
Run-Length Compressed Indexes Are Superior

for Highly Repetitive Sequence Collections

Jouni Sirén1⋆, Niko Välimäki1⋆⋆, Veli Mäkinen1⋆⋆, and Gonzalo Navarro2⋆ ⋆ ⋆

1 Dept. of Computer Science, Univ. of Helsinki, Finland.
{jltsiren,nvalimak,vmakinen}@cs.helsinki.fi

2 Dept. of Computer Science, Univ. of Chile. gnavarro@dcc.uchile.cl

Abstract. A repetitive sequence collection is one where portions of a
base sequence of length n are repeated many times with small variations,
forming a collection of total length N . Examples of such collections are
version control data and genome sequences of individuals, where the dif-
ferences can be expressed by lists of basic edit operations. This paper
is devoted to studying ways to store massive sets of highly repetitive
sequence collections in space-efficient manner so that retrieval of the
content as well as queries on the content of the sequences can be pro-
vided time-efficiently. We show that the state-of-the-art entropy-bound
full-text self-indexes do not yet provide satisfactory space bounds for
this specific task. We engineer some new structures that use run-length
encoding and give empirical evidence that these structures are superior
to the current structures.

1 Introduction

Self-indexing [9, 5, 24, 20] is a new algorithmic approach to storing and retrieving
sequential data. The idea is to represent the text (a.k.a. sequence or string)
compressed so that random access to the content of the text is maintained, and
pattern retrieval queries on the content of the text are supported as well.

The self-indexing approach becomes especially interesting when applied to
collections of texts. A special case of a text collection is one which contains several
versions of one or more base sequences. Such collections are not uncommon. For
example, a version control system needs to store several versions of the same file
with only small edit differences between the consecutive entries. If the entries
are stored independently of each others, the version control system will end up
spending unnecessarily large amounts of memory. If the system stores only the
edits, queries on the content of one specific version becomes non-trivial.

An analogy to the storage and retrieval of version control data is soon becom-
ing reality in the field of molecular biology. Once the DNA sequencing technolo-
gies become faster and more cost-effective, it may be that in the near future the

⋆ Funded by the Research Foundation of the University of Helsinki.
⋆⋆ Funded by the Academy of Finland under grant 119815.

⋆ ⋆ ⋆ Partially funded by Millennium Institute for Cell Dynamics and Biotechnology,
Grant ICM P05-001-F, Mideplan, Chile.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14899987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sequencing of individual genomes becomes a feasible task [3, 12, 21]. With such
data in hand, many fundamental issues such as storing and analyzing thousands
of individual genomes become a top concern. For the analysis of such collections
of biological sequences, one would need to use some variant of a generalized suffix
tree [11] as that provides a variety of algorithmic tools to do analysis in linear or
near-linear time. The memory requirement of such solution is unimaginable with
current random access memories and also challenging in permanent storage.

Self-indexes should, in principle, cope well with the two applications above
as both data types contain high amounts of repetitive structure. In particular,
as the main building blocks of compressed suffix trees [25, 23, 22, 7] they enable
compressing the collections to close to their high-order entropy and enabling
flexible analysis tasks to be executed. However, there is a fundamental problem
with the fact that the high-order entropies are defined by the frequencies of
symbols in their fixed-length contexts. These contexts do not change at all when
more identical sequences are added to the collection. Hence, these self-indexes
are unable of exploiting the fact that the texts in the collection are highly similar.

In this paper, we propose new self-indexes based on run-length compres-
sion, that are suitable for storing highly repetitive collections of texts. We im-
plemented the new structures and compared them experimentally to existing
structures. The experiments show that our new structures achieve superior com-
pression both on DNA collections and on version control data. The superiority
can be explained in theory as well; the theoretical analysis together with related
extended results (see Sect. 7) is part of subsequent work [16].

The paper is structured as follows. Section 2 introduces the basic concepts
and goes through the related literature. Sections 3, 4, and 5 derive the new run-
length compressed indexes. Section 6 gives the experimental results and Sect. 7
discusses the subsequent work.

2 Basic Concepts

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (a.k.a. character or
letter). Each symbol is an element of a alphabet Σ = {1, 2, . . . , σ}. A substring
of S is written Si,j = sisi+1 . . . sj . A prefix of S is a substring of the form S1,j ,
and a suffix is a substring of the form Si,n. If i > j then Si,j = ε, the empty
string of length |ε| = 0. A text string T = T1,n is a special string with tn = $.
The lexicographical order “<” among strings is defined in the obvious way.

We assume the reader is familiar with the empirical k-th order entropy Hk(T)
for which holds 0 ≤ Hk(T) ≤ Hk−1(T) ≤ · · · ≤ H0(T) ≤ log σ [18].

The compressors to be discussed are derivatives of the Burrows-Wheeler
transform (BWT) [2]. The transform produces a permutation of T , denoted
by T bwt, as follows: (i) Build suffix array [17] SA[1, n] of T , that is an array of
pointers to all the suffixes of T in the lexicographic order; (ii) The transformed
text is T bwt = L, where L[i] = T [SA[i]− 1], taking T [0] = T [n].

The BWT is reversible, that is, given T bwt = L we can obtain T as follows:
(a) Compute the array C[1, σ] storing in C[c] the number of occurrences of

characters {$, 1, . . . , c− 1} in the text T ; (b) Define the LF mapping as follows:
LF (i) = C[L[i]] + rankL[i](L, i), where rankc(L, i) is the number of occurrences
of character c in the prefix L[1, i]; (c) Reconstruct T backwards as follows: set
s = 1, for each n− 1, . . . , 1 do ti ← L[s] and s← LF [s]. Finally, append the end
marker tn ← $. We study the following problem.

Definition 1. Given a collection C of r sequences T k ∈ C such that |T 1| = n and
∑r

k=1 |T
k| = N , where T 2, T 3, . . . , T r contain overall s mutations (i.e., symbol

substitutions) from the base sequence T 1, the repetitive collection indexing prob-
lem is to store C in as small space as possible such that the following operations
are supported as efficiently as possible: count(P) (How many times P appears
as a substring of the texts in C?); locate(P) (List the occurrence positions of
P in C); and display(k, i, j) (Return T k

i,j).

The above is an extension of the well-known basic indexing problem, where
the collection has only one sequence T . We call a data structure a self-index if
it does not need T to solve the three queries above.

A comprehensive solution to the basic indexing problem uses the suffix array
SA[1, n]. Two binary searches are enough to find the interval SA[sp, ep] such that
count and locate are immediately solved [17]. The solution is not as space-
efficient as possible, since array SA requires n logn bits, and the solution is not
yet a self-index, since T is needed.

The FM-index [5] is a self-index based on the BWT. It solves counting queries
by finding the interval SA[sp, ep] that contains the occurrences of pattern P . The
FM-index uses the array C and function rankc(L, i) in the so-called backward
search algorithm, calling function rankc(L, i) O(m) times. The two other basic
indexing problem queries are solved e.g. using sampling of SA and its inverse
SA

−1, and LF -mapping to derive the unsampled values from the sampled ones.
Many variants of the FM-index have been derived that differ mainly in the way
the rankc(L, i)-queries are solved [20]. For example, on small alphabet sizes, one
can achieve nHk(1 + o(1)) space with constant time support for rankc(L, i) [6].

Now, the (repetitive) collection indexing problem can be solved using the
normal self-index for the concatenation T 1#T 2# · · ·T r$, where # 6∈ Σ is a spe-
cial symbol. However, the space requirement achieved even with a high-entropy
compressed index is not attractive for the case of repetitive collections. For ex-
ample, the solution by Ferragina et al. [6] requires NHk(C) + o(N log σ) bits.
Notice that even with s = 0, Hk(C) ≈ Hk(T 1), and hence the space is about r
times more than what the same solution uses for the basic indexing problem.

In this paper, we derive solutions whose space requirements depend on the
number of runs in the Burrows-Wheeler transform. We will introduce some nota-
tions to talk about runs. A self-repetition is a maximal interval SA[i, i+l] of suffix
array SA having a target interval SA[j, j+l] such that SA[j+r] = SA[i+r]+1 for
all 0 ≤ r ≤ l. Let Ψ(i) = SA

−1[SA[i]+1] [9, 24]. The intervals of Ψ corresponding
to a self-repetition in the suffix array are called runs. We have Ψ(i+1) = Ψ(i)+1
when both Ψ(i) and Ψ(i + 1) are contained in the same run.

Let RΨ (T) be the number of runs in Ψ of text T and R(T) = Rbwt(T) the
number of equal letter runs in Tbwt. Both are tightly connected, RΨ and Rbwt,

namely RΨ ≤ Rbwt ≤ RΨ + σ [14], allowing one to use them interchangeably
under most circumstances. We will denote both with R when clear from context.

Now, it is easy to see that quantities Rbwt(T) and Rbwt(C) are the same
when s = 0. Mutations make Rbwt(C) grow. It is possible to derive expected
case bounds on how these terms are related; these analyses are omitted here.
Instead, we introduce structures whose space depends on Rbwt(C) and study
empirically the growth of Rbwt(C) on varying s. We limit our attention to self-
indexes providing query count(P).

3 RLCSA: Run-Length Compressed Suffix Array

The Run-Length Compressed Suffix Array is based on the Compressed Suffix
Array by Mäkinen, Navarro and Sadakane [15]. We use run-length encoding
of the differences Ψ(i) − Ψ(i − 1) to store the array. Absolute Ψ(i) values are
sampled at regular intervals of the compressed array. The resulting structure
supports counting queries with backward searching.

Differential encoding of Ψ transforms a run Ψ(i)Ψ(i + 1) · · ·Ψ(i + l) into
Ψ(i)− Ψ(i− 1) followed by l 1s, where Ψ(i)− Ψ(i− 1) > 1. We say that the run
is trivial if l = 0. If we use run-length encoding on the 1s, we encode the trivial
runs simply as Ψ(i) − Ψ(i − 1). A nontrivial run, instead, is encoded as three
numbers, Ψ(i) − Ψ(i − 1), 1, l. That is, each time we encode a difference equal
to 1, the length of the run of 1s follows. This way, run-length compression pays
nothing for trivial runs, only for nontrivial runs where it has a potential benefit.

Let N be the total size of the collection and R′ the number of nontrivial runs.
The sum of all the differences Ψ(i)− Ψ(i− 1) is at most σN [15], and the total
length of the runs of 1s is N − R. Hence by using Elias delta coding to encode
the integers, we need at most

|Ψ | ≤

(

R log
σN

R
+ R′

(

1 + log
N −R

R′

))

(1 + o(1))

bits for the array Ψ . By using sampling step of B bits, we need O((|Ψ |
B +σ) log N)

bits for the sampled Ψ(i) values, effectively making the total size of RLCSA
|Ψ |(1 + ε) for any ε > 0.

To retrieve Ψ(i), we first binary search the samples and then sum up the
differences in the corresponding part of the Ψ array until we reach position i.

This gives us count(P) queries in O(|P |(log |Ψ |
B + B)) time by using bacward

searching [15].

4 RLWT: Run-Length Encoded Wavelet Tree

Next we will describe a new data structure that we call Run-Length encoded
Wavelet Tree. We exploit well-known bit-vector operations: For a bit vector B
of length u, rankb(B, i) gives the number of b-bits in B[1, i] for all 1 ≤ i ≤ u

and b ∈ {0, 1}. The inverse function selectb(B, x) gives the position of the x’th
b-bit in the bit vector B.

Wavelet tree [8] is a binary tree structure whose leaves represent the symbols
in the alphabet. The root is associated with the sequence T = T1,N . In a balanced
wavelet tree, the left (right) child of the root is a wavelet tree of the sequence T<

(T≥) obtained by concatenating all positions i having ti < σ/2 (ti ≥ σ/2). This
subdivision is represented by a bit vector of length n that marks which positions
go to the left subtree (by 0) and which go right (by 1). Recursion is continued
until the concatenated sequence contains a repeat of one symbol. One can reveal
ti, compute rankc(T, i), and selectc(T, j) with O(log σ) rank/select queries on
the bit-vectors on the path to the leaf (or back) containing c [8].

The space required by a balanced wavelet tree depends on how we encode
the bit vectors. Let R be the number of runs in a text T1,N . Let Ball be the
level-wise concatenation of all the bit vectors in the balanced wavelet tree for
the sequence T . In the worst case, each run in T equals one 0/1-bit run on each
of the log σ levels of the wavelet tree, so that the upper-bound for the number
of 0/1-bit runs in Ball is R log σ (the best case is 1 · log σ). Let b ≤ ⌈ 12R log σ⌉
be the number of 1-bit runs in Ball. The RLWT data structure encodes Ball

into two separate bit vectors B1 and Brl such that the number of 1-bits in both
bit vectors is exactly b: bit vector B1 marks all the starting positions of 1-bit
runs in Ball, and bit vector Brl encodes the run-lengths of these runs in unary
coding. More precisely, B1[i] = 1 only if Ball[i] = 1 and Ball[i − 1] = 0, for all
1 < i ≤ N log σ, and B1[1] = 1 if Ball[1] = 1. Unary code for a bit run of length
j contains j − 1 zero bits concatenated with one 1-bit. The length of Brl is the
sum of the lengths of 1-bit runs in Ball, which is always at most N log σ bits.

Query rank1(B
all, i) can be solved using only the bit vectors B1 and Brl by

calculating the number of 1-bits in two closed intervals [0, j− 1] and [j, i], where
j is the starting position of the 1-bit run that precedes position i in Ball. For
the first interval, let r be the number of 1-bit runs in Ball that start before or
at the position i, i.e. r = rank1(B

1, i). From the definition of Brl follows that
rank1(B

all, j − 1) equals select1(B
rl, r − 1). Now it remains to calculate the

number of 1-bits in the closed interval [j, i] of the bit vector Ball: Let k be the
length of the rth run, that is to say k← select1(B

rl, r)− rank1(B
all, j−1). The

number of 1-bits in the closed interval is

rank1(B
all, i)− rank1(B

all, j − 1) =

{

k if i− j ≥ k,
i− j + 1 otherwise.

Finally, the answer to the original rank1(B
all, i) query is just the sum of the

above values rank1(B
all, j − 1) and rank1(B

all, i)− rank1(B
all, j − 1).

Gupta et al. [10] have shown that a binary searchable dictionary representa-
tion (BSD) of a bit-vector B of u bits containing b 1-bits, requires |gap(B)| +
O(|gap(B)|/ log b) = |gap(B)|(1 + o(1)) bits of space and supports rank queries
in tAT = AT (u, b) time, where AT (u, b) = o((log log u)2), and and select in
O(log log b) time. In the worst case, length of the gap encoded sequence |gap(B)|
is b log(u/b) + O(b log log(u/b)) bits.

For the bit vectors B1 and Brl, we have strict upper-bounds of u ≤ N log σ
and b ≤ ⌈ 12R log σ⌉. Using the BSD, the bit vectors can be represented in at

most R log σ log 2N
R (1 + o(1)) + O

(

R log σ log log 2N
R

)

bits. All the wavelet tree
queries can be supported without storing the bit vector Ball itself.

Using the RLWT structure with backward searching [5], we can count the
number of occurrences of a pattern of length m in O(m log(σtAT)) time. Table
C adds σ log N bits to the space requirement.

5 RLFM+: Improved Run-Length FM-index

The RLWT structure can be improved in the case the input text is T bwt: The
Run-Length FM-Index (RLFM) of [14] uses a reduction such that the equal
letter runs of T bwt are marked into two bit-vectors, and the sequence of run
heads of length R is encoded using a normal wavelet tree. We can represent
the two bit-vectors using BSD, giving immediately the following result: The
RLFM data structure for the sequence T bwt takes (R log σ+2R log N

R)(1+o(1))+

O
(

R log log N
R

)

+σ log N bits of space.The structure supports count(P) in time
O(|P |(log(σ) + tAT)).

6 Experimental Results

We implemented the three proposed structures RLCSA, RLWT, and RLFM+,
each supporting count()-queries. Standard strategies to support display() and
locate() are trivial to add. (Almost all space/time tradeoffs are possible for
those queries, so the base structure for supporting count() is the crucial one.)

For comparison, we selected several well-engineered implementations of self-
indexes from the Pizza&Chili site3. Unless otherwise noted, we used no extra
space for display() and locate(), and left the default options for the rest. We
also compared our indexes to several compressors and a version control system.

We performed experiments on two data sets. The synthetic DNA sequence
collections were based on the DNA sequences from Pizza&Chili. We took a 1,
4 or 16 MB prefix and repeated it 25, 50 or 100 times. Each character in the
repetitions was individually mutated into another character in {A, C, G, T} with
ten different probabilities ranging from 0 to 0.05. This was intended to simulate
the case of one base sequence and r − 1 mutated sequences.

Our other data set is based on the source code for portable versions of
OpenSSH4. We used a 4.44 MB tar archive containing the source code for ver-
sion 4.7p1, as well as on another 176.55 MB archive containing the source code
for all 75 versions up to version 4.7p1. The latter contained multiple copies of
the same files as well as many highly similar files, making it highly compressible.

The experiments were performed on a 3 GHz Intel Pentium 4 Northwood
machine with 3 GB RAM running Fedora Core 7 based Linux.

3 http://pizzachili.dcc.uchile.cl/ or http://pizzachili.di.unipi.it/.
4 http://www.openssh.com/

6.1 Implementations and Parameters

The implementations of Succinct Suffix Array (SSA, version 2) [14, 6], Run-
Length FM-index (RLFM) [14], Alphabet-Friendly FM-index (AFFM, version
2) [6] were taken from the Pizza&Chili site. All of them use a Huffman-shaped
wavelet tree to achieve compression. SSA achieves zero-order compression by
building the wavelet tree directly on the BWT, and is the fastest. RLFM builds
it on the run heads of the BWT, and thus its space is related to the number of
runs in the collection, yet the two extra bit-vectors it uses are not compressed.
AFFM achieves high-order compression, NHk + o(N log σ) bits, by partitioning
the BWT into suitable chunks and building a wavelet tree per chunk. Its space
is not related to the runs in the BWT.

Sadakane’s Compressed Suffix Array (CSA) [24] implementation was also
taken from Pizza&Chili. It achieves high-order compression related to the runs
in Ψ , yet also includes less compressed bit vectors. We used sample rates 128
(default; CSA-128) and 1024 (CSA-1024 or CSA) for the Ψ values. The total
size of the samples for a 400 MB collection is 3.1 MB for CSA-1024 and 25 MB
for CSA-128. Suffix array sample rate was set to 65536 to make the size of these
unused samples negligible (not to confuse with the sampling to access Ψ).

Also included in the comparison was a self-index based on Lempel-Ziv parsing
(LZ-index, Pizza&Chili version 4) [1]. We selected 1/ǫ = 15 as a reasonable
space/time tradeoff and subtracted the space (41 MB for a 400 MB collection)
used for display() and locate() queries, for fairness with the other structures
(although the implementation does not let one discard it).

Our indexes RLCSA, RLWT, and RLFM+ can be seen as versions of CSA,
SSA, and RLFM, respectively, enhanced to profit from highly repetitive collec-
tions. The implementation of RLCSA is optimized for secondary memory. Hence
we have used 32 kilobyte sampling step for Ψ (RLCSA-32k or RLCSA) in addi-
tion to the more reasonable 128 bytes (RLCSA-128). In practice, RLCSA-128 is
at most 20% larger than RLCSA-32k. The difference can be reduced by changing
the size of the samples from 24 bytes to 3⌈log N⌉ bits per sample. In RLWT and
RLFM+, we used simpler encoding for the bit vectors than the original BSD.
The implemented structure solves rank in O(log b) time.

In addition to the existing self-indexes, we compared our new indexes to
several plain compressors. The well-known gzip and bzip2 compressors were
used with parameter -9 to achieve maximum compression. Due to their small
block sizes, they cannot profit from the large-scale repetitiveness in our data
sets. We have also used the highly efficient LZ77-based compressor p7zip5 with
options -mx=9 -md=30 to see how much we pay for the retrieval functionality.
With a window of length up to 1 GB, p7zip can compress texts with long repeats
much better than standard Lempel-Ziv based compressors.

Finally we have used the Subversion (SVN)6 version control system for the
OpenSSH source code data set. The source codes were inserted into a reposi-

5 http://p7zip.sourceforge.net/
6 http://subversion.tigris.org/

0.00 0.01 0.02 0.03 0.04 0.05

0
50

10
0

15
0

20
0

Mutation rate

R
un

s
(M

)

25x1 MB
25x4 MB
25x16 MB
50x1 MB
100x1 MB

0.00 0.01 0.02 0.03 0.04 0.05

6
7

8
9

10
11

Mutation rate

R
un

s

Fig. 1. The number of runs in Ψ (left) and the average number of new runs per mutation
(right) on repeated DNA sequences.

0.00 0.01 0.02 0.03 0.04 0.05

0
50

10
0

15
0

20
0

Mutation rate

M
B

25x1 MB
25x4 MB
25x16 MB
50x1 MB
100x1 MB

0.00 0.01 0.02 0.03 0.04 0.05

0
10

20
30

40

Mutation rate

B
its
p7zip
RLCSA
RLWT
RLFM+

Fig. 2. The size of RLCSA on repeated DNA sequences (left) and the average number
of bits required to encode a run on 25x16 MB DNA (right).

tory using FSFS file system in a chronological order one version at a time. We
measured the sizes of subdirectory db/ of the repository, using utility du.

6.2 Results

Fig. 1 shows the number of runs in Ψ of repeated DNA sequences. The number of
runs grows somewhat sublinearly in the number of mutations. New runs are cre-
ated when mutations move suffixes to new positions in the suffix array. However,
as the mutations accumulate, it becomes more likely that a similar mutation has
already happened before, reducing the number of new runs created.

0.00 0.01 0.02 0.03 0.04 0.05

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Mutation rate

M
B

CSA
LZI
RLFM
SSA

AFFM
RLCSA
RLWT
RLFM+

Fig. 3. A comparison of our indexes with existing self-indexes. The peak of LZI at
0.003 is an artifact of the implementation.

Fig. 2 shows the sensitivity of the sizes of our new self-indexes to the number
of runs in the collection. RLCSA is clearly smaller than the two other indexes.
It is interesting to see that with high mutation rates, p7zip requires only about
1.2 bits per run, suggesting some connection between the number of runs in Ψ
and the space requirements of Lempel-Ziv compression (see Sect. 7).

We select the 25 times repeated 16 MB DNA prefix for comparisons between
new and existing self-indexes. As Fig. 3 shows, our indexes clearly outperform the
existing self-indexes when the number of mutations is small. In particular, it can
be seen that our indexes are the most sensitive to high repetitiveness, followed by
CSA and RLFM, and then LZ-index. SSA and AFFM are completely insensitive.

As predicted by the theoretical space bounds, RLCSA outperforms RLWT.
Surprisingly, RLWT outperforms RLFM+. This is explained by the fact that
RLFM+ always uses two bit-vectors with R bits set, and a separate wavelet
tree taking close to R log σ bits (or slightly less in practice due to the Huffman
shape). RLWT instead uses a wavelet tree formed by log σ levels of bit vectors
each with at most R bits set. This worst case does not happen in practice. On

random text the expected number of bits set is σ/2
σ−1R log σ, and this decreases on

non-random text due to the BWT effect. For example on DNA (log σ = 2) there
are only 1.25R bits set in RLWT. Assuming a δ-encoding of the run lengths, we
get a pretty good approximation of 14.34 bits for RLWT, and 18.58 for RLFM+.

original gzip bzip2 p7zip SVN CSA LZI RLFM SSA AFFM RLCSA RLWT RLFM+

Version 4.7p1
All 75 versions

M
B

0
50

10
0

15
0

20
0

4.
44

17
6.

55

0.
94

41
.1

6

0.
76

32
.2

8

0.
65

1.
97

1.
55 10

.3
4

1.
39

26
.7

8

6.
31

14
7.

12

2.
41

62
.8

6

3.
27

12
8.

06

3.
32

86
.7

8

1.
11 5.
32

2.
09 7.
04

2.
47 9.

59

Fig. 4. Compression results for OpenSSH sources.

Table 1. Time for counting on the different indexes. We remind that the LZ-index is
not designed for counting.

Structure Time (µs) Size (MB)

CSA-128 103.0 112.29
CSA-1024 347.0 90.41
LZ-index 198596.8 281.92
RLFM 29.5 156.50
SSA 13.0 116.37
AFFM 19.4 124.15

Structure Time (µs) Size (MB)

RLCSA-128 72.7 77.54
RLCSA-32k 11130.0 65.52
RLWT 1050.0 89.30
RLFM+ 189.7 124.48

The size difference between RLCSA and RLFM+ is also surprising, given the
similar high-order terms in the space bounds. This is partially explained by the
ratio of non-trivial runs to total runs R′/R decreasing from 0.80 at mutation rate
0.001 to 0.37 at 0.05. Additionally, the size bound for RLFM+ has a significant
low-order term. Also note the size difference of the similar CSA and RLFM.

Next we compare our indexes with existing self-indexes as well as plain com-
pressors on OpenSSH sources. As seen in Fig. 4, our indexes clearly outper-
form the existing self-indexes. Again RLWT outperforms RLFM+ even with
this larger alphabet size, indicating that the average RLWT space requirement
is better than the worst case (see also [4] for a more rigorous analysis of runs in
wavelet tree). It is interesting to note that despite the search functionality, our
indexes remain smaller than the SVN repository.

The increased space efficiency of our indexes has been paid in time efficiency.
To test this, we extract 1000 random substrings of length 10 from the 16 MB
DNA prefix. We then repeat the prefix 25 times with mutation rate 0.01 and
measure counting query times. Table 1 gives average query times and structure
sizes, showing the competitiveness of RLCSA-128.

7 Discussion

In this study, we have mainly considered self-indexes based on the Burrows-
Wheeler framework. There is also a family of (self-)indexes which is based on
the Lempel-Ziv parsing, see [13, 19, 20]. It is easy to see that the LZ77 parsing
of a repetitive text collection consists of at most of P (T 1)+ s+1 phrases, where
P (T 1) gives the number of phrases in T 1. It follows that LZ77 based indexes
require at most O(n log σ + s log n) bits of space. However, there does not exist
a LZ77 based self-index, as they require the uncompressed text to operate. All
the Lempel-Ziv self-indexes (like the one experimented here) are based on the
LZ78 parsing, which does not guarantee equally good performance. Hence, a
promising future direction is to develop LZ77 based self-indexes.

Our experiments considered only point mutations on DNA, although there
are many other types of mutations, like insertions, deletions, translocations, and
reversals. The runs in the Burrows-Wheeler transform change only for those suf-
fixes whose lexicographic order is affected by a mutation. In all mutation types
(except in reversals7) the effect is identical to point mutations, so the com-
pression result should be similar. We emphasize that the proposed indexes are
completely universal, as they do not need to know what and where the mutations
are. This is also illustrated by the experiment on version control data, where the
changes are cumulative, and there is no base sequence, but rather a “founder
sequence”. The founder model also characterizes genome collections, but again
the index does not need to know the phylogeny to succeed in compression.

In subsequent (still theoretical) work [16], we have derived dynamic versions
of all the proposed self-indexes, where sequences can be deleted from and inserted
to the collection at any time. These indexes take basically the same space as the
static ones discussed here. We have also considered new structures for display
and locate, where the number of suffix array samples depend on s as well. One
can use both the static and the dynamic versions of these indexes as building
blocks of recent compressed suffix trees [23, 22, 7].

References

1. D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of
LZ-index. In Proc. 17th CPM, LNCS 4009, pages 319–330, 2006.

2. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation, 1994.

3. G. M. Church. Genomes for all. Scientific American, 294(1):47–54, 2006.

4. P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of wavelet trees.
In Proc. 33rd ICALP, LNCS 4051, pages 560–571, 2006.

5. P. Ferragina and G. Manzini. Indexing compressed texts. J. of the ACM, 52(4):552–
581, 2005.

6. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM TALG, 3(2):article 20, 2007.

7 Adding the reverse complement of the base sequence to the collection solves this.

7. J. Fischer, V. Mäkinen, and G. Navarro. An(other) entropy-bounded compressed
suffix tree. In Proc. 19th CPM, LNCS 5029, pages 152–165, 2008.

8. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th SODA, pages 841–850, 2003.

9. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. on Computing, 35(2):378–407, 2006.

10. A. Gupta, W.-K. Hon, R. Shah, and J.S. Vitter. Compressed data structures:
Dictionaries and data-aware measures. In Proc. 16th DCC, pages 213–222, 2006.

11. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

12. N. Hall. Advanced sequencing technologies and their wider impact in microbiology.
The Journal of Experimental Biology, 209:1518–1525, 2007.

13. J. Kärkkäinen. Repetition-based text indexes. Technical Report A-1999-4, De-
partment of Computer Science, University of Helsinki, Finland, 1999.

14. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, 2005.

15. V. Mäkinen, G. Navarro, and K. Sadakane. Advantages of backward searching —
efficient secondary memory and distributed implementation of compressed suffix
arrays. In Proc. 15th ISAAC, LNCS 3341, pages 681–692, 2004.

16. V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Run-length compressed indexes
for repetitive sequence collections. Technical Report C-2008-42, Department of
Computer Science, University of Helsinki, Finland, 2008.

17. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. on Computing, 22(5):935–948, 1993.

18. G. Manzini. An analysis of the Burrows-Wheeler transform. J. of the ACM,
48(3):407–430, 2001.

19. G. Navarro. Indexing text using the ziv-lempel trie. J. of Discrete Algorithms
(JDA), 2(1):87–114, 2004.

20. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

21. E. Pennisi. Breakthrough of the year: Human genetic variation. Science, 21:1842–
1843, December 2007.

22. L. Russo, G. Navarro, and A. Oliveira. Dynamic fully-compressed suffix trees. In
Proc. 19th CPM, LNCS 5029, pages 191–203, 2008.

23. L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In Proc. 8th
LATIN, LNCS 4957, pages 362–373, 2008.

24. K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
of Algorithms, 48(2):294–313, 2003.

25. K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

