︸ ︷
ϕ ◦ ϕ−1

1 ⇒ ψ ◦ f ◦ ϕ−1
1 is C∞.

If in addition ψ ◦ f ◦ ϕ−1 is invertible, i.e. the inverse map ϕ ◦ f−1 ◦ ψ−1 exists and

is also C∞, then f is called a diffeomorphism between M and N . In this case we

say that M is diffeomorphic to N and denote it by M ≡ N .

Note: homeomorphism = continuous deformation

diffeomorphism = smooth deformation

• An open curve on M is a map c :]a, b[→ M where ]a, b[ is an open interval in

R (notation: (a, b) =]a, b[).

• A closed curve is a map S1 → M .

• On a chart (U,ϕ) a curve c has a coordinate representation

x(t) = (ϕ ◦ c)(t) : R→ Rm.

A function f on M is a smooth map M → R.

F = the set of smooth maps = {f : M → R|f is smooth}.

4.4.2 Tangent Vectors

Tangent vectors are defined using curves. Let c : (a, b) → M be a curve (we can

assume 0 ∈ (a, b) ). Denote c(0) = p and let f : M → R be a function.

The rate of change of f along the curve c at point p is

df(c(t))

dt

∣∣∣∣
t=0

=
∂f

∂xµ

dxµ(c(t))

dt

∣∣∣∣
t=0

,
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where xµ(p) = ϕµ(p) are local coordinates and

∂f

∂xµ
≡ ∂(f ◦ ϕ−1(x))

∂xµ
.

Also we have introduced the Einstein summation convention:

• When an index appears once as a subscript and once as a superscript, it is under-

stood to be summed over. For example xµy
µ ≡ ∑m

µ=1 xµy
µ = x1y

1 + . . . + xmym.

In other words, df(c(t))
dt

is obtained by acting on the function f with the differential

operator

Xp ≡ Xµ
p

(
∂

∂xµ

)

p

, where Xµ
p =

dxµ(c(t))

dt

∣∣∣∣
t=0

.

The operator Xp is called a tangent vector of M at p. It depends on the curve,

but several curves can give rise to the same tangent vector Xp. We can see that two

curves c1 and c2 give the same Xp if and only if

(i) c1(0) = c2(0) = p

(ii) dxµ(c1(t))
dt

∣∣∣
t=0

= dxµ(c2(t))
dt

∣∣∣
t=0

This gives an equivalence relation between the two curves, c1 ∼ c2. Thus equivalence

classes can be identified with tangent vectors Xp.

The set of all tangent vectors at p is the tangent space TpM at p. It is a real vector

space, dim TpM = m:

• X1p + X2p = (Xµ
1p + Xµ

2p)
(

∂
∂xµ

)
p

• cXp = (cXµ
p )

(
∂

∂xµ

)
p

(eµ)p =
(

∂
∂xµ

)
p

is called the coordinate basis.

The vectors are independent of a choice of coordinates, if their components are trans-

formed in a correct way. Let x(p) = ϕi(p) and y(p) = ϕj(p) be two coordinates. For

the vector to be independent of the choice of coordinates we must have

X = Xµ ∂

∂xµ
= Y µ ∂

∂yµ

But on the other hand by the chain rule we have

Xµ ∂

∂xµ
= Xν ∂yµ

∂xν

∂

∂yµ
.
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Thus we get the transformation rule for the components:

Y µ = Xν ∂yµ

∂xν

Note the abuse of the notation:

Xν ∂yµ

∂xν

∂

∂xµ
≡ Xν

p

∂(ϕj ◦ ϕ−1
i )(xµ(p))

∂xν(p)

(
∂

∂xµ

)

p

.

Let us now leave calculus on manifolds for a while and study vector spaces some more.

4.4.3 Dual Vector Space

Let V be a complex vector space and f a linear function V → C. Now V ∗ =

{f |f is a linear function V → C} is also a complex vector space, the dual vector

space to V :

• (f1 + f2)(~v) = f1(~v) + f2(~v)

• (af)(~v) = a(f(~v))

• ~0V ∗(~v) = 0 ∀~v ∈ V

The elements of V ∗ are called the dual vectors.

Let {~e1, . . . , ~en} be a basis of V . Then any vector ~v ∈ V can be written as ~v = vi~ei.

We define a dual basis in V ∗ such that e∗i(~ej) = δi
j. From this it follows that

dim V = dim V ∗ = n (dual basis = {e∗1, . . . , e∗n}). We can then expand any f ∈ V ∗

as f = fie
∗i for some coefficients fi ∈ C. Now we have

f(~v) = fie
∗i(vj~ej) = fiv

je∗i(~ej) = fiv
i.

This can be interpreted as an inner product:

< , > : V ∗ × V → C
< f,~v > = fiv

i.

(Note that this is not the same inner product < | > which we discussed before:

< , > : V ∗ × V → C but < | > : V × V → C.)

Pullback: Let f : V → W and g : W → C be linear maps (g ∈ W ∗). It follows

that g ◦ f : V → C is a linear map, i.e. g ◦ f ∈ V ∗.

V
f→ W

↘ ↓ g

g ◦ f C
Now f induces a map f ∗ : W ∗ → V ∗, g 7→ g ◦ f i.e. f ∗(g) = g ◦ f ∈ V ∗. f ∗(g) is

called the pullback (takaisinveto) of g.
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Dual of a Dual: Let ω : V ∗ → C be a linear function (ω ∈ (V ∗)∗). Every ~v ∈ V

induces via the inner product a mapping ω~v ∈ (V ∗)∗ defined by ω~v(f) =< f,~v > . On

the other hand, it can be shown this gives all ω ∈ (V ∗)∗. So we can identify (V ∗)∗

with V .

Tensors: A tensor of type (p, q) is a function of p dual vectors and q vectors, and

is linear in its every argument1

T :

p︷ ︸︸ ︷
V ∗ × . . .× V ∗×

q︷ ︸︸ ︷
V × . . .× V → C.

Examples: (0,1) tensor = dual vector : V → C
(1,0) tensor = (dual of a dual) vector

(1,2) tensor: T : V ∗ × V × V → C. Choose basis {~ei} in V and {e∗i} in V ∗:

T (f,~v, ~w) = T (fie
∗i, vj~ej, w

k~ek) = fiv
jwk

≡T i
jk︷ ︸︸ ︷

T (e∗i, ~ej, ~ek) = T i
jkfiv

jwk,

where T i
jk are the components of the tensor and they uniquely determine the tensor.

Note the positioning of the indices.

In general, (p, q) tensor components have p upper and q lower indices.

Tensor product: Let R be a (p, q) tensor and S be a (p′, q′) tensor. Then T = R⊗S

is defined as the (p + p′, q + q′) tensor:

T (f1, . . . , fp; fp+1, . . . , fp+p′ ;~v1, . . . , ~vq;~vq+1, . . . , ~vq+q′)

= R(f1, . . . , fp;~v1, . . . , ~vq)S(fp+1, . . . , fp+p′ ;~vq+1, . . . , ~vq+q′).

In terms of components:

T
i1...ipip+1...ip+p′
j1...jqjq+1...jq+q′

= R
i1...ip
j1...jq

S
ip+1...ip+p′
jq+1...jq+q′

Contraction: This is an operation that produces a (p−1, q−1) tensor from a (p, q)

tensor:

T︸︷︷︸
(p,q)

7→ Tc(ij)︸︷︷︸
(p−1,q−1)

,

where the (p− 1, q − 1) tensor Tc(ij) is

Tc(ij)(f1, . . . , fp−1;~v1, . . . , ~vq−1) = T (f1, . . . ,

ith︷︸︸︷
e∗k , . . . , fp−1;~v1, . . . ,

jth︷︸︸︷
~ek , . . . , ~vq−1).

Note the sum over k in the formula above. In component form this is

T
l1...lp−1

c(ij) m1...mq−1
= T

l1...li−1kli...lp−1

m1...mj−1kmj ...mq−1

Now we can return to calculus on manifolds.
1So T is a multilinear object.
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4.4.4 1-forms (i.e. cotangent vectors)

Tangent vectors of a differentiable manifold M at point p were elements of the vector

space TpM . Cotangent vectors or 1-forms are their dual vectors, i.e. linear

functions TpM → R. In other words, they are elements of the dual vector space

T ∗
p M. Let w ∈ T ∗

p M and v ∈ TpM , then the inner product < , >: T ∗
p M × TpM → R

is

< w, v >= w(v) ∈ R.

The inner product is bilinear:

< w, α1v1 + α2v2 > = w(α1v1 + α2v2) = α1 < w, v1 > +α2 < w, v2 >

< α1w1 + α2w2, v > = (α1w1 + α2w2)(v) = α1 < w1, v > +α2 < w2, v > .

Let {eµ} = { ∂
∂xµ} be a coordinate basis of TpM . (Note that the correct notation would

be {( ∂
∂xµ

)
p
}, but this is somewhat cumbersome so we use the shorter notation.) The

dual basis is denoted by {dxµ} and it satisfies by definition

< dxµ,
∂

∂xν
>= dxµ(

∂

∂xν
) = δµ

ν .

Now we can expand w = wµdxµ and v = vν ∂
∂xν . Then

w(v) =< w, v >= wµv
νdxµ(

∂

∂xν
) = wµv

µ.

Consider now a function f ∈ F(M) (i.e. f is a smooth map M → R). Its differential

df ∈ T ∗
p M is the map

df(v) =< df, v >≡ v(f) = vµ ∂f

∂xµ
.

Thus the components of df are ∂f
∂xµ and

df =
∂f

∂xµ
dxµ.

Consider two coordinate patches Ui and Uj with p ∈ Ui ∩ Uj. Let x = ϕi(p) and

y = ϕj(p) be the coordinates in Ui and Uj respectively. We can derive how the

components of a 1-form transform under the change of coordinates:

Let w = wµdxµ = w̃νdyν ∈ T ∗
p M and v = vρ ∂

∂xρ = ṽσ ∂
∂yσ ∈ TpM be a 1-form and a

vector. We already know that ṽν = ∂yν

∂xµ vµ, so we get

w(v) = wµv
µ = w̃ν ṽ

ν = w̃ν
∂yν

∂xµ
vµ,

so we find the transformed components

wµ = w̃ν
∂yν

∂xµ
or w̃µ = wν

∂xν

∂yµ
.

The dual basis vectors transform as

dyν =
∂yν

∂xµ
dxµ.
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4.4.5 Tensors on a manifold

A tensor of type (q, r) is a multilinear map

T :

q︷ ︸︸ ︷
T ∗

p M × . . .× T ∗
p M ×

r︷ ︸︸ ︷
TpM × . . .× TpM → R.

Denote the set of type (q, r) tensors at p ∈ M by T q
r,p(M). Note that T 1

0,p = (T ∗
p M)∗ =

TpM and T 0
1,p(M) = T ∗

p M .

The basis of T q
r,p is

{
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµq
⊗ dxν1 ⊗ · · · ⊗ dxνr

}
.

The basis vectors satisfy (as a mapping T ∗
p M × . . .×T ∗

p M ×TpM × . . .×TpM → R):
(

∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµq
⊗ dxν1 ⊗ · · · ⊗ dxνr

)(
dxα1 , . . . , dxαq ,

∂

∂xβ1
, . . . ,

∂

∂xβr

)

= δα1
µ1

. . . δαq
µq

δν1
β1

. . . δνr
βr

.

(Note that ∂
∂xµ (dxα) ≡< dxα, ∂

∂xµ >= δα
µ. On the left ∂

∂xµ is interpreted as an element

of (T ∗
p M)∗.)

We can expand as T = T
µ1...µq

ν1...νr

{
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµq ⊗ dxν1 ⊗ · · · ⊗ dxνr
}

so

T (w1, . . . , wq; v1, . . . , vr) = T µ1...µq
ν1...νr

w1µ1 . . . wqµqv
ν1
1 . . . vνr

r .

The tensor product of tensors T ∈ T q
r,p(M) and U ∈ T s

t,p(M) is the tensor T ⊗U ∈
T q+s

r+t,p(M) with

(T ⊗ U)(w1, . . . , wq, wq+1, . . . , wq+s; v1, . . . , vr, vr+1, . . . , vr+t)

= T (w1, . . . , wq; v1, . . . , vr)U(wq+1, . . . , wq+s; vr+1, . . . , vr+t).

= T µ1...µq
ν1...νr

w1µ1 . . . wqµqv
ν1
1 . . . vνr

r ·
Uα1...αs

β1...βt
w(q+1)α1 . . . w(q+s)αsv

β1

r+1 . . . vβt
r+t.

Contraction maps a tensor T ∈ T q
r,p(M) to a tensor T ′ ∈ T q−1

r−1,p(M) with components

T ′µ1...µq−1
ν1...νr−1

= T µ1...µi−1ρµi...µq−1
ν1...νj−1ρνj ...νr−1

Under a coordinate transformation, a tensor of type (q, r) transforms like a product

of q vectors and r one-forms (note that v1 ⊗ · · · ⊗ vq ⊗ w1 ⊗ . . .⊗ wr is one example

of a (q, r) tensor). For example T ∈ T 1
2,p(M) tensor of type (1, 2):

T = Tα
β1β2

∂

∂xα
⊗ dxβ1 ⊗ dxβ2 = T̃ µ

ν1ν2

∂

∂yµ
⊗ dyν1 ⊗ dyν2

gives us the transformation rule for the components

T̃ µ
ν1ν2

=
∂yµ

∂xα

∂xβ1

∂yν1

∂xβ2

∂yν2
Tα

β1β2
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4.4.6 Tensor Fields

Suppose that a vector v(p) has been assigned to every point p in M . This is a

(smooth) vector field, if for every C∞ function f ∈ F the function v(p)(f) : M →
R is also a smooth function. We denote v(p)(f) by v[f ]. The set of smooth vector

fields on M is denoted by χ(M).

Smooth cotangent vector field : For every p ∈ M there is w(p) ∈ T ∗
p M such

that if V ∈ χ(M), then the function

w[V ] : M → R
p 7→ w[V ](p) = w(p)(V (p))

is smooth. The set of cotangent vector fields is denoted by Ω1(M).

Smooth (q, r)-tensor field : If for all p ∈ M there is T (p) ∈ T q
r,p(M) such that

if w1, . . . , wq are smooth cotangent vector fields and v1, . . . , vr are smooth tangent

vector fields, then the map

p 7→ T [w1, . . . , wq; v1, . . . , vr](p) = T (p)(w1(p), . . . , wq(p); v1(p), . . . , vr(p))

is smooth on M .

4.4.7 Differential Map and Pullback

Let M and N be differentiable manifolds and f : M → N smooth.

f induces a map called the differential map (työntökuvaus) f∗ : TpM → Tf(p)N . It

is defined as follows:

If g ∈ F(N) (i.e. g : N → R smooth), and v ∈ TpM , then

(f∗v)[g] = v[g ◦ f ].

In other words, if v characterizes the rate of change of a function along a curve c(t),

then f∗v characterizes the rate of change of a function along the curve f(c(t)).

Let x be local coordinates on M and y be local coordinates on N , ”y = f(x)”. Also

let v = vµ ∂
∂xµ and f∗v = (f∗v)ν ∂

∂yν . Then

v[g ◦ f ] = vµ ∂(g(f(x)))

∂xµ
= vµ ∂g

∂yν

∂yν

∂xµ
≡ (f∗v)ν ∂g

∂yν

and we get

(f∗v)ν = vµ ∂yν

∂xµ
, where y = f(x).

[More precisely xµ = ϕµ(p), yν = ψν(f(p)) and ∂yν

∂xµ = ∂(ψ◦f◦ϕ−1)ν

∂xµ .]
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The function f also induces the map

f ∗ : T ∗
f(p)N → T ∗

p M, (f ∗w)(v) = w(f∗v),

where v ∈ TpM and w ∈ T ∗
f(p)N are arbitrary. f ∗ is called the pullback.

In local coordinates, w = wνdyν ,

w(f∗v) = wνdyν

(
vµ ∂yα

∂xµ

∂

∂yα

)
= wνv

µ ∂yν

∂xµ
= (f ∗w)µv

µ = (f ∗w)(v),

from which we get

(f ∗w)µ = wν
∂yν

∂xµ
.

The pullback f ∗ can also be generalized to (0, r) tensors and similarly the differential

map f∗ can be generalized to (q, 0) tensors.

4.4.8 Flow Generated by a Vector Field

Let X be a vector field on M . An integral curve x(t) of X is a curve on M , whose

tangent vector at x(t) is X|x(t).

In local coordinates, the integral curve is the solution of the differential equations

dxµ(t)

dt
= Xµ(x(t))

(
X = Xµ ∂

∂xµ

)
.

The existence and uniqueness theorem of ordinary differential equations guarantees

that the equation has a unique solution (at least locally in some neighbourhood of

t = 0), once the initial condition xµ(t = 0) = xµ
0 has been specified. If M is compact,

the solution exists for all t.

Let us denote the integral curve of X which passes the point x0 at t = 0 by σ(t, x0).

Thus {
dσµ(t,x0)

dt
= Xµ(σ(t, x0))

σµ(t = 0, x0) = xµ
0

.

The map σ : I × M → M is called a flow generated by X (I ⊂ R). It satisfies

σ(t, σ(s, x0)) = σ(t + s, x0) (as long as t + s ∈ I).

Proof: The left and right hand sides satisfy the same differential equation: d
dt

σµ(t, σ) =

Xµ(σ) = d
dt

σµ(t + s, σ) and the same initial condition. Thus by uniqueness they are

the same map. ¤ (See Nakahara page 15)

For a fixed t, σ(t, x) is a diffeomorphism σt : M → M, x 7→ σ(t, x). The family of

diffeomorphisms {σt|t ∈ I} is a commutative (Abelian) group (when I = R):

σt · σs ≡ σt ◦ σs = σt+s

σ−t = (σt)
−1

σ0 = idM .

49



The group is called the one-parameter group of transformations.

Let t = ε be infinitesimally close to 0. Now,

σµ
ε (x) = σµ(ε, x) ≈ σµ(0, x) +

dσµ(t, x)

dt

∣∣∣∣
t=0

ε + O(ε2) = xµ + Xµ(x)ε.

In this context the vector field X is called the infinitesimal generator of the trans-

formation σt.

Given a vector field X, the corresponding flow is often denoted by

σµ
t (x) = σµ(t, x) = exp(tX)xµ = (etX)xµ

and called the exponentiation of X. This is because

σµ
t (x) = xµ + t

dσµ(s, x)

ds

∣∣∣∣
s=0

+
1

2!
t2

d2σµ(s, x)

ds2

∣∣∣∣
s=0

+ · · ·

=

(
1 + t

d

ds
+

1

2!
t2

d2

ds2
+ · · ·

)
σµ(s, x)

∣∣∣∣
s=0

= et d
ds σµ(s, x)

∣∣∣
s=0

= etXxµ .

4.4.9 Lie Derivative

Let σt(x) be a flow on M generated by vector field X:
dσµ

t (x)

dt
= Xµ(σt(x)). Let Y be

another vector field on M . We want to calculate the rate of change of Y along the

curve xµ(t) = σµ
t (x).

The Lie derivative of a vector field Y is defined by

LXY = lim
ε→0

1

ε

(
(σ−ε)∗Y |σε(x) − Y |x

)
.

Let’s rewrite this in a more user-friendly form: First

Y |x = Y µ(x)
∂

∂xµ

Y |x̄ = Y µ(x̄)
∂

∂x̄µ
,

where we have for the coordinates

x̄µ ≡σµ
ε (x) = xµ + εXµ(x) + O(ε2)

⇒ xµ = x̄µ − εXµ(x̄) + O(ε2).

Thus

Y |x̄ = (Y µ(x + εX))
∂

∂x̄µ
=

(
Y µ(x) + εXν ∂Y µ(x)

∂xν

)
∂

∂x̄µ
.
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Differential map from x̄ to x:

((σ−ε)∗Y |x̄)α = Y µ|x̄ ∂xα

∂x̄µ
=

(
Y µ(x) + εXν(x)

∂Y µ(x)

∂xν

) (
δα

µ − ε

∂Xα

∂xµ +O(ε)︷ ︸︸ ︷
∂Xα(x̄)

∂x̄µ

)

= Y α(x) + ε

(
Xν(x)

∂Y α

∂xν
− Y µ(x)

∂Xα

∂xµ

)
+ O(ε2)

⇒ LXY =

(
Xν ∂Y µ

∂xν
− Y ν ∂Xµ

∂xν

)
∂

∂xµ
.

So we got

LXY =

(
Xν ∂Y µ

∂xν
− Y ν ∂Xµ

∂xν

)
∂

∂xµ
= [X, Y ] ,

where the commutator (”Lie bracket”) acts on functions by

[X, Y ] f = X[Y [f ]]− Y [X[f ]].

Note that XY is not a vector field but [X, Y ] is:

XY f = X[Y [f ]] = Xµ∂µ[Y ν∂νf ] = Xµ(∂µY
ν)∂ν︸ ︷︷ ︸

vector field

f + XµY ν∂µ∂ν︸ ︷︷ ︸
not a vector field

f.

Lie derivative of a one-form: Let w ∈ Ω1(M) be a one-form (cotangent vector).

Define the Lie derivative of w along X as

LXw = lim
ε→0

1

ε

(
σ∗ε w|σε(x) − w|x

)
.

Let’s simplify this. The coordinates at σε(x) : yµ ≡ σµ
ε (x) ≈ xµ + εXµ(x).

(σ∗ε w)α = wβ(y)
∂yβ

∂xα
= wβ(x + εX)

∂

∂xα
(xβ + εXβ)

= (wβ(x) + εXµ∂µwβ(x))(δβ
α + ε∂αXβ)

= wα + ε(Xµ∂µwα + wµ∂αXµ)

Thus we find

LXw = (Xµ∂µwα + wµ∂αXµ) dxα.

Lie derivative of a function: A natural guess would be LXf = X[f ]. Let’s check

if this works:

LXf = lim
ε→0

1

ε
(f(σε(x))− f(x)) = lim

ε→0

1

ε
(f(x + εX)− f(x)) = Xµ∂µf = Xf = X[f ].

Thus the definition works.

51



Lie derivative of a tensor field: We define these using the Leibnitz rule: we

require that

LX(t1 ⊗ t2) = (LXt1)⊗ t2 + t1 ⊗ (LXt2).

This is true if t1 is a function ((0,0) tensor) and t2 is a one form or a vector field, or

vice versa. (exercise)

Example: Let’s find the Lie derivative of a (1,1) tensor: t = t ν
µ dxµ ⊗ eν ; eν = ∂

∂xν .

LXt = (LXt ν
µ )dxµ ⊗ eν + t ν

µ (LXdxµ)⊗ eν + t ν
µ dxµ ⊗ (LXeν)

= (Xα∂αt ν
µ )dxµ ⊗ eν + t ν

µ (∂αXµ)dxα ⊗ eν − t ν
µ dxµ ⊗ (∂νX

α)eα

= (Xα∂αt ν
µ + t ν

α ∂µX
α − t α

µ ∂αXν)dxµ ⊗ eν .

[We used here eν = ∂
∂xν , (eν)

α = δ α
ν , (dxµ)α = δµ

α, (LXeν)
α = Xµ∂µ(eν)

α −
(eν)

µ∂µX
α = −∂νX

α and also (LXdxµ)α = Xν∂ν(dxµ)α + (dxµ)ν∂αXν = ∂αXµ.]

4.4.10 Differential Forms

A differential form of order r (or r-form) is a totally antisymmetric (0, r)-tensor:

p ∈ Sr : w(vp(1), . . . , vp(r)) = sgn(p) w(v1, . . . , vr),

where sgn(p) is the sign of the permutation p:

sgn(p) = (−1)number of exchanges =

{
+1 for an even permutation

−1 for an odd permutation.

Example: p : (123) → (231) : Two exchanges [(231) → (213) → (123)] to (123), thus

p is an even permutation.

p̃ : (123) → (321) : One exchange to (231) and then two exchanges to (123), thus p̃

is an odd permutation.

The r-forms at point p ∈ M form a vector space Ωr
p(M). What is its basis?

We define the wedge product of 1-forms:

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr =
∑
p∈Sr

sgn(p) dxµp(1) ⊗ . . .⊗ dxµp(r)

Then { dxµ1 ∧ . . . ∧ dxµr | µ1 < µ2 < . . . < µr } forms the basis of Ωr
p(M).

Examples: dxµ ∧ dxν = dxµ ⊗ dxν − dxµ ⊗ dxν

dx1 ∧ dx2 ∧ dx3 = dx1 ⊗ dx2 ⊗ dx3 + dx2 ⊗ dx3 ⊗ dx1 + dx3 ⊗ dx1 ⊗ dx2

−dx2 ⊗ dx1 ⊗ dx3 − dx3 ⊗ dx2 ⊗ dx1 − dx1 ⊗ dx3 ⊗ dx2.

Note:
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• dxµ1 ∧ . . . ∧ dxµr = 0 if the same index appears twice (or more times).

• dxµ1 ∧ . . . ∧ dxµr = sgn(p)dxµp(1) ∧ . . . ∧ dxµp(r) . (reshuffling of terms.)

In the above basis, an r-form w ∈ Ωr
p(M) is expanded

w =
1

r!
wµ1...µrdxµ1 ∧ . . . ∧ dxµr .

Note: the components wµ1...µr are totally antisymmetric in the indices

(e.g. wµ1µ2µ3...µr = −wµ2µ1µ3...µr).

One can show that dim Ωr
p(M) = m!

r!(m−r)!
=

(
m
r

)
, where m = dimM .

Note also: Ω1
p(M) = T ∗

p (M) cotangent space

Ω0
p(M) = R by convention

Now we generalize the wedge product for the products of a q-form and an r-form

and call it exterior product:

Definition: The exterior product of a q-form ω and an r-form η is a (q + r)-form

ω ∧ η:

(ω ∧ η)(v1, . . . , vq+r) =
1

q!r!

∑
p∈Sq+r

sgn(p)ω(vp(1), . . . , vp(q)) · η(vp(q+1), . . . , vp(q+r)).

If q + r > m = dim(M), then ω∧η = 0. The exterior product satisfies the properties:

(i) ω ∧ ω = 0, if q is odd.

(ii) ω ∧ η = (−1)qrη ∧ ω.

(iii) (ω ∧ η) ∧ ξ = ω ∧ (η ∧ ξ).

[Proof: exercise]

We may assign an r-form smoothly at each point p on a manifold M , to obtain an

r-form field. The r-form field will also be called an r-form for short.

The corresponding vector spaces of r-forms (r-form fields) are called Ωr(M):

Ω0(M) = F(M) smooth functions on M

Ω1(M) = T ∗(M) cotangent vector fields on M

Ω2(M) = sp{dxµ ∧ dxν | µ < ν}
...
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4.4.11 Exterior derivative

The exterior derivative d is a map Ωr(M) → Ωr+1(M),

ω =
1

r!
ωµ1...µrdxµ1 ∧ . . . ∧ dxµr 7→ dω =

1

r!

∂ωµ1...µr

∂xν
dxν ∧ dxµ1 ∧ . . . ∧ dxµr .

Example: dim M = m = 3. We have the following r-forms:

• r = 0 : ω0 = f(x, y, z),

• r = 1 : ω1 = ωx(x, y, z)dx + ωy(x, y, z)dy + ωz(x, y, z)dz,

• r = 2 : ω2 = ωxy(x, y, z)dx ∧ dy + ωyzdy ∧ dz + ωzxdz ∧ dx,

• r = 3 : ω3 = ωxyzdx ∧ dy ∧ dz.

The exterior derivatives are:

• dω0 = ∂f
∂x

dx + ∂f
∂y

dy + ∂f
∂z

dz. Thus the components are the components of ∇f .

• dω1 = ∂ωx

∂y
dy∧dx+ ∂ωx

∂z
dz∧dx+ ∂ωy

∂x
dx∧dy+ ∂ωy

∂z
dz∧dy+ ∂ωz

∂x
dx∧dz+ ∂ωz

∂y
dy∧dz

=
(

∂ωy

∂x
− ∂ωx

∂y

)
dx ∧ dy +

(
∂ωz

∂y
− ∂ωy

∂z

)
dy ∧ dz +

(
∂ωx

∂z
− ∂ωz

∂x

)
dz ∧ dx

These are the components of ∇× ~ω (~ω = (ωx, ωy, ωz))

• dω2 = ∂ωxy

∂dz
dz ∧ dx ∧ dy + ∂ωyz

∂x
dx ∧ dy ∧ dz + ∂ωzx

∂y
dy ∧ dz ∧ dx

=
(

∂ωyz

∂x
+ ∂ωzx

∂y
+ ∂ωxy

∂z

)
dx ∧ dy ∧ dz

The component is a divergence: ∇ · ~ω′ (where ~ω′ = (ωyz, ωzx, ωxy))

• Thus the exterior derivatives correspond to the gradient, curl and divergence!

[dω3 = 0]

What is d(dω)?

d(dω) =
1

r!




∂2

∂xα∂xβ︸ ︷︷ ︸
symmetric in α and β

wµ1...µr

antisymmetric in α and β︷ ︸︸ ︷
dxα ∧ dxβ ∧ dxµ1 ∧ . . . ∧ dxµr


 = 0.

So d2 = 0. Note that (for dim M = 3)

d(df) = d(∂xfdx + ∂yfdy + ∂zfdz) =

(
∂2

∂x∂y
− ∂2

∂y∂x

)
dx ∧ dy + . . . = 0,

so we recover ∇×∇f = 0. Similarly d(dω1) = 0 ↔ ∇ · ∇× ~ω = 0.
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If dω = 0, we say that ω is a closed r-form. If there exists an (r-1)-form ωr−1 such

that ωr = dωr−1, then we say that ωr is an exact r-form.

The exterior derivative induces the sequence of maps

0
i→ Ω0 d0→ Ω1 d1→ Ω2 d2→ . . .

dm−2→ Ωm−1 dm−1→ Ωm dm→ 0,

where Ωr = Ωr(M), i is the inclusion map 0 ↪→ Ω0(M) and dr denotes the map

dr : Ωr → Ωr+1, ω 7→ dω. Since d2 = 0, we have Im dr︸ ︷︷ ︸
exact r+1 forms

⊂ Ker dr+1︸ ︷︷ ︸
closed r+1 forms

. Such

a sequence is called an exact sequence. This particular sequence is called the de

Rham complex. The quotient space Ker dr+1/Im dr is called the rth de Rham

cohomology group.

4.4.12 Integration of Differential Forms

Orientable manifolds : Let dim M = m. We can define integration over an m-

form over M only if M is an orientable manifold.

Let p ∈ M, p ∈ Ui ∩ Uj and denote the coordinates on Ui = {xµ} and on Uj = {yµ}.
TpM is spanned by eµ = ∂

∂xµ or ẽµ = ∂
∂yµ . [Recall that ẽµ = ∂xν

∂yµ eν (chain rule)]

Let J denote the determinant J = det
(

∂xµ

∂yν

)
.

If J > 0, we say that {eµ} and {ẽµ} define the same orientation on Ui ∩ Uj.

If J < 0, we say that {eµ} and {ẽµ} define the opposite orientation on Ui ∩ Uj.

(J = 0 is not possible if the coordinates xµ and yν are properly defined.)

We say that (M, {Ui, xi}) (manifold M with an atlas {Ui, xi}) is orientable if for

any overlapping charts Ui and Uj the determinant J = det
(

∂xµ
i

∂xν
j

)
is positive, J > 0.

(Note that i and j are fixed, while µ and ν denote the components of the matrix. In

other words the determinant is taken over µ and ν.)

If M is orientable, then there exists an m-form ω which is non-vanishing everywhere

on M (proof skipped). This m-form ω is called a volume element and it plays the

role of an integration measure on M . Two volume elements ω and ω′ are equivalent,

if ω = hω′, where h ∈ F is a smooth, positive function on M , i.e. h(p) > 0 for all

p ∈ M . We denote then ω ∼ ω′ (this is clearly an equivalence relation).

If ω′′ ∼/ ω, then ω = h′′ω′′, where h′′(p) < 0 ∀p ∈ M . So there are two equivalence

classes for volume elements, corresponding to two inequivalent orientations. We call

one of them right-handed and the other left-handed.

Integration of forms: Let M be orientable and f : M → R a function which

is nonzero only on one chart (Ui, x
µ(p) = ϕµ

i (p)), and ω a volume element on Ui:
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ω = h(p)dx1 ∧ . . . ∧ dxm. We define

∫

Ui

fω =

∫

ϕi(Ui)

dx1dx2 . . . dxmh(ϕ−1
i (x))f(ϕ−1

i (x))

Note that the right hand side is a regular integral in Rm. For a generic function on

M , we need to use the ”partition of unity”.

Let {Ui} be an open covering of M , such that every point p ∈ M belongs to only

a finite number of Ui’s. (If such an open covering exists, manifold M is called

paracompact). The partition of unity is a family of differentiable functions εi(p)

such that

(i) 0 ≤ εi(p) ≤ 1

(ii) εi(p) = 0 ∀p /∈ Ui

(iii)
∑

i εi(p) = 1 ∀p ∈ M .

The partition of unity {εi} depends on the choice of {Ui}.

Now let f : M → R. We can write f(p) = f(p)
∑

i εi(p) =
∑

i fi(p), where fi = fεi.

Then fi(p) = 0 when p /∈ Ui so we can use the previous definition to extend the

integral over all M : ∫

M

fω =
∑

i

∫

Ui

fiω.

Note that due to the paracompactness condition, the sum over i is finite and thus

there are no problems with the convergence of the sum. One can show, that although

a different atlas {(Vi, ψi)} gives different coordinates and partition of unity, the inte-

gral remains the same.

Example: Let M = S1, U1 = S1−{(1, 0)}, U2 = S1−{(−1, 0)}. Choose the (inverse)

coordinate functions as

ϕ−1
1 : (0, 2π) → U1, θ1 7→ (cos θ1, sin θ1)

ϕ−1
2 : (−π, π) → U2, θ2 7→ (cos θ2, sin θ2)

Partition of unity: ε1(θ1) = sin2 θ1

2
, ε2(θ2) = cos2 θ2

2
. (Note that this satisfies (i) -

(iii)). Choose f : S1 → R as f(θ) = sin2 θ and ω = 1·dθ1 on U1 and ω = 1·d(θ2+2π) =

1 · dθ2 on U2. Now

∫

S1

fω =
2∑

i=1

∫

Ui

fiω =

∫ 2π

0

dθ1 sin2 θ1

2
sin2 θ1 +

∫ π

−π

dθ2 cos2 θ2

2
sin2 θ2 =

π

2
+

π

2
= π,

as expected.
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4.4.13 Lie Groups and Algebras

A Lie group G is a differentiable manifold with a group structure,

(i) product G×G → G, (g1, g2) 7→ g1g2, such that g1(g2g3) = (g1g2)g3,

(ii) unit element: point e ∈ G such that eg = ge = g ∀g ∈ G,

(iii) inverse element: ∀g ∈ G ∃g−1 ∈ G such that gg−1 = g−1g = e,

in such a way that the map G×G → G, (g1, g2) 7→ g1g2 is differentiable. We already

know some examples: GL, SL, O, U, SU and SO.

Example: Coordinates on GL(n,R) : xij(g) = gij (and thus xij(e) = δij.) One chart

is sufficient : U = GL(n,R). (thus U is open in any topology.)

• To be exact we don’t yet have a topology on GL(n,R). We can define the

topology in several (inequivalent) ways. One way would be to choose a topology

manually, for instance choose the discrete or trivial topology. This is rarely a

useful method. A better way of defining the topology is to choose a map f from

GL(n,R) to some known topological space N and then choose the topology on

GL(n,R) so that the map f is continuous, i.e. define

V ⊂ GL(n,R) is open ⇔ V = f−1W for some W open in N .

(check that this defines a topology). Here are two possible topologies:

1. Choose f : GL(n,R) → R, g 7→ det(g). (So we choose N = R). The

induced topology is:

V ⊂GL(n,R) is open ⇔ V = f−1(W ) for some W open in R.

Note that GL(n,R) is not Hausdorff with respect to this topology, since

if g1, g2 ∈ GL(n,R), g1 6= g2, and det g1 = det g2, then any open set

containing g1 also contains g2.

2. Choose N = Rn2
, f : GL(n,R) → Rn2

defined by




x11 · · · x1n

...
. . .

...

xn1 · · · xnn


 7→ (x11, x12, . . . , x1n, x21, . . . , xnn) ∈ Rn2

.

This is clearly injective, and when we define topology as above, we see that

f is a homeomorphism from GL(n,R) to an open subset of Rn2
. Since Rn2

is Hausdorff, so is GL(n,R) with this topology. Thus this topology is

not equivalent to the one defined in the first example. This is the usual

topology one has on GL(n,R).
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Let a ∈ G be a given element. We can define the left-translation

La : G → G, La(g) = ag (group action on itself from the left).

This is a diffeomorphism G → G.

A vector field X on G is left-invariant, if the push satisfies

(La)∗X|g = X|ag

Using coordinates, this means

(La)∗X|g = Xµ(g)
∂xα(ag)

∂xµ(g)

∂

∂xα

∣∣∣∣
ag

= X|ag = Xα(ag)
∂

∂xα

∣∣∣∣
ag

,

and thus

Xα(ag) = Xµ(g)
∂xα(ag)

∂xµ(g)
.

A left-invariant vector field is uniquely defined by its value at a point, for example at

e ∈ G, because

X|g = (Lg)∗Xe ≡ Lg∗V,

where V = X|e ∈ TeG. Let’s denote the set of left-invariant vector fields by G. It is

a vector space (since Lg∗ is a linear map); it is isomorphic with TeG. Thus we have

dim G = dim G.

Example: The left-invariant fields of GL(n,R):

V = V ij ∂

∂xij

∣∣∣∣
e

∈ TeGL(n,R),

X|g = Lg∗V = V ij ∂(

=xkm(g)︷ ︸︸ ︷
xkl(g)xlm(e))

∂xij(e)

∂

∂xkm(g)
= V ijxkl(g)δl

iδ
m
j

∂

∂xkm(g)

V ijxki(g)
∂

∂xkj(g)
= xki(g)V ij

︸ ︷︷ ︸
(gV )kj

∂

∂xkj(g)
= (gV )kj ∂

∂xkj(g)
,

where V ij is an arbitrary n× n real matrix.

Since G is a collection of vector fields, we can compute their commutators. The result

is again left-invariant!

La∗ [X,Y ]|g = [La∗X|g, La∗Y |g] l. inv.
= [X|ag, Y |ag] ≡ [X,Y ]|ag.

So if X, Y ∈ G, also [X,Y ] ∈ G.
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Definition: The set of left-invariant vector fields G with the commutator (Lie

bracket) [ , ] : G × G → G is called the Lie algebra of a Lie group G.

Examples:

1. gl(n,R) = n×n real matrices (Lie algebras are written with lower case letters).

2. sl(n,R) : Take a curve c(t) that passes through e ∈ SL(n,R) and compute its

tangent vector (c(0) = e = 1n). For small t: c(t) = 1n + tA, dc
dt

∣∣
t=0

= A ∈
TeSL(n,R). Now det c(t) = det (1n + tA) = 1+ t tr A+ . . . = 1. Thus tr A = 0

and sl(n,R) = {A| A is a n× n real matrix, tr A = 0}.
3. so(n) : c(t) = 1n + tA. We need c(t) to be orthogonal:

c(t)c(t)T = (1 + tA)(1 + tAT ) = 1 + t(A + AT ) + O(t2) = 1. Thus we need to

have A = −AT and so so(n) = {A| A is an antisymmetric n× n matrix }.
For complex matrices, the coordinates are taken to be the real and imaginary parts

of the matrix

4. u(n) : c(t) = 1n+tA. Thus c(t)c(t)† = (1+tA)(1+tA†) = 1+t(A+A†)+O(t2) =

1. So A = −A† and u(n) = {A|A is an antihermitean n× n complex matrix }.
Note: In physics, we usually use the convention c(t) = 1 + itA ⇒ A† = A

⇒u(n) = {Hermitean n× n matrices }.
5. su(n) = {n× n antihermitean traceless matrices }.

4.4.14 Structure Constants of the Lie Algebra

Let {V1, . . . , Vn} be a basis of TeG (assume dim G = n < ∞). Then Xµ|g =

Lg∗Vµ, µ = 1, . . . , n is a basis of TgG (usually it is not a coordinate basis). Since

the vectors {V1, . . . , Vn} are linearly independent, {X1|g, . . . , Xn|g} are also linearly

independent. (Lg∗ is an isomorphism between TeG and TgG; (Lg∗)−1 = Lg−1∗). Since

Vµ are basis vectors of TeG, we can expand

[Vµ, Vν ] = c λ
µν Vλ.

Let’s then push this to TgG:

Lg∗[Vµ, Vν ] = [Lg∗Vµ, Lg∗Vν ] = [Xµ|g, Xν |g]
Lg∗(c λ

µν Vλ) = c λ
µν Xλ|g

⇒ [Xµ|g, Xν |g] = c λ
µν Xλ|g.

Letting g vary over all G, we get the same equation everywhere on G with the same

numbers c λ
µν . Thus we can write

[Xµ, Xν ] = c λ
µν Xλ.
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The c λ
µν are called the structure constants of the Lie algebra. Evidently we have

c λ
µν = −c λ

νµ . We also have the Jacobi identity (of commutators)

c τ
µν c σ

τρ + c τ
νρ c σ

τµ + c τ
ρµ c σ

τν = 0.

4.4.15 The adjoint representation of G

Let b be some element of G, b ∈ G. Let us define the map

adb : G → G, adb(g) ≡ adbg = bgb−1.

This is a homomorphism: adbg1 · adbg2 = adb(g1g2), and at the same time defines an

action of G on itself (conjugation): adb · adc = adbc, ade = idG. (Note that this

is really a combined map: adb · adc ≡ adb ◦ adc). The differential map adb∗ pushes

vectors from TgG to TadbgG. If g = e, adbe = beb−1 = e, so adb∗ maps TeG to itself.

Lets denote this map by Adb:

Adb : TeG → TeG, Adb = adb∗|TeG

One can easily show that (f ◦ g)∗ = f∗ ◦ g∗, thus adb∗adc∗ = adbc∗. It then follows

that Adb is a representation of G in the vector space G ∼= TeG, the so-called adjoint

representation:

Ad : G → Aut(G), b 7→ Adb.

If G is a matrix group (O, SO,...), then V ∈ TeG ∼= G is a matrix and

AdgV = gV g−1.

(This follows from adg(e + tV ) = e + tgV g−1.) So, if {Vµ} is a basis of G,

gVµg
−1 = VνD

(adj)ν
µ(g).

4.5 Integral of an r-form over a manifold M; Stokes’ theorem

4.5.1 Simplexes in a Euclidean space

We define simplexes in Rm as follows:

0-simplex : point s0 = p0

1-simplex : oriented line s1 = (p0, p1)

2-simplex : oriented triangle s2 = (p0, p1, p2)

3-simplex : oriented tetrahedron s3 = (p0, p1, p2, p3)
...
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n-simplex (p0, . . . , pn) is made of (n+1) geometrically independent2 points (ver-

tices) p0, . . . , pn in this order and the n-dimensional object spanned by them:

sn = {x ∈ Rm|xµ =
n∑

i=0

tix
µ(pi),

n∑
i=0

ti = 1, ti ≥ 0}

The numbers t0, . . . , tn are the barycentric coordinates on sn.

As a subset of Rm sn is closed and bounded and therefore compact. The orientation is

defined by the order of the vertices. If Π ∈ Sn+1 is a permutation of (n+1)-elements,

then we define

(pΠ(0), . . . , pΠ(n)) = (−1)Π(p0, . . . , pn),

so even permutations of the vertices give the same oriented simplex sn, and odd

permutations give the simplex −sn with opposite orientation.

The boundary ∂sn of an n-simplex sn is a combination of (n-1)-simplexes: If sn =

(p0, . . . , pn),

∂sn =
n∑

i=0

(−1)i(p0, . . . , pi−1, pi+1, . . . , pn).

Example: ∂s0 = 0

s1 = (p0, p1), ∂s1 = p1 − p0

s2 = (p0, p1, p2), ∂s2 = (p1, p2)− (p0, p2) + (p0, p1) = (p1, p2) + (p0, p1) + (p2, p0)

s3 = (p0, p1, p2, p3), ∂s3 = (p1, p2, p3)− (p0, p2, p3) + (p0, p1, p3)− (p0, p1, p2)

= (p1, p2, p3) + (p0, p3, p2) + (p0, p1, p3) + (p1, p0, p2).

An n-chain c is a formal sum

c =
∑

i

aisn
i , ai ∈ R, sn

i an n-simplex.

Thus ∂sn is an (n-1)-chain. The boundary of the chain is: ∂c ≡ ∑
i a

i∂sn
i . A boundary

has no boundary, so we should have ∂2c = 0. Let us prove this. It is enough to prove

this for a simplex since ∂ is defined as a linear operator.

∂2sn = ∂

(
n∑

i=0

(−1)i(p0, . . . , pi−1, pi+1, . . . , pn)

)

Let j < k. In ∂2sn the simplex (p0, . . . , pj−1, pj+1, . . . , pk−1, pk+1, . . . , pn) is created in

two ways:

1. The first ∂ removes pk and the second pj: sign (−1)k+j

2. The first ∂ removes pj and the second pk: sign (−1)j+(k−1).

2Geometrically independent ≡ vectors p0−p1, . . . , p0−pn are linearly independent and thus span
an n-dimensional space.
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Thus the two terms have opposite signs and cancel each other ⇒ ∂2sn = 0.

Two n-simplexes, P = (p0, . . . , pn) and Q = (q0, . . . , qn), can be mapped onto each

other with an orientation preserving linear homeomorphism. The image of p ∈ P in

Q is the point with the same barycentric coordinates ti.

In Rm we define the standard simplex s̄m = (p0, . . . , pm) as follows:

p0 = (0, 0, . . . , 0) (origin)

p1 = (1, 0, . . . , 0)

p2 = (0, 1, . . . , 0)

...

pm = (0, 0, . . . , 1).

Now let ω be an m-form on U ⊂ Rm, where s̄m ⊂ U . Now ω can be written as

ω = A(x1, x2, . . . , xm)dx1 ∧ dx2 ∧ . . . ∧ dxm.

Let us define the integral of ω over the standard simplex:
∫

s̄m

ω ≡
∫

s̄m

dx1 . . . dxmA(x1, . . . , xm).

Example: Consider m = 3, ω = dx ∧ dy ∧ dz:

∫

s̄3

ω =

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz =

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)

=

∫ 1

0

dx((1− x)2 − 1

2
(1− x)2) =

1

2

∫ 1

0

dx(1− x)2 =
1

6

4.5.2 Simplexes and Chains on Manifolds

Let M be a manifold of dimension m and sn ⊂ U ⊂ Rn a Euclidean n-simplex

(sn = (p0, . . . , pn)). In addition ϕ : U → M is a smooth map (does not need to

be injective or surjective) where U is open. A ”protosimplex” on M is (sn, U, ϕ). If

tn = (q0, . . . , qn) ⊂ V ⊂ Rm is another Euclidean n-simplex and ψ : V → M , then

(sn, U, ϕ) ∼ (tn, V, ψ) if

ψ(
n∑

i=0

tixµ(qi)) = ϕ(
n∑

i=0

tixµ(pi))

with the same ti. (So the points with the same barycentric coordinates map to the

same point on M). We can see that ∼ is an equivalence relation.

An n-simplex σn on M is an equivalence class in the equivalence relation above. If

(sn, U, ϕ) is a representative of σn and the ”sides” of sn are t0, . . . , tn : ∂sn =
∑±ti,

then the sides of σn are τi = (ti, Vi, ϕ), where ti ⊂ Vi ⊂ U (Vi open in Rn−1) and the
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boundary of σn is ∂σn =
∑±τi.

An n-chain on M is a formal sum c =
∑

aiσ
n
i , where ai ∈ R and σn

i is an n-simplex.

Addition of chains is defined by αc + βc′ ≡ ∑
i(αai + βa′i)σ

n
i . The boundary of the

chain is ∂c ≡ ∑
ai∂σn

i .

If we denote by Cn(M) the set of chains (Cn(M) = { n-chains on M}), then we

have a linear map ∂ : Cn(M) → Cn−1(M) with the property ∂2 = 0. A cycle z is a

chain with a vanishing boundary: ∂z = 0. (Compare with closed n-forms : dω = 0).

A cycle b is a boundary cycle or boundary if there exists an (n+1)-chain c such

that b = ∂c. (Compare with exact n-forms: ω = dα for some (n-1)-form α). Every

boundary is a cycle, but not vice versa. (Compare with all exact forms are closed but

not vice versa).

Integration of Forms Let M be a manifold, ω a p-form on M and c a p-chain on

M . We wish to define ∫

c

ω.

Let us write c =
∑

i aisi, where si’s are p-simplexes, and let us define

∫

c

ω =
∑

i

ai

∫

si

ω.

This means that we have to define the integral of ω over a simplex s. We can write

the simplex in the form (s̄p, U, ϕ), where s̄p is a standard simplex in Rp, ϕ : U → M ,

s̄p ⊂ U . Now we can define ∫

s

ω ≡
∫

s̄p

ϕ∗ω.

In practice there are often more practical methods to calculate.

Stokes’ Theorem: Let ω ∈ Ωr−1(M) and c be an r-chain on M . Then

∫

c

dω =

∫

∂c

ω.

Proof: Due to linearity it is enough to show this for a simplex:
∫

s
dω =

∫
∂s

ω. Writing

s as (s̄r, U, ϕ) we can write

∫

s

dω =

∫

s̄r

ϕ∗(dω)
∗
=

∫

s̄r

d(ϕ∗ω),

where (∗) is an exercise. Similarly

∫

∂s

ω =

∫

∂s̄r

ϕ∗ω.
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Thus it is enough to show that in Rr we have

∫

s̄r

dη =

∫

∂s̄r

η, η ∈ Ωr−1(Rr).

In general η =
∑

µ aµ(x)dx1 ∧ . . .∧ dxµ−1 ∧ dxµ+1 ∧ . . .∧ dxr. It is enough to examine

one term, for instance η = a(x)dx1∧. . .∧dxr−1. Then dη = (−1)r−1 ∂a(x)
∂xr dx1∧. . .∧dxr.

A direct calculation gives

∫

s̄r

dη = (−1)r−1

∫

s̄r

∂a(x)

∂xr
dx1 . . . dxr

= (−1)r−1

∫

xµ≥0,
∑

xµ≤1

dx1 . . . dxr−1

∫ 1−∑r−1
µ=1

0

dxr ∂a(x)

∂xr

= (−1)r−1

∫
dx1 . . . dxr−1

(
a(x1, . . . , xr−1, 1−

r−1∑
µ=1

xµ)− a(x1, . . . , xr−1, 0)

)

(12)

Now ∂s̄r = (p1, . . . , pr)− (p0, p2, . . . , pr) + . . . + (−1)r(p0, . . . , pr−1). The sides

(p0, p2, . . . , pr), . . . , (p0, p1, . . . , pr−2, pr) are all subsets of the planes xµ = 0, µ =

1, 2, . . . , r−1. In the plane xµ = 0 the µ component of vectors is zero, i.e. η(v1, . . . , vr−1) =

0. Therefore on these sides η = 0, only sides (p1, . . . , pr) and (−1)r(p0, . . . , pr−1) con-

tribute. The latter part is a standard simplex:

(−1)r

∫

(p0,...,pr−1)

η = (−1)r

∫

s̄r−1

dx1 . . . dxr−1a(x1, . . . , xr−1, 0).

This is the second term in (12). σ ≡ (p1, . . . , pr) is not a standard simplex. The

integral over it is defined by mapping σ to a standard simplex preserving orientation.

This is done by mapping points with the same barycentric coordinates to each other,

which here simply means a projection to the xr = 0 plane:

(p1, . . . , pr−1, pr) 7→ (p1, . . . , pr−1, p0) = (−1)r−1(p0, . . . , pr−1) = (−1)r−1s̄r−1.

Therefore
∫

(p1,...,pr)

η = (−1)r−1

∫

s̄r−1

dx1 . . . dxr−1a(x1, . . . , xr−1, 1−
∑

xµ)

This is the first term in (12). Therefore
∫

c
dω =

∫
∂c

ω. ¤

5 Riemannian Geometry (Metric Manifolds)

(Chapter 7 of Nakahara’s book)
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5.1 The Metric Tensor

Let M be a differentiable manifold. The Riemannian metric on M is a (0, 2)-

tensorfield, which satisfies

(i) gp(U, V ) = gp(V, U) ∀p ∈ M, U, V ∈ TpM (i.e. g is symmetric)

(ii) gp(U,U) ≥ 0, and gp(U,U) = 0 ⇔ U = 0 (g is positive definite).

If instead of (ii) g satisfies

(ii’) If gp(U, V ) = 0 for all U ∈ TpM , then V = 0,

we say that g is a pseudo-Riemannian metric (symmetric and non-degenerate).

(M, g) with a (pseudo-) Riemannian metric is called a (pseudo-) Riemannian manifold.

The spacetime in general relativity is an example of a pseudo-Rimannian manifold.

In local coordinates g = gµνdxµ ⊗ dxν . (The Euclidean metric: gµν = δµν . Then

g(U, V ) =
∑n

i=1 U iV i.)

5.2 The Induced Metric

Let (N, gN) be a Riemannian manifold, dim N = n. We define an m dimensional

submanifold M of N :

Let f : M → N be a smooth map such that f is an injection and the push

f∗ : TpM → Tf(p)N is also an injection. Then f is an embedding of M in N

and the image f(M) is a submanifold of N . However, it follows that M and f(M)

are diffeomorphic, so we can call M a submanifold of N .

Now the pullback f ∗ of f induces the natural metric gM on M :

gM = f ∗gN .

The components of gM are given by

gMµν(x) = gNαβ(f(x))
∂fα

∂xµ

∂fβ

∂xν
.

[By the chain rule: gMµνdxµ ⊗ dxν = gNαβ
∂fα

∂xµ
∂fβ

∂xν dxµ ⊗ dxν ]

Example: Let (θ, ϕ) be the polar coordinates on S2 and f : S2 → R3 the usual

embedding: f(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ). On R3 we have the Euclidean

metric δµν . We denote y1 = θ, y2 = ϕ. We obtain the induced metric on S2:

gµνdyµ ⊗ dyν = δαβ
∂fα

∂yµ

∂fβ

∂yν
dyµ ⊗ dyν = dθ ⊗ dθ + sin2 θdϕ⊗ dϕ.

Thus the components of the metric are g11(θ, ϕ) = 1, g22(θ, ϕ) = sin2 θ, g12(θ, ϕ) =

g21(θ, ϕ) = 0.
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Why the notation ds2 is often used for the metric?

Often the metric is denoted ds2 = gµνdxµ⊗dxν . The reason for this is as follows. Let

c(t) be a curve on manifold M with the metric g. The tangent vector of the curve is

ċ(t), which in local coordinates is ċ(t) = (dxµ(t)
dt

). [c(t) = (xµ(t))]

If M = R3 with the Euclidean metric gµν = δµν , the length of the curve between t0
and t1 would be

LR3 =

∫ t1

t0

dt
√

(ẋ1)2 + (ẋ2)2 + (ẋ3)2 =

∫ t1

t0

dt
√

δµν ẋµẋν .

In general case the length of the part of the curve between t0 and t1 is then

L =

∫ t1

t0

dt
√

gµν ẋµẋν . (13)

If t0 and t1 are infinitesimally close : t1 = t0 + ∆t, then

∆s ≡ L ≈ ∆t
√

gµν ẋµẋν ≈ ∆t

√
gµν

∆xµ

∆t

∆xν

∆t
=

√
gµν∆xµ∆xν .

Thus ds2 = gµνdxµdxν is the square of an ”infinitesimal length element” ds. We will

have more to say about (13) later.

5.3 Affine Connection

Recall that χ(M) = { vector fields on M}. An (affine) connection ∇ is a map

χ(M)× χ(M) → χ(M), (X,Y ) 7→ ∇XY such that

1. ∇X(Y + Z) = ∇XY +∇XZ (linear in the 2nd argument)

2. ∇(X+Y )Z = ∇XZ +∇Y Z (linear in the 1st argument)

3. f is a function on M (f ∈ F(M)) ⇒ ∇fXY = f∇XY

4. ∇X(fY ) = X[f ]Y + f∇XY .

Now take a chart (U,ϕ) with coordinates x = ϕ(p). Let {eν = ∂
∂xν } be the coordinate

basis of TpM . We define (dim M)3 connection coefficients Γλ
µν by

∇eµeν = Γλ
µνeλ.

We can express the connection in the coordinate basis with the help of connection

coefficients: Let X = Xµeµ and Y = Y νeν be two vector fields. Denote ∇µ ≡ ∇eµ .

Now

∇XY
2,3
= Xµ∇µ(Y νeν)

4
= Xµeµ[Y ν ]eν + XµY ν∇µeν = Xµ ∂Y ν

∂xµ
eν + XµY νΓλ

µνeλ

= Xµ(
∂Y λ

∂xµ
+ Γλ

µνY
ν)eλ ≡ Xµ(∇µY )λeλ,
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where we have

(∇µY )λ =
∂Y λ

∂xµ
+ Γλ

µνY
ν .

Note that ∇XY contains no derivatives of X unlike LXY .

5.4 Parallel Transport and Geodesics

Let c : (a, b) → M be a curve on M with coordinate representation xµ = xµ(t). Its

tangent vector is

V = V µeµ|c(t) =
dxµ(c(t))

dt
eµ

∣∣∣∣
c(t)

.

If a vector field X satisfies

∇V X = 0 (along c(t)),

then we say that X is parallel transported along the curve c(t). In component

form this is
dXµ

dt
+ Γµ

νλ

dxν(t)

dt
Xλ = 0.

If the tangent vector V itself is parallel transported along the curve c(t),

∇V V = 0, (14)

then the curve c(t) is called a geodesic. The equation (14) is the geodesic equation

and in component form it is

d2xµ

dt2
+ Γµ

νλ

dxν

dt

dxλ

dt
= 0

Geodesics can be interpreted as the straightest possible curves in a Riemannian man-

ifold. If M = Rn and Γ = 0, then the geodesics are straight lines.

5.5 The Covariant Derivative of Tensor Fields

Connection was a term that we used for the map ∇ : (X, Y ) 7→ ∇XY . The map

∇X : χ(M) → χ(M), Y 7→ ∇XY is called the covariant derivative. It is a proper

generalization of the directional derivative of functions to vector fields, and as we’ll

discuss next, to tensor fields.

For a function, we define ∇Xf to be the same as the directional derivative:

∇Xf = X[f ].

Thus the condition number 4 in the definition of ∇ is the Leibnitz rule:

∇X(fY ) = (∇Xf)Y + f(∇XY ).
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Let’s require that this should be true for any product of tensors:

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2),

where T1 and T2 are tensor fields of arbitrary types. The formula must also be true

when some of the indices are contracted. Thus we can define the covariant derivative

of a one-form as follows. Let ω ∈ Ω1(M) be a one-form ((0,1) tensor field), Y ∈ χ(M)

be a vector field ((1,0) tensor field). Then < ω, Y >∈ F(M) is a smooth function on

M . Recall that < ω, Y >≡ ω[Y ] = ωµY
µ. (Here µ is the contracted index.) Then

∇X < ω, Y > = X(ω[Y ]) = Xµ ∂

∂xµ
(ωνY

ν) = Xµ ∂ων

∂xµ
Y ν + Xµων

∂Y ν

∂xµ
.

On the other hand because of the Leibnitz rule we must have

∇X < ω, Y > =< ∇Xω, Y > + < ω,∇XY >= (∇Xω)νY
ν + ων(∇XY )ν

= (∇Xω)νY
ν + ωνX

µ ∂Y ν

∂xµ
+ ωνΓ

ν
µαXµY α

From these two formulas we find (∇Xω)ν . (Note that the two Xµων
∂Y ν

∂xµ terms cancel.)

⇒ (∇Xω)ν = Xµ

(
∂ων

∂xµ
− Γα

µνωα

)
.

When X = ∂
∂xµ , this reduces to

(∇µω)ν =
∂ων

∂xµ
− Γα

µνωα.

Further when ω = dxσ: ∇µdxσ = −Γσ
µνdxν .

For a generic tensor, the result turns out to be

(∇νt)
λ1...λp
µ1...µq

= ∂νt
λ1...λp
µ1...µq

+ Γλ1
νρt

ρλ2...λp
µ1...µq

+ . . . + Γλp
νρt

λ1...λp−1ρ
µ1...µq

− Γρ
νµ1

tλ1...λp
ρµ2...µq

− . . .− Γρ
νµq

tλ1...λp
µ1...µq−1ρ.

(Note that we should really have written t
λ1...λp

µ1...µq , but this was not done for typo-

graphical reasons.)

5.6 The Transformation Properties of Connection Coefficients

Let U and V be two overlapping charts with coordinates:

on U : x eµ =
∂

∂xµ
,

on V : y ẽν =
∂

∂yν
=

∂xµ

∂yν
eµ.
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Let p ∈ U ∩ V 6= ∅. The connection coefficients on V are

∇ẽα ẽβ = Γ̃γ
αβ ẽγ = Γ̃γ

αβ

∂xν

∂yγ
eν

On the other hand

∇ẽα ẽβ = ∇ẽα(
∂xµ

∂yβ
eµ) =

(
∂2xν

∂yαyβ
+

∂xλ

∂yα

∂xµ

∂yβ
Γν

λµ

)
eν

Thus

Γ̃γ
αβ

∂xν

∂yγ
=

(
∂2xν

∂yαyβ
+

∂xλ

∂yα

∂xµ

∂yβ
Γν

λµ

)
.

From this we find the transformation rule for the connection coefficients:

Γ̃γ
αβ =

∂yγ

∂xν

∂xλ

∂yα

∂xµ

∂yβ
Γν

λµ +
∂2xν

∂yα∂yβ

∂yγ

∂xν
.

We notice that the first term is just the transformation rule for the components of a

(1,2)-tensor. But we also have an additional second term, which is symmetric in α

and β. Thus Γ is almost like a (1,2)-tensor, but not quite. To construct a (1,2)-tensor

out of Γ, define

T γ
αβ = Γγ

αβ − Γγ
βα ≡ 2Γγ

[αβ] = the torsion tensor

(note: t[αβ] = 1
2
(tαβ − tβα) is the antisymmetrization of indices.)

5.7 The Metric Connection

Let c be an arbitrary curve and V its tangent vector. If a connection ∇ satisfies3

∇V (g(X,Y )) = 0 when ∇V X = 0 and ∇V Y = 0,

then we say that ∇ is a metric connection. Since

∇V (g(X, Y )) = (∇V g)(X,Y ) + g(

=0︷ ︸︸ ︷
∇V X, Y ) + g(X,

=0︷ ︸︸ ︷
∇V Y ) = 0,

the metric connection satisfies

∇V g = 0.

In component form:

1. (∇µg)αβ = ∂µgαβ − Γλ
µαgλβ − Γλ

µβgαλ = 0.

And by cyclic permutation of µ, α and β we get:

3This condition means that the angle between vectors is preserved under parallel transport.
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2. (∇αg)βµ = ∂αgβµ − Γλ
αβgλµ − Γλ

αµgβλ = 0

3. (∇βg)µα = ∂βgµα − Γλ
βµgλα − Γλ

βαgµλ = 0

Let us denote the symmetrization of indices: Γγ
(αβ) ≡ 1

2
(Γγ

αβ + Γγ
βα). Then adding

-(1)+(2)+(3) gives

−∂µgαβ + ∂αgβµ + ∂βgµα + T λ
µαgλβ + T λ

µβgλα − 2Γλ
(αβ)gλµ = 0

In other words

Γλ
(αβ)gλµ =

1

2

{
(∂αgβµ + ∂βgµα − ∂µgαβ) + T λ

µαgλβ + T λ
µβgλα

}

Thus

Γκ
(αβ) =

{
κ

αβ

}
+

1

2
(T κ

α β + T κ
β α),

where
{

κ
αβ

}
= 1

2
gκµ(∂αgβµ + ∂βgµα − ∂µgαβ) are the Christoffel symbols and

T κ
α β = gαλg

κµT λ
µβ.

The coefficients of a metric connection thus satisfy

Γκ
αβ = Γκ

(αβ) + Γκ
[αβ] =

{
κ

αβ

}
+

1

2

(
T κ

α β + T κ
β α + T κ

αβ

)
︸ ︷︷ ︸

≡Kκ
αβ= contorsion

.

If the torsion tensor vanishes, T κ
αβ = 0, the metric connection is called the Levi-

Civita connection:

Γκ
αβ =

{
κ

αβ

}
.

5.8 Curvature And Torsion

We define two new tensors:

(Riemann) curvature tensor: R : χ(M)× χ(M)× χ(M) → χ(M)

R(X, Y, Z) ≡ R(X, Y )Z ≡ ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Torsion tensor: T : χ(M)× χ(M) → χ(M)

T (X, Y ) ≡ ∇XY −∇Y X − [X, Y ].

Let’s check that these definitions really define tensors, i.e. multilinear maps. Obvi-

ously R(X + X ′, Y, Z) = R(X, Y, Z) + R(X ′, Y, Z) etc. are true, but it is less obvious

that R(fX, gY, hZ) = fghR(X, Y, Z) where f, g, h ∈ F(M). Let’s calculate:

[fX, gY ] = fX[g]Y − gY [f ]X + fg[X, Y ] (15)

Using (15) we obtain

R(fX, gY )(hZ) = f∇X(g∇Y (hZ))− g∇Y (f∇X(hZ))

− fX[g]∇Y (hZ) + gY [f ]∇X(hZ)− fg∇[X,Y ](hZ).
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Here the first term is

f∇X(g∇Y (hZ)) = f∇X(gY [h]Z + gh∇Y Z) = fX[g]Y [h]Z + fg(X[Y [h]])Z

+ fgY [h]∇XZ + fgX[h]∇Y Z + fhX[g]∇Y Z + fgh∇X∇Y Z,

and the second term is obtained by changing X ↔ Y and f ↔ g. Continuing

R(fX, gY )(hZ) = fX[g]Y [h]Z + fg(X[Y [h]])Z + fgY [h]∇XZ + fgX[h]∇Y Z

+ fhX[g]∇Y Z + fgh∇X∇Y Z − gY [f ]X[h]Z − fg(Y [X[h]])Z

− fgX[h]∇Y Z − fgY [h]∇XZ − ghY [f ]∇XZ − fgh∇Y∇XZ

− fX[g]Y [h]Z − fhX[g]∇Y Z + gY [f ]X[h]Z + ghY [f ]∇XZ

− fg([X, Y ][h])Z − fgh∇[X,Y ]Z = fgh(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)

= fghR(X,Y )Z.

Thus R is a linear map. In other words, when X = Xµeµ, Y = Y νeν and Z = Zλeλ,

we have

R(X, Y )Z = XµY νZλR(eµ, eν)eλ.

R maps three vector fields to a vector field, so it is a (1,3)-tensor. A similar (but

shorter) calculation shows that T (fX, gY ) = fgT (X, Y ), so T (X, Y ) = XµY νT (eµ, eν).

T is a (1,2) tensor.

The operations of R and T on vectors are obtained by knowing their actions on the

basis vectors eµ
∂

∂xµ . Denote

R(eµ, eν)eλ = a vector, expand in basis eκ = Rκ
λµνeκ.

Note the placement of indices. We can derive a formula for obtaining the components

Rκ
λµν . Recall that [eµ, eν ] = 0 and dxκ(eσ) = δκ

σ. Thus we get

Rκ
λµν = dxκ(R(eµ, eν)eλ) = dxκ(∇µ∇νeλ −∇ν∇µeλ) = dxκ(∇µ(Γη

νλeη)−∇ν(Γ
η
µλeη))

= dxκ((∂µΓη
νλ)eη) + Γη

νλΓ
ρ
µηeρ − (∂νΓ

η
µλ)eη − Γη

µλΓ
ρ
νηeρ)

(16)

Therefore

Rκ
λµν = ∂µΓκ

νλ − ∂νΓ
κ
µλ + Γη

νλΓ
κ
µη − Γη

µλΓ
κ
νη

Similarly if we denote T (eµ, eν) = T λ
µνeλ and derive the components T λ

µν :

T λ
µν = dxλ(T (eµ, eν)) = dxλ(∇µeν −∇νeµ) = dxλ(Γη

µνeη − Γη
νµeη),

and therefore

T λ
µν = Γλ

µν − Γλ
νµ.

Thus this is the same torsion tensor as the one we had defined earlier.

Geometric interpretation:
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SEE THE FIGURES IN SECTION 7.3.2. OF NAKAHARA

Let us also define:

The Ricci tensor: Ric(X,Y ) = dxλ(R(eλ, Y )X). Thus the components are:

(Ric)µν = Ric(eµ, eν) = Rλ
µλν . (Usual notation (Ric)µν ≡ Rµν .)

The scalar curvature: R = gµν(Ric)µν = Rλν
λν .

The Einstein tensor: Gµν = (Ric)µν − 1
2
Rgµν .

5.9 Geodesics of Levi-Civita Connections

The length of a curve c(s) = (xµ(s)) is defined by

I(c) =

∫

c

ds =

∫

c

√
gµν

dxµ

ds′
dxν

ds′
ds′ ≡

∫

c

Lds′

Thus along a curve L is constant. One can normalize s′ such that L = 1 so s′ = s.

Curves with extremal (minimum or maximum) length satisfy δI = 0 about the curve.

(Variational principle.) They satisfy the Euler-Lagrange equations (familiar from

calculus of variations (FYMM II)):

d

ds

(
∂L

∂x′µ

)
− ∂L

∂xµ
= 0, where x′µ =

dxµ

ds
(17)

L = Lagrange function or Lagrangian. Instead of L, which contains a square root,

we can equivalently use a simpler Lagrange function

F =
1

2
gµν

dxµ

ds

dxν

ds
=

1

2
L2,

because

d

ds

(
∂F

∂x′µ

)
− ∂F

∂xµ
= L

(
d

ds

(
∂L

∂x′µ

)
− ∂L

∂xµ

)

︸ ︷︷ ︸
=0

+
∂L

∂x′µ
dL

ds︸︷︷︸
=0

= 0,

when xµ(s) satisfies the Euler-Lagrange equation (17). Then δ(
∫

Fds) = 0 gives

d

ds

(
gλµ

dxµ

ds

)
− 1

2

∂gµν

∂xλ

dxµ

ds

dxν

ds
= 0

⇒ ∂gλµ

∂xν

dxµ

ds

dxν

ds
+ gλµ

d2xµ

ds2
− 1

2

∂gµν

∂xλ

dxµ

ds

dxν

ds
= 0

⇒ gλµ
d2xµ

ds2
+

1

2

(
∂gλµ

∂xν
+

∂gλν

∂xµ
− ∂gµν

∂xλ

)
dxµ

ds

dxν

ds
= 0.

Multiply this by gκλ and sum over λ:

d2xκ

ds2 +
{

κ
µν

}
dxµ

ds
dxν

ds
= 0. (18)

72



This is the geodesic equation with a Levi-Civita connection! The action I =
∫

Fds

sometimes provides a convenient starting point for computing the Christoffel symbols{
κ
µν

}
: plug in the metric to I, derive the Euler- Lagrange equations and read off the

Christoffel symbols comparing the Euler-Lagrange equations with (18).

Note: previously when we discussed the geodesic equation in the context of general

connection, we said that geodesics are the ”straightest” possible curves. Now, in the

context of the Levi-Civita connection which is only based on the metric, we that the

geodesics are also the shortest possible curves.

Note also that we can explicitly restore a parameter m and write the action of

the length of the curve as I = m
∫ √

gµν
dxµ

ds′
dxν

ds′ ds′. This is the relativistic action of

a free massive point particle (with mass m) moving on a curved spacetime. Thus

the free point particles move along geodesics. If m2 > 0 (usual particles), we say

that the corresponding geodesics (on a pseudo-Riemannian manifold) are timelike,

if m2 < 0 (tachyonic particles) the geodesics are spacelike. Massless particles (such

as the photon) move along null geodesics. The invariant length vanishes along a null

geodesic, ds2 = 0. This equation can be used to determine the null geodesics.

5.10 Lie Derivative And the Covariant Derivative

Let Γµ
νλ be an arbitrary symmetric (Γµ

νλ = Γµ
λν) connection. We can then re-express

the Lie derivative with the help of the covariant derivative as follows:

(LXY )µ = Xν∂νY
µ − Y ν∂νX

µ = Xν∇νY
µ − (∇νX

µ)Y ν

This is true because of the symmetry of the connection:

Xν∇νY
µ−(∇νX

µ)Y ν = Xν(∂νY
µ + Γµ

νλY
λ)− (∂νX

µ + Γµ
νλX

λ)Y ν

Xν∂νY
µ − Y ν∂νX

µ + (Γµ
νλ − Γµ

λν︸ ︷︷ ︸
=0

)XνY λ

For a generic (p,q)-tensor:

LXT µ1...µp
ν1...νq

= (Xλ∇λ)T
µ1...µp
ν1...νq

− (∇λX
µ1)T λµ2...µp

ν1...νq
− . . .− (∇λX

µp)T µ1...µp−1λ
ν1...νq

+ (∇ν1X
λ)T

µ1...µp

λν2...νq
+ . . . + (∇νqX

λ)T
µ1...µp

ν1...νq−1λ.

5.11 Isometries

Isometries are a very important concept. They are symmetries of a Riemannian

manifold. If the manifold is a spacetime, we usually require a physical theory to be

invariant under isometries.
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Definition. Let (M, g) be a (pseudo)-Riemannian manifold. A diffemorphism f :

M → M is an isometry if it preserves the metric,

f ∗gf(p) = gp ,

for all p ∈ M .

If we interpret the metric as a map on vector fields, the above requirement means

gf(p)(f∗X, f∗Y ) = gp(X, Y ) (19)

for all tangent vectors X, Y ∈ TpM . In component form, (19) is

∂yα

∂xµ

∂yβ

∂xν
gαβ(f(p)) = gµν(p) (20)

where x, y are coordinates of the points p, f(p) respectively. What (19) means, is that

an isometry must preserve the angles between all tangent vectors and their lengths.

The identity map is trivially an isometry, also the composite map f ◦ g of two

isometries f, g is an isometry. Further, if f is an isometry, so is its inverse f−1. This

means that isometries form a group with composition of maps as the product, called

the isometry group. The isometry group is a group of symmetries of a (pseudo)-

Riemannian manifold.

Examples.

• (M, g) = the Euclidean space (Rn, δ) with the Euclidean metric. All translations

xµ 7→ xµ + aµ in some direction a = (aµ) are isometries, and so are rotations.

The isometry group {translations, rotations, and their combinations} is called

the Euclidean group or Galilean group and denoted by En.

• (M, g) = the (d+1)-dimensional Minkowski space(time) (R1,d, η) with the Min-

kowski metric η. Again, spacetime translations xµ 7→ xµ + aµ are isometries,

additional isometries are (combinations of these and) space rotations and boosts.

The isometry group {translations, rotations, boosts, and their combinations}
is called the Poincaré group.

In typical laboratory scales, our spacetime is approximately flat (a Minkowski

space) so its approximate isometry group is the Poincaré group. That’s the reason

for special relativity and the requirement that physics in the laboratory be relativistic,

i.e. Poincaré invariant. More precisely, that requirement is necessary for experiments

which involve scales where relativistic effects become important. For lower scales,

time ”decouples” and we can make a further approximation where only the Euclidean

isometries of the spacelike directions are relevant. Recall also that symmetries such

as the time translations and space translations lead into conservation laws, like the

conservation of energy and momentum. As you can see, important physical principles

are a reflection of the isometries of the spacetime.
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5.12 Killing Vector Fields

Let us now consider the limit of ”small” isometries, i.e. infinitesimal displacements

x = p 7→ f(p) = y ≈ x + εX. Here ε is an infinitesimal parameter and X is a vector

field indicating the direction of the infinitesimal displacement. If the above map is

an isometry, the vector field X is called a Killing vector field. Since the infitesimal

displacement is an isometry, eqn. (20) must be satisfied and it now takes the form

∂(xα + εXα)

∂xµ

∂(xβ + εXβ)

∂xν
gαβ(x + εX) = gµν(x) (21)

By Taylor expanding the left hand side, and requiring that the leading infinitesimal

term of order ε vanishes (there’s no ε-dependence on the right hand side), we obtain

the equation

Xξ∂ξgµν + ∂µX
αgαν + ∂νX

βgµβ = 0 . (22)

We can recognize the left hand side as a Lie derivative, so (22) can be rewritten as

LXgµν = 0 .

Expressing LXgµν with the help of the covariant derivative,

LXgµν = Xλ

=0︷ ︸︸ ︷
∇λgµν +(∇µX

λ)gλν + (∇νX
λ)gµλ = 0.

(∇λgµν = 0) for a metric connection). Thus a Killing vector field satisfies

∇µXν +∇νXµ = 0 Killing equation.

Let X and Y be two Killing vector fields. We can easily verify that

a) all linear combinations aX + bY with a, b ∈ R are also Killing vector fields

b) the Lie bracket [X,Y ] is a Killing vector field

It then follows that the Killing vector fields form an algebra, the Lie algebra of the

isometry group. (The isometry group is usually a Lie group.)

Now let xµ(t) be a geodesic, its tangent vector Uµ = dxµ

dt
, and let V µ be a Killing

vector. Then,

(U ν∇ν)(U
µVµ) = UµU ν∇νVµ︸ ︷︷ ︸

= 1
2
UµUν(∇µVν+∇νVµ)

+Vµ U ν∇νU
µ

︸ ︷︷ ︸
=0 (geodesic)

= 0.

Thus UµVµ = U · V is a constant on a geodesic.

An m-dimensional manifold M can have at most 1
2
m(m + 1) linearly independent

Killing vector fields. Manifolds with the maximum number of Killing vector fields are
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called maximally symmetric. E.g. Rm is maximally symmetric (gµν = δµν ⇒ Γ =

0). The Killing equation ∂µVν + ∂νVµ = 0 has solutions:

V µ
(i) = δµ

i (m of these)

Vµ = aµνx
ν with aµν = −aνµ︸ ︷︷ ︸

1
2
m(m−1) components

= constant 6= 0 (23)

Thus in total we have m + 1
2
m(m− 1) = 1

2
m(m + 1). Ok.
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