
FAST INDEX BASED FILTERS FOR MUSIC RETRIEVAL

ABSTRACT

We consider two content-based music retrieval problems
where the music is modeled as sets of points in the Eu-
clidean plane, formed by the (on-set time, pitch) pairs. We
introduce fast filtering methods based on indexing the un-
derlying database. The filters run in a sublinear time in the
length of the database, and they are lossless if a quadratic
space may be used. By taking into account the application,
the search space can be narrowed down, obtaining practi-
cally lossless filters using linear size index structures. For
the checking phase, which dominates the overall running
time, we exploit previously designed algorithms suitable for
local checking. In our experiments on a music database,
our best filter-based methods performed several orders of a
magnitude faster than previous solutions.

1 INTRODUCTION

In this paper we are interested in content-based music re-
trieval (CBMR) of symbolically encoded music. Such set-
ting enables searching for excerpts of music, orquery pat-
terns, that constitute only a subset of instruments appearing
in the full orchestration of a musical work. Instances of the
setting include the well-known query-by-humming applica-
tion, but our framework can also be used for more complex
applications where both the query pattern searched for and
the music database to be searched may be polyphonic.

The design of a suitable CBMR algorithm is always a
compromise between robustness and efficiency. Moreover,
as robustness means high precision and recall, the similar-
ity/distance measure used by the algorithm should not be
too permissive to detect false matches (giving low precision)
and not too restrictive to omit true matches (giving low re-
call). In this paper, we concentrate on a modeling of music
that we believe is robust in this sense, and at the same time
provides computationally feasible retrieval performance.

As symbolically encoded monophonic music can easily
be represented as a linear string, in literature several solu-
tions for monophonic CBMR problems are based on an ap-
propriate method from the string matching framework (see
e.g. [4, 6]). Polyphony, however, imposes a true challenge,
especially when no voicing information is available or the
occurrence is allowed to be distributed across the voices. In
some cases it may suffice to use some heuristic, as for an ex-
ample the SKYL INE algorithm [8], to achieve a monophonic

reduction out of the polyphonic work. This, however, does
not often provide musically meaningful results.

In order to be able to deal with polyphonic music,
geometric-based modeling has been suggested [1, 7, 9, 10].
Most of these provide also another useful feature, i.e., ex-
tra intervening elements in the musical work, such as grace
notes, that do not appear in the query pattern can be ig-
nored in the matching process. The downside is that the ge-
ometric online algorithms [2, 5, 9, 10] are not computation-
ally as efficient as their counterparts in the string matching
framework. Moreover, the known offline (indexing) meth-
ods [1, 7] compromise on crucial matters.

These downsides are not surprising: the methods look at
all the subsequences and the number of them is exponential
in the length of the database. Thus, a total index would also
require exponential space.

We deal with symbolically encoded, polyphonic music
for which we use the pitch-against-time representation of
note-on information, as suggested in [10] (see Figs. 1 and 2).
The musical works in a database are concatenated in a sin-
gle geometrically represented file, denoted byT . In a typical
case the query patternP to be searched for is often mono-
phonic and much shorter than the databaseT to be searched.
If P andT are readily not given in the lexicographic order,
the sets can be sorted in|P | log |P | and |T | log |T | times,
respectively. The problems of interest are the following:

(P1) Find translations ofP such that each point inP match
with a point inT .

(P2) Find translations ofP that give a partial match of the
points inP with the points inT .

Notice that the partial matches of interest in P2 need to
be defined properly, e.g. one can use a thresholdk to limit
the minimum size of partial matches of interest.

Ukkonen et al. [9] presented algorithms PI and PII solv-
ing problems P1 and P2 in worst case timesO(mn) and
O(mn log m), respectively, wherem is the length of the
query pattern andn the length of the database. Their al-
gorithms requireO(m) space. Noteworthy, the algorithm
solving P1 has anO(n) expected time complexity. Clif-
ford et al. [2] showed that problem P2 is 3SUM-hard, i.e.,
it is unlikely that an exact solution could run faster than
in quadratic timeO(mn), and give an approximation algo-
rithm, called MSM, for P2, that runs in timeO(n log n).

In this paper we introduce index-based filtering algo-
rithms for the problems presented above. Our contribution
is twofold. Firstly, our methods outperform its competitors;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14899986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. A musical excerpt.

in particular, the algorithms areoutput sensitive, i.e., the
running time depends more on the output than on the in-
put. This is achieved by exploiting a simple indexing struc-
ture that is not a total index. Secondly, we show how to
keep the index of a practical, linear size. The index enables
fast filtering; best results are obtained with filters running in
O(f(m) log n + s) time. The founds (s ≤ n) candidate
positions are subsequently checked using Ukkonen et al’s
PI and PII algorithms. Thus, executing checking take time
O(sm) andO(sm log m), in the worst case, respectively.

2 INDEX BASED FILTERS

We will denote byP + f a translation ofP by vectorf ,
i.e., vectorf is added to each component ofP separately:
P + f = (p1 + f)(p2 + f) · · · (pm + f). Problem P1 can
then be expressed as the search for a subsetI of T such
thatP + f = I for somef . Please note that a translation
corresponds to two musically distinct phenomena: a vertical
move corresponds to transposition while a horisontal move
corresponds to aligning the pattern time-wise (see Fig. 2).

The idea used in [9, 10] is to work on trans-set vectors.
Let p ∈ P be a point in the query pattern. A translation
vectorf is a trans-set vector, if there is a pointt ∈ T , such
thatp + f = t. Without loss of generality, let us assume all
the points both in the pattern and database to be unique. So,
the number of trans-set vectors isO(n2) in the worst case.

For the indexing purposes we consider translation vec-
tors that appear within the pattern and the database. We
call translation vectorf intra-pattern vector, if there are two
pointsp andp′, p, p′ ∈ P , such thatp + f = p′. Theintra-
database vector is defined in the obvious way. The number
of intra-pattern and intra-database vectors areO(m2) and
O(n2), respectively. A nice property of Ukkonen et al’s PI
and PII algorithms is that they are capable of starting the
matching process anywhere in the database. Should there
be a total ofs occurrences of the pattern within the database
and an oracle telling where they are, we could check the
occurrences inO(sm) andO(sm log m) time, in the worst
case, by executing locally PI and PII, respectively.

We will exploit this property by first running a filter

2 3 4

pitch

time

PT

Figure 2. PointsetT represents Fig. 1 in the geometric rep-
resentation. PointsetP corresponds to the first two and half
bars of the melody line with a delayed fifth point. The de-
picted vectors correspond to translationf that gives a partial
match ofP within T .

whose output is subsequently checked by PI or PII. If a
quadratic size for the index structure is allowed, we have a
lossless filter: all intra-database vectors are stored in a bal-
anced search tree in which translations can be retrieved in
O(log n) time; LetC(f) be the list of starting positionsi of
vectorf = tj−ti, for somej, in the database, then the list is
stored in the leaf of a binary search tree so that a search from
root with keyf leads this leaf. Let us denote by|C(f)| the
number of elements in the list. Since the points are readily
in the lexicographic order, building such a structure takesa
linear time in the number of elements to be stored.

However, for large databases, a quadratic space is infea-
sible. To avoid that, we store only a subset of the intra-
database vectors. In CBMR, an occurrence is a compact
subpart of the database typically not including too many in-
tervening elements. Now we make a full use of this locality
and that the points are readily sorted: for each pointi in the
database,1 ≤ i ≤ n − 1, we store intra-database vectors to
pointsi + 1, . . . , i + c + 1 (c = min(c, n − i − 1)), where
c is a constant, independent ofn andm. Constantc sets the
‘reach’ for the vectors. Thus, the index becomes of linear,
O(n) size. Naturally such filters are no more totally loss-
less, but by choosing a largec and by careful thinking in the
filtering algorithms, losses are truly minimal.

2.1 Solving P1

To solve the problem P1 we consider four straightforward
filters. The first one works inO(log n + s) time, wheres
is the number of candidate position found, but we consider
also twoO(m2 log n + s) time filters with a better filtration
power. The simplicity of these filters are due to the fact that
all the points need to find its counterpart within the database.
Thus, to find candidate occurrences, we may consider oc-
currences of any of the intra-pattern vectors. The filters are

represented in an increasing order in their complexities; the
order also reflects their filtration power.

In FILTER0 we choose a random intra-pattern vector
f = pj −pi. The candidate listC(f) to be checked contains
thus s = |C(f)| candidates. For FILTER1 and FILTER2
we calculate frequencies of the distinct intra-database vec-
tors. FILTER1 chooses the intra-pattern vectorf∗ = pj − pi

that occurs the least in the database, i.e., for which the
s = |C(f∗)| is smallest. In FILTER2, we consider the
two intra-pattern vectorsf∗ = pj − pi andf∗∗ = pl − pk

that have the least occurrences within the database, i.e., for
which s′ = |C(f∗)| + |C(f∗∗)| is smallest. Then the set
S = {i′′ | ti′ − ti′′ = pi − p1, i

′ ∈ C(f∗), tk′ − ti′′ =
pk − p1, k

′ ∈ C(f∗∗)} contains the candidates for starting
positions of the pattern, such that bothf∗ andf∗∗ are in-
cluded in each such occurrence.

For the running time, FILTER0 usesO(log n) time to lo-
cate the candidate list. FILTER1 and FILTER2 execute at
mostO(m2) additional inquiries each takingO(log n) time.
FILTER2 needs alsoO(s′) time for intersecting the two oc-
currence lists into the candidate listS; notice that values
i′′ can be scanned from left to right simultaneously to the
scanning of listsC(f∗) andC(f∗∗) from left to right, tak-
ing amortized constant time at each step of the intersection.

With all the filters we may consider only translations be-
tween consecutive points of the pattern. Thus, we would
somewhat compromise on the potential filtration power, but
the ‘reach constant’c above would get an intuitive interpre-
tation: it tells how many intervening points are allowed to be
in the database between any two points that match with con-
secutive pattern points. For long patterns, the search for the
intra-pattern vector that occurs the least inT may dominate
the running time. Hence, we have FILTER3 that is FILTER2
with a random set of intra-pattern vectors as the input.

2.2 Solving P2

The same preprocessing as above is used for solving P2, but
the search phase is modified in order to find partial matches.
We will concentrate on the case where a thresholdk is set
for the minimum size of a partial match. Since any pattern
point can be outside the partial match of interest, one should
in principle check the existence of all theO(m2) vectors
among the intra-database vectors, merge the candidate lists
into multisetS′ and accept any candidate positioni′′ into
setS that occurs at leastk times inS′, and run the checking
on each candidate position inS with algorithm PII. More
formally, the multisetS′ contains positioni′′ for each intra-
pattern vectorf = pj−pi such thati′ ∈ C(f) andpi−p1 =
ti′ − ti′′ . We call this basic lossless filter FILTER4. We
will also consider a lossy variant FILTER5, where for each
pattern pointp only one half of the intra-pattern vectors (the
least frequent ones) havingp as an endpoint is chosen.

The pigeon hole principle can be used to reduce the

amount of intra-pattern vectors to check: If the pattern is
split into(m− k + 1) distinct subsets, then at least one sub-
set must be present in any partial occurrence of the complete
pattern. Therefore, it is enough to run the filters derived for
P1 on each subset independently and then check the com-
plete set of candidates. The total amount of intra-subset vec-
tors is bound byO((m − k + 1)(m

m−k+1
)2) = O(m2

m−k+1
).

This isO(m) wheneverk is chosen as a fraction ofm. FIL -
TER0 and FILTER2 both select constant number of vectors
among each subset, so the total number of candidate lists
produced by each filter isO(m−k+1). Hence, this way the
filtration efficiency (number of candidates produced) can be
expected to depend linearly on the number of errorsm − k
allowed in the pattern. This is an improvement to the trivial
approach of checking allO(m2) intra-pattern vectors.

Notice that these pigeon hole filters are lossless if all the
intra-database vectors are stored. However, the approach
works only for relatively small error-levels, as each subset
needs to contain at least two points in order the filtering to
be possible. Let us focus on how to optimally use FILTER1
for the subsets in the partition, as FILTER0 and FILTER2 are
less relevant for this case. The splitting approach gives the
freedom to partition the pattern into subsets in an arbitrary
way. For optimal filtering efficiency, one should partition
the pattern so that the sum of least frequent intra-subset vec-
tors is minimized. This sub-problem can be solved by find-
ing the minimum weight maximum matching in the graph
whose nodes are the points ofP , edges are the intra-pattern
vectors, and edge weights are the frequencies of the intra-
pattern vectors in the database. In addition, a set of dummy
nodes are added each having an edge of weight zero to all
pattern points. These edges are present in any minimum
weight matching, so their amount can be chosen so that the
rest of the matched edges define them− k non-intersecting
intra-pattern vectors whose frequency sum is minimum.

We use anO(m3) time minimum weight maximum
matching algorithm to select them−k+1 intra-pattern vec-
tors in our filter. Some experiments were also done with an
O(m2) time greedy selection. We call this algorithm FIL -
TER6 in the experiments.

3 EXPERIMENTS

We set the new algorithms against the original Ukkonen et.
al.’s PI and PII [9]. We set the window length within the
database (the reach constantc) to 50, the window length
within the pattern in FILTERs 0–3 and 6 to 5, and in FILTERs
4–5 to 12. In FILTER 6, we experimented with different val-
ues ofk in range⌈m/2⌉ to ⌈ 15

16
m⌉. Overall, these settings

are a compromise between search time, index memory us-
age and search accuracy for difficult queries. Larger window
lengths may be required for good accuracy depending on the
level of polyphony and the type of expected queries.

We also compare with Clifford et. al.’s MSM [2] and

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 8 16 32 64 128 256 512 1024

T
im

e
(m

s)

Pattern size (notes)

(a) Effect of pattern size on P1 algorithms

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

8 16 32 64 128 256 512 1024

T
im

e
(m

s)

Database size (thousands of notes)

(b) Effect of database size on P1 algorithms

P1
P1/F0
P1/F1
P1/F2
P1/F3 (50 samples)
FG6
Index construction

Figure 3. Solving P1. Search time as function of pattern and databasesizes in the MUTOPIA collection of 1.9 million notes.
Database size experiments were done with a pattern size of 64notes. Note the log scales.

Fredriksson and Grabowski’s FG6 algorithm [3, Alg. 6.].
The latter solves a slightly different problem; the time infor-
mation is ignored, and the pitch values can differ byδ ≥ 0
after transposition. We setδ = 0 to make the setting as close
to ours as possible. We tested also other algorithms in [3]
but Alg. 6 was constantly fastest among them on our setting.

To measure running times we experimented both on the
length of the pattern and the database. Reported times are
median values of more than 20 trials using randomly picked
patterns. As substantial variations in the running times are
characteristic to the filtering methods, we have depicted this
phenomenon by using box-whiskers: The whisker below a
box represents the first quartile, while the second begins at
the lower edge and ends at the median; the borders of third
and fourth quartiles are given by the median, the upper edge
of the box and the upper whisker, respectively.

We also measured how robust the PII-based methods
(FILTERs 4-6) are against noise, and calculated a precision-
against-recall plot. Here we reported the mean value of a
100-trial experiment in which the set of occurrences found
by PII was considered as the ground truth. All the experi-
ments were carried out with the MUTOPIA database; at the
time it consisted of 1.9 million notes in 2270 MIDI files.

3.1 Experimenting on P1

In experimenting on the pattern size, the variations in the
running times of the PI-based filters are clearly depicted in
Fig. 3a. Out of the four filters, FILTER2 performed most
stably while FILTER0 had the greatest variation. The figure
shows also that all our filtering methods constantly outper-
form both the original PI and the FG6 algorithm. With pat-
tern sizes|P | . 400, FILTERs 1 and 2 are the fastest ones,
but after that FILTER3 starts to dominate the results.

The evident variation in our filters is caused by difficult
patterns that only contain relatively frequently appearing
vectors. In our experiments, FILTERs 1–3 had search times
of at most 2 ms. It is possible to generate patterns that have
much longer search times, especially if the database is very

monotonic or short windows are used. However, in practice
these filters are at least 10 times faster than PI and 200 times
faster than FG6 for every pattern of less than 1000 notes.

When experimenting on the size of the database as shown
in Fig. 3b, execution times of online algorithms PI and
FG6 increases linearly in the database size. Also FILTER0’s
search time increases at the same rate due to the poor filter-
ing efficiency. FILTERS 1–3 have much lower slope because
only few potential matches need to be verified after filtering
for more information on execution time allocation within
FILTER2). Fig. 3b also depicts the construction time of the
index structure for the filters. Remember that this costly op-
eration needs to be executed only once for any database.

3.2 Experimenting on P2

Fig. 4 shows the experimentally measured search times for
P2 filters, PII and MSM. When varying the size of the pat-
tern, our PII-based filters clearly outperformed MSM in
all practical cases (Fig. 4a): MSM becomes faster than
PII only when|P | > 400 and faster than FILTER4 when
|P | > 1000. In this experiment FILTER6 performs the best
until |P | & 250 after which FILTER5 starts to dominate.
However, a greedy version of FILTER6 outperforms both
FILTER5 and FILTER6 by an order of magnitude.

Results of the experiments on the length of the database
are rather similar (Fig. 4b), exceptions being that MSM is
constantly outperformed by the others and that FILTER6 per-
forms the best throughout the experiment. Again, the greedy
FILTER6 is the fastest: it is nearly 100 times faster than FIL -
TER6 and over million times faster than MSM.

3.2.1 Comparing whole musical works.

In [2], Clifford et al. carried out experiments for partial mu-
sic matching and concluded that their algorithm is faster
than PII when two whole documents are to be matched
against each other. Fig. 5 depicts results of our experi-
ment using their setting but including also FILTERs 4–6.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 8 16 32 64 128 256 512 1024

T
im

e
(m

s)

Pattern size (notes)

(a) Effect of pattern size on P2 algorithms

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

8 16 32 64 128 256 512 1024

T
im

e
(m

s)

Database size (thousands of notes)

(b) Effect of database size on P2 algorithms

P2
P2/F4
P2/F5
P2/F6 (k=m/2)
P2/F6 greedy (k=m*15/16)
MSM (FFT)
Index construction

Figure 4. Solving P2. Search times as function of pattern and database sizes. Database size in Fig. a was 1.9 million and
pattern size in Fig. b 64 notes.

In our experiment, MSM becomes faster than PII when
|P | = |T | & 600 and dominates FILTERs 4 and 5 when
the size of the matched documents exceeds 1000 and 5000
notes, respectively. Depending on the value ofk, MSM be-
comes faster than FILTER6 at document sizes larger than
1500–20,000 notes. However, in this specific task algo-
rithms would be expected to return matches that are rela-
tively poor if measured as a ratio between the matched notes
and pattern size. Solving the task by using FILTER6 with
k = m/16 would not give good results, but FILTER4, 5 and
FILTER6 with k = m/2 are comparable with MSM.

3.2.2 Precision and recall.

For experimenting on the robustness against noise we se-
lected a random pattern of length 100 from the database
and introduced mutations (substitutions) to it; the number
of mutations is given by the parametererror rate. Then we
retrieved all approximate occurrences of the pattern from the
database by using PII to form the ground truth for the exper-
iment. To keep the ground truth at a manageable size, we
used the parameterground truth similarity, gts, as a simi-
larity cutoff point for the retrieved matches. For example,
ground truth similarity value 0.1 defines that each item in
the ground truth must match with at least one tenth of the
pattern notes. In the end, we measured the precision of the
algorithms as the function of recall with different settings
of ground truth similarity and error rate. This was repeated
100 times with different randomly selected patterns and the
resulting graphs were averaged into one result.

Basic evaluation of the measurements is doable by com-
paring areas: the larger the area below a curve the better
the accuracy and robustness of the corresponding algorithm.
Both increasing error rate and lower ground truth similarity
values make the task harder: higher error rate makes the
original patterns, with possibly several occurrences, be less
pronounced in the retrieved result lists. When good matches
have been toned down like this, algorithms need to find more
difficult matches to score well. Also correct ordering of the

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 128 256 512 1024 2048 4096 8192 16384 32768

T
im

e
(m

s)

Song length (notes)

P2
P2/F4
P2/F5
P2/F6 (k=m/2)
P2/F6 greedy (k=m/16)
MSM (FFT)

Figure 5. Matching whole music works against each other.

results by decreasing similarity with the pattern is necessary.
We bound ground truth similarity to 0.10 and let the error

rate vary between 0, 0.5 and 0.70; this setting requires the
algorithms to find potentially very sparse matches. Fig. 6 de-
picts that, at low error rates, there is not much difference be-
tween the index filters, and MSM performs similarly. How-
ever, at error rate 0.75, only FILTER4 achieves good scores.
The results suggest that all the filters are well balanced when
comparing their robustness to execution speed: FILTERs 5
and 6 are fast but somewhat inaccurate, while FILTER 4 has
its place between them and PII.

4 CONCLUSIONS

We considered point pattern matching problems applicable
to CBMR and showed how they can be solved using index-
based filters. Given a point patternP of m points, the prob-
lems are to find complete and partial matches ofP within a
databaseT of n points. The presented filters are lossless if
O(n2) space is available for indexing. We also introduced
a more practical, linear size structure and sketched how the
filters based on this structure become virtually lossless.

After the preprocessing of the database, the proposed fil-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

P2
P2/F4

P2/F5
P2/F6

MSM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

P2
P2/F4

P2/F5
P2/F6

MSM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

P2
P2/F4

P2/F5
P2/F6

MSM

Figure 6. Precision-Recall at error rates 0, 0.5 and 0.75 (left to right), with gts = 0.1.

ters useO(f(m) log n + s) time to produces candidate po-
sitions that are consequently checked for real occurrences
with the existing checking algorithms. The filters vary on
the complexity off(m) and on the output sizes. Since the
filtering power of the proposed filters is hard to characterize
theoretically, we ran several experiments to study the prac-
tical performance on typical inputs.

The experiments showed that our filters perform much
faster than the existing algorithms on typical application
scenarios. Only when comparing large musical works in
their entirety, the MSM algorithm [2] is faster than our new
filters.

Since the guarantee of losslessness in the filters is only
valid on limited search settings (number of mismatches al-
lowed, constants limiting maximal reach, etc.), it was impor-
tant to study also the precision and recall. This comparison
was especially fruitful against MSM, that is an approxima-
tion algorithm, and can hence be considered as a lossy filter
as well. The experiments showed that our filters typically
performs at the same level that MSM in this respect.

As a future work, we plan to study the extensions of the
filters to approximate point pattern matching; in addition to
allowing partial matching, we could allow matching a point
to someǫ-distance from its target. Such setting gives a more
robust way to model the query-by-humming application.
Although it is straightforward to extend the filters to con-
sider the candidate lists of all intra-database vectors within
the givenǫ-threshold from any intra-pattern vector, the over-
all amount of candidate positions to check grows fast as the
threshold is loosen. Therefore, finding better strategies for
filtering in this scenario is an important future challenge.

5 REFERENCES

[1] M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz.
Proms: A web-based tool for searching in polyphonic
music. InProc. ISMIR’00, Plymouth, 2000.

[2] R. Clifford, M. Christodoulakis, T. Crawford, D. Mered-

ith, and G. Wiggins. A fast, randomised, maximal subset
matching algorithm for document-level music retrieval.
In Proc. ISMIR’06, pages 150–155, Victoria, 2006.

[3] K. Fredriksson and Sz. Grabowski. Efficient algorithms
for pattern matching with general gaps, character classes
and transposition invariance. InProc. SPIRE’2006,
pages 267–278, Berlin, 2006.

[4] A. Ghias, J. Logan, D. Chamberlin, and B. Smith. Query
by humming - musical information retrieval in an audio
database. InPROC. ACM Multimedia, pages 231–236,
San Francisco, 1995.

[5] A. Lubiw and L. Tanur. Pattern matching in polyphonic
music as a weighted geometric translation problem. In
Proc. ISMIR’04, pages 289–296, Barcelona, 2004.

[6] M. Mongeau and D. Sankoff. Comparison of musical se-
quences.Comp. and the Humanities, 24:161–175, 1990.

[7] R. Typke.Music Retrieval based on Melodic Similarity.
PhD thesis, Utrecht University, 2007.

[8] A. Uitdenbogerd and J. Zobel. Manipulation of music
for melody matching. InProc. ACM Multimedia, pages
235–240, Bristol, 1998.

[9] E. Ukkonen, K. Lemström, and V. Mäkinen. Geometric
Algorithms for Transposition Invariant Content-Based
Music Retrieval. InProc. ISMIR’03, pages 193–199,
Baltimore, 2003.

[10] G. Wiggins, K. Lemström, and D. Meredith.
SIA(M)ESE: An algorithm for transposition in-
variant, polyphonic content-based music retrieval. In
Proc. ISMIR’02, pages 283–284, Paris, 2002.

