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We study the algorithmic problem of coordinating transmissions
in a wireless network where radio interference constrains concur-
rent transmissions on wireless links. We focus on pairwise con-
flicts between the links; these can be described as a conflict graph.
Associated with the conflict graph are two fundamental network
coordination tasks: (a) finding a nonconflicting set of links with
the maximum total weight, and (b) finding a link schedule with the
minimum total length. Our work shows that two assumptions on the
geometric structure of conflict graphs suffice to achieve polynomial-
time constant-factor approximations: (i) bounded density of de-
vices, and (ii) bounded range of interference. We also show that
these assumptions are not sufficient to obtain a polynomial-time
approximation scheme (PTAS) for either coordination task. There
exists a PTAS if we make an additional assumption: (iii) bounded
range of radio transmissions.

Key words: geometric graphs, maximum-weight independent set, radio interfer-
ence, routing, scheduling.
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Figure 1
A wireless network. Wireless communication links are marked with arrows. Devices are marked
with boxes, τ denotes a transmitter and ρ denotes a receiver. For clarity, each device in this
illustration takes part in only one transmission.

1. INTRODUCTION

A fundamental challenge in wireless networking is the shared transmis-
sion medium, which in many cases prevents concurrent transmissions due to
radio interference. This brings forth the algorithmic problem of coordinating
the transmissions so that performance loss due to interference does not occur.
In this work, we investigate the polynomial-time approximability of network
coordination within the following framework.

Interference in Wireless Networks
A wireless network consists of devices which communicate with each

other by radio transmissions. We study unicast networks where each radio
transmission has one designated recipient, see Figure 1 for an illustration.

A radio transmission may interfere with other transmissions. We focus
on systems where the radio interference is dominated by the near-far effect:
radio reception from a distant transmitter may be blocked by other transmit-
ters which are much closer to the receiver.
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Figure 2
The near-far effect in a wireless network. Solid arrows point from an interfering transmitter to the
interfered receiver. For example, if the transmitter τ(d) is active, the device ρ(a) cannot receive
the transmission from τ(a). The signal power received from τ(a) is too low in comparison with
the interfering power received from τ(d).

Figure 2 illustrates transmitter–receiver pairs where the near-far effect
might occur in our example. In the illustration, the link from τ(a) to ρ(a)
and the link from τ(d) to ρ(d) cannot be active simultaneously: the transmit-
ter of the latter blocks the receiver of the former.

We focus on pairwise conflicts between the links. The pairwise conflicts
can be described as a conflict graph [1]. A conflict graph G = (V,E) is an
undirected graph where each vertex v ∈ V corresponds to a communication
link and an edge {u,v} ∈ E describes that the links u and v are mutually
conflicting. To clarify the difference between the conflict graph and the under-
lying communication network, we use the words device and link in the context
of the communication network and the words vertex and edge in the context
of the conflict graph. There is a one-to-one correspondence between the links
of the communication graph and the vertices of the conflict graph.

Figure 3 illustrates a conflict graph; the vertex a ∈V in the conflict graph
corresponds to the communication link from τ(a) to ρ(a) and the vertex d∈V
in the conflict graph corresponds to the communication link from τ(d) to ρ(d).
As these two links cannot transmit simultaneously, there is an edge {a,d} ∈ E
in the conflict graph.
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The conflict graph for the example in Figure 2. There is one vertex for each communication link
and one edge for each pair of conflicting links; vertices are marked with circles and edges are
marked with solid lines. Note that even though interference in Figure 2 was highly localised, such
locality is no longer immediately visible in the conflict graph. An independent set {b,c,d,g} is
highlighted; these communication links can be active simultaneously.

Algorithmic Problems and Earlier Work
Associated with a conflict graph are two network coordination tasks:

(1) Given some weights (such as priorities or utilities) on each vertex, find
an independent set of the maximum total weight; in other words, find a
nonconflicting set of links of the maximum total weight. See Figure 3
for an example.

(2) Given some data transmission needs on each link, find a link schedule
of the minimum length such that at each point in time, the set of active
links is nonconflicting, and each link is active for a time that suffices
to cover its data transmission needs. See Section 6 for a precise linear
programming formulation.

An approximation algorithm for maximum-weight independent set also
implies an approximation algorithm for the link scheduling problem in the
same class of graphs [2, 3]. Unfortunately, both problems are prohibitively
hard to approximate in general graphs [4, 5, 6]. Jain et al. [1] have put forth
the question of whether there is a family of conflict graphs which arises in
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realistic network deployments and which makes the problem of finding an
independent set easier.

Contribution
Our work shows that two assumptions on the structure of conflict graphs

suffice in order to achieve a polynomial-time constant-factor approximation
of maximum-weight independent set and link scheduling:

(i) Bounded density of the devices. Radios are points in a low-dimensional
space and they are not located in an arbitrarily dense manner.

(ii) Bounded range of interference. Conflicts are caused by the near-far
effect; if there is a conflict, the interfering transmitter is close to the
interfered receiver.

These assumptions can be physically justified: in addition to the obvi-
ous physical limits on transmitter density, the received signal power typically
decays in inverse proportion to more than the square of the distance from
the transmitter [7]. Thus, compared with the background noise, the received
power from a distant interfering transmitter is negligible.

Note that we do not need to assume that there has to be interference in
certain situations, say, between devices close to each other; indeed, such as-
sumptions are often not valid in practice [7, 8]. We can make measurements in
the deployed physical system to determine whether a pair of links is mutually
conflicting; there is no need to use a simplifying model of radio interference.

We also show that the assumptions (i) and (ii) alone are not sufficient in
order to achieve an arbitrarily small approximation ratio. Further assumptions
are required; we shall see that it suffices to assume a bounded range of radio
transmissions.

2. STATEMENT OF RESULTS

Let N be a constant which controls the relative density of the devices.

Definition 1. An N-local conflict graph is a tuple (G,τ,ρ) where G = (V,E)
is an undirected graph and τ,ρ are functions V → R2 such that

(i) the function v 7→ (τ(v),ρ(v)) is an injection, and no unit disk in R2

contains more than N points in τ(V )∪ρ(V )

(ii) for all {v,u} ∈ E it holds that d(τ(v),ρ(u)) < 1 or d(τ(u),ρ(v)) < 1
where d(·, ·) is the Euclidean distance.



6 COORDINATING CONCURRENT TRANSMISSIONS

We call τ(v) the transmitter and ρ(v) the receiver, the intuition being
that a pair (τ(v),ρ(v)) corresponds to a data transmission link. Note that
d(τ(v),ρ(v)) is unrestricted and that some receivers and transmitters may
coincide; however, the pair (τ(v),ρ(v)) must be unique for every vertex.

If we required τ(v) = ρ(v) for each v ∈V , we would obtain what we call
(2,N)-local graphs [9]; these are similar to civilised graphs [10, §8.5]. Thus,
N-local conflict graphs can be interpreted as a natural generalisation of the
families of local graphs and civilised graphs.

In Section 3, we derive some basic properties of N-local conflict graphs.
On one hand, we shall see that N-local conflict graphs is a large family of
graphs; in addition to (2,N)-local graphs, it contains, for example, all bipar-
tite graphs. On the other hand, we show that N-local conflict graphs are not
contained in families such as bounded-degree, bounded-density, bipartite, pla-
nar, or disk graphs — prior work on these widely studied families does not
directly answer our research questions.

In Section 4, we prove our main result; here MWIS refers to the problem
of finding a maximum-weight independent set:

Theorem 2. MWIS for N-local conflict graphs admits a polynomial-time
(5+ ε)-approximation algorithm for any constants ε > 0 and N.

While the time complexity of the algorithm depends on the parameter N,
we emphasise that the approximation ratio does not depend on N. This is
unlike families such as bounded-degree graphs where achievable approxima-
tion ratios typically depend on the parameters of the family [11]; for example,
MWIS in graphs of maximum degree ∆ can be approximated within a factor
of O(∆ log log∆/ log∆) [12].

In Section 5, we show that approximating beyond a certain constant factor
remains hard:

Theorem 3. MWIS for N-local conflict graphs admits no polynomial-time
approximation scheme (PTAS) for any N unless P = NP.

This is unlike families such as disk graphs; for example, MWIS in disk
graphs admits a PTAS [13].

In Section 6, we consider the problem of fractional covering by indepen-
dent sets in local conflict graphs. We obtain analogous approximability and
inapproximability results for the covering LP which captures the link schedul-
ing problem. In Section 7, we generalise from the link scheduling problem
to a joint scheduling and routing problem, and in Section 8, we generalise
beyond pairwise conflicts.
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In Section 9, we consider an additional assumption on the underlying
wireless network: bounded range of radio transmissions. With this assump-
tion, we are able to obtain a PTAS for both MWIS and link scheduling.
Furthermore, there exists a local, distributed approximation scheme for link
scheduling if the communication network is a geometric spanner.

3. REPRESENTABILITY

It is not immediate from Definition 1 which graphs admit representation
as a local conflict graph. The purpose of this section is to shed some light
on this question. We begin by showing that local conflict graphs are not
contained in families of graphs such as planar graphs, bounded-degree graphs,
or disk graphs.

A first observation is that the family of N-local conflict graphs is closed
under deletion of edges and vertices. Furthermore, an N1-local conflict graph
is an N2-local conflict graph for any N2 ≥ N1.

Theorem 4. Any bipartite graph can be represented as a 1-local conflict
graph.

Proof. Consider a bipartite graph G = (V,E). The set V can be partitioned
into

A = {a1,a2, . . . ,am},
B = {b1,b2, . . . ,bn}

for some m,n such that all edges are between A and B. Let τ(ai) = (3i,−3)
and ρ(ai) = (0,0) for all i; let τ(b j) = (0,0) and ρ(b j) = (3 j,3) for all j.

It follows that the maximum degree of a vertex in a 1-local conflict graph
can be as high as |V | − 1 (consider the complete bipartite graph K1,n), the
average degree and the minimum degree can be as high as |V |/2 (consider
Kn,n), and there are 1-local conflict graphs that are not planar and not disk
graphs (consider K3,3).

A local conflict graph need not be bipartite. To illustrate the rich sub-
structure that can occur in a local conflict graph, we show that a local conflict
graph may contain relatively large but not arbitrarily large cliques. First we
prove the positive result.

Theorem 5. A complete graph on N2 vertices can be represented as an
N-local conflict graph.
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Proof. Consider a complete graph with vertices

V = {vi, j | i, j ∈ {1,2, . . . ,N}}.

Let τ(vi, j) = (0, i/N) and ρ(vi, j) = (0, j/N) for all i and j.

Next we proceed to obtain the negative result.

Lemma 6. For every tournament (complete oriented graph) G = (V,A) on n
vertices, there are s∈V, t ∈V and X ⊆V with {s}×X ⊆ A, X×{t} ⊆ A, and
|X | ≥ (n−2)/6.

Proof. Let v,u ∈V , v 6= u. Let

Q = {x | (v,x) ∈ A,(x,u) ∈ A},
R = {x | (u,x) ∈ A,(x,v) ∈ A},
S = {x | (x,v) ∈ A,(x,u) ∈ A},
T = {x | (v,x) ∈ A,(u,x) ∈ A}.

If |Q| ≥ (n− 2)/6 or |R| ≥ (n− 2)/6, we are done. Otherwise, |S|+ |T | ≥
2(n+1)/3. If |S| ≥ (n+1)/3, the subgraph induced by S contains a vertex a
with outdegree at least (n−2)/6; let s = a, t = u, and let X ⊆ S consist of the
successors of a. The case |T | ≥ (n+1)/3 is analogous.

Theorem 7. A complete graph on 6N2 +8 vertices cannot be represented as
an N-local conflict graph.

Proof. To reach a contradiction, assume that there is a complete graph on
6N2 + 8 vertices that is an N-local conflict graph. We say that P(v,u) holds
if d(τ(v),ρ(u)) < 1. Orient the graph as follows: if P(v,u) and not P(u,v),
assign the direction (v,u) on {v,u} ∈ E; if P(u,v) and not P(v,u), assign the
opposite direction; otherwise both P(v,u) and P(u,v) hold, in which case
assign an arbitrary direction.

Choose s, t, and X as in Lemma 6; |X | ≥ N2 +1. Now, P(s,x) and P(x, t)
hold for all x ∈ X . A unit disk centred at τ(s) contains all points ρ(X). There
can be at most N distinct points; thus, there is a set X ′ ⊆ X and a point ρ ′ ∈R2

such that ρ(X ′) = {ρ ′} and |X ′| ≥ N +1.
A unit disk centred at ρ(t) contains all points τ(X ′). Again, there can

be at most N distinct points; thus, there are two distinct vertices v,u ∈ X ′

and a point τ ′ ∈ R2 with τ(v) = τ(u) = τ ′. This is a contradiction because
v 7→ (τ(v),ρ(v)) is an injection by Definition 1.
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It follows immediately that the family of N-local conflict graphs is not
closed under taking minors (form a bipartite graph by splitting each edge of
a large complete graph in two).

4. APPROXIMABILITY

In this section, we prove Theorem 2: we show that there is a polynomial-
time (5+ ε)-approximation algorithm for MWIS in N-local conflict graphs
for any constants ε > 0 and N. The parameters ε and N are fixed to some
constants throughout this section; the input of the algorithm consists of a
graph G = (V,E), points τ(v) and ρ(v) for each v ∈V , and a weight w(v) for
each v ∈V .

Generalisation of the Problem
We present the algorithm in a somewhat more general setting than re-

quired by the MWIS problem. We write C(v, I) for the contribution of the
vertex v ∈V in the proposed solution I ⊆V ; we shall shortly define what the
contribution means in the case of MWIS. Let

W (v, I) = w(v)C(v, I), for each I ⊆V,v ∈V,

W (A, I) = ∑
v∈A

W (v, I), for each A ⊆V.

The objective is to find a solution I ⊆V that maximises W (V, I), that is, max-
imises weighted contributions.

Next we define C(v, I) so that maximising weighted contributions is equiv-
alent to finding a maximum-weight independent set in G. In Section 8, we
shall see a different definition of C(v, I) which generalises the algorithm be-
yond pairwise conflicts.

The Special Case of MWIS
In the case of MWIS, we define the contribution C(v, I) as follows. Let

C(v, I) = 1 if v ∈ I and there is no u ∈ I with {v,u} ∈ E and d(τ(u),ρ(v)) < 1.
Otherwise let C(v, I) = 0.

With these definitions, the set I that maximises W (V, I) is — after remov-
ing vertices with zero contribution — a maximum-weight independent set
in G. Therefore if we are able to find the solution I ⊆ V which maximises
weighted contributions, we are also able to solve MWIS.
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Assumptions on the Contributions
Naturally we cannot expect to maximise the weighted contributions for an

arbitrarily complicated definition of C(v, I). We make some assumptions on
the structure of C(v, I). The assumptions are immediate in the case of MWIS
for local conflict graphs.

First, define the set of possibly interfering vertices

U(v) = {v} ∪ {u ∈V | d(τ(u),ρ(v)) < 1}.

The algorithm makes use of the following assumptions on C:

• C(v, I) can be evaluated in polynomial time

• C(v, I) = 0 for all v /∈ I

• C(v, I1) ≥ C(v, I2) for all I1 ⊆ I2 with v ∈ I1 (contributions are nonin-
creasing)

• C(v, I) = C(v, I∩U(v)) for all I and v ∈V (locality).

Subproblems
In the algorithm, the full problem is divided into subproblems. Each sub-

problem is defined by a subset A ⊆ V , and the associated task is to find a set
I ⊆ A that maximises W (A, I).

Let Ŵ (v) = W (v,{v}) for each v ∈ V , and let Ŵ (A) = ∑v∈A Ŵ (v). We
make use of the following properties. As C(v, I) = 0 for v /∈ I, we have

W (A, I) = W (A∩ I, I), for each A ⊆V.

By nonincreasingness, W (v, I1) ≥W (v, I2) for all I1 ⊆ I2 ⊆ V and v ∈ I1; in
particular, Ŵ (v)≥W (v, I) for all v ∈ I and I ⊆V . As C(v, I) = 0 for v /∈ I, we
have Ŵ (v)≥W (v, I) for all v ∈V \ I and I ⊆V . In summary,

Ŵ (A)≥W (A, I), for each A, I ⊆V,

Ŵ (I)≥W (I, I) = W (V, I), for each I ⊆V.

The Approximation Algorithm
To create the subproblems, we apply a shifting strategy [14, 15, 16]. We

make the following initial assignments. Choose an integer k ≥ 3 such that

5k2

(k−2)2 < 5+ ε.



KASKI, PENTTINEN AND SUOMELA 11

Let

A′i = {(x,y) ∈ R2 | i ≤ x < i+1}, i ∈ Z,

B′j = {(x,y) ∈ R2 | j ≤ y < j +1}, j ∈ Z,

Ai =
⋃
{A′t | t ∈ Z, t ≡ i (mod k)}, i = 0,1, . . . ,k−1,

B j =
⋃
{B′t | t ∈ Z, t ≡ j (mod k)}, j = 0,1, . . . ,k−1,

Di j = R2 \Ai \B j, i, j = 0,1, . . . ,k−1.

Each Di j consists of squares k−1 units wide and high. We write Di j1,Di j2, . . .

for the nonempty squares of Di j. Let Zi j ⊆V be the set of vertices v with both
τ(v) and ρ(v) in Di j, and let Xi jβ ⊆ Zi j be the set of vertices v with both τ(v)
and ρ(v) in Di jβ . Form the set of “short links” Xi j =

⋃
β Xi jβ and the set of

“long links” Yi j = Zi j \Xi j.
Now we can use the procedure in Figure 4 to find an approximately op-

timal solution. In the first part we solve small subproblems by exhaustive
search; in the second part we apply the standard greedy algorithm for finding
a large cut. See Figure 5 for an illustration.

Proof of Correctness
The time complexity of the algorithm is polynomial in the size of the input

since the number of nonempty squares Di jβ is bounded by 2|V |, the number
of distinct transmitters or receivers in each square is bounded by a constant,
and a pair (τ(v),ρ(v)) uniquely determines v for all v ∈ V . The following
three lemmata establish the correctness of the algorithm. We denote by I∗(A)
an optimal solution to the subproblem A.

Lemma 8. Each Si j is an optimal solution of the subproblem Xi j.

Proof. To reach a contradiction, assume that Si j is not optimal, i.e., there
exists an I ⊆ Xi j with W (Xi j, I) > W (Xi j,Si j). Then there exists a β with
W (Xi jβ , I) > W (Xi jβ ,Si j). As the squares Di jδ are separated by stripes of
width one, U(v)∩Xi j ⊆ Xi jβ for all v ∈ Xi jβ . Thus,

W (Xi jβ , I) = W (Xi jβ , I∩Xi jβ ),

W (Xi jβ , Si j) = W (Xi jβ , Si j ∩Xi jβ ) = W (Xi jβ , Si jβ ).

Thus, W (Xi jβ , I∩Xi jβ ) > W (Xi jβ ,Si jβ ), contradicting the choice of Si jβ .

Lemma 9. Each Ri j is a 4-approximate solution of the subproblem Yi j.
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1. Initialise N to an empty set.

2. For all i = 0,1, . . . ,k−1 and j = 0,1, . . . ,k−1:

(a) For each nonempty square Di jβ , find a subset I ⊆ Xi jβ which max-
imises W (Xi jβ , I). Call this set Si jβ .

(b) Let Si j =
⋃

β Si jβ . Insert Si j into N.

3. For all i = 0,1, . . . ,k−1 and j = 0,1, . . . ,k−1:

(a) Initialise Γ and Λ to empty sets.

(b) For each nonempty square Di jβ , in an arbitrary order: Write [β ,Γ]
for the set of vertices v ∈Yi j such that one of the points τ(v),ρ(v)
is located in Di jβ and the other point is located in

Di j Γ =
⋃

γ∈Γ

Di jγ .

Define the set [β ,Λ] similarly. Add β to the set Λ if Ŵ ([β ,Γ]) >

Ŵ ([β ,Λ]); otherwise add β to Γ.

(c) Define

T1 = {v ∈ Yi j | τ(v) ∈ Di j Γ, ρ(v) ∈ Di jΛ},
T2 = {v ∈ Yi j | τ(v) ∈ Di jΛ, ρ(v) ∈ Di j Γ}.

Let T ∈ {T1,T2} be the set that maximises Ŵ (T ). Call this set Ri j,
and insert Ri j into N.

4. Return Ĩ = argmaxI∈N W (V, I).

Figure 4
The approximation algorithm.
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Figure 5
An illustration of the approximation algorithm. In this example, k = 3.

Proof. The greedy algorithm in parts (3a) and (3b) finds a cut (in the directed
graph with an arc of weight Ŵ (v) from τ(v) to ρ(v) for each v ∈ Yi j) of a
total weight at least Ŵ (Yi j)/2, implying by (3c) that Ŵ (Yi j)/4 ≤ Ŵ (Ri j). All
transmitters of Ri j are in Di j Γ and all receivers of Ri j are in Di jΛ or vice versa.
The distance between any receiver and transmitter is larger than 1. Thus,
U(v)∩Ri j = {v} for each v∈Ri j, implying that W (v,Ri j) =W (v,{v}) =Ŵ (v).
Therefore, Ŵ (Ri j) = W (Yi j,Ri j). In summary, it holds that

W (Yi j, I∗(Yi j))≤ Ŵ (Yi j)≤ 4W (Yi j,Ri j).

Lemma 10. The set Ĩ is a
(
5k2/(k−2)2

)
-approximate solution.

Proof. There is exactly one set Ai and exactly one set B j that contains any
given point in τ(V )∪ρ(V ). For each vertex v ∈V , there are at most two sets
Ai and at most two sets B j that contain τ(v) or ρ(v). Thus, there are at least
(k− 2)2 pairs (i, j) such that Di j contains both τ(v) and ρ(v). In notation,
|{(i, j) | v ∈ Zi j}| ≥ (k−2)2 for all v ∈V .

Let I∗i j = I∗(V )∩ Zi j. As the contributions are nonincreasing, we have
W (v, I∗(V )) ≤W (v, I∗i j) for all v ∈ I∗i j and W (Zi j, I∗(V )) ≤W (Zi j, I∗i j) for all
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Zi j, implying that

(k−2)2W (V, I∗(V ))≤∑
i, j

W (Zi j, I∗(V ))≤∑
i, j

W (V, I∗i j).

Thus, there is a pair (i, j) satisfying (k− 2)2W (V, I∗(V )) ≤ k2W (V, I∗i j). As
the sets Xi j and Yi j partition Zi j, we have

W (V, I∗i j) = W (Xi j, I∗i j)+W (Yi j, I∗i j)

≤W (Xi j, I∗(Xi j))+W (Yi j, I∗(Yi j)).

By Lemmata 8 and 9, we obtain

W (Xi j, I∗(Xi j))+W (Yi j, I∗(Yi j))

≤W (V,Si j)+4W (V,Ri j)

≤ (1+4)max{W (V,Si j),W (V,Ri j)}
≤ 5W (V, Ĩ).

This completes the proof.

5. INAPPROXIMABILITY

Above, we have seen that there is a constant-factor approximation algo-
rithm for MWIS in N-local conflict graphs. A natural question to pose at this
point is whether we can achieve any approximation ratio above 1 in polyno-
mial time, that is, if there is a polynomial-time approximation scheme for
MWIS. This turns out not to be the case — in this section we prove Theo-
rem 3, showing that MWIS for N-local conflict graphs admits no PTAS for
any N, assuming P 6= NP. We reduce from the problem of finding a maximum-
weight directed cut.

Maximum-Weight Directed Cut
The maximum-weight directed cut problem is defined as follows: given

a directed graph G = (V,A) and a nonnegative weight w(a) for each arc
a ∈ A, find a subset S ⊆ V such that the total weight of the resulting cut
δ+(S) = {(u,v) ∈ A | u ∈ S,v /∈ S} is maximised. The problem is APX-
complete already in the unweighted case [17, 18].

Reduction
We show that for any N, approximating MWIS in N-local conflict graphs

within factor α implies approximating maximum-weight directed cut in an
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arbitrary directed graph within factor α . The reduction is similar to the one
used by Chvátal and Ebenegger [19]; applied here, the reduction actually
shows that the underlying undirected graph of the directed line graph of an
arbitrary directed graph is a 1-local conflict graph.

Consider an instance of maximum-weight directed cut G = (V,A) with
the arc weights w(a). Without loss of generality, we may arbitrarily relabel
the vertices so that

V = {(0,3),(0,6), . . . ,(0,3|V |)} ⊆ R2.

Construct an N-local conflict graph G′ = (V ′,E ′) with weights w′ as fol-
lows. Let

V ′ = A,

E ′ = {{(t,u),(u,v)} | (t,u) ∈ A,(u,v) ∈ A}.

For each (u,v) ∈ A, let

τ((u,v)) = u,

ρ((u,v)) = v,

w′((u,v)) = w((u,v)).

The construction is a valid N-local conflict graph for any N ≥ 1.
Let S ⊆ V be a directed cut of G. Now, δ+(S) is an independent set of

the same weight in G′ because there is no pair of arcs (t,u),(u,v) in δ+(S).
Conversely, let I′ ⊆V ′ be an independent set in G′. Let S consist of all trans-
mitters of the vertices in I′. Note that S contains no receiver of a vertex in I′.
Thus, I′ ⊆ δ+(S), i.e., S defines a directed cut with weight at least that of I′.

It follows that if W ∗ is the maximum weight of a directed cut in G, there
is an independent set with weight W ∗ in G′. An α-approximation algorithm
for MWIS finds an independent set of weight at least W ∗/α in G′, which
transforms to a directed cut with weight at least W ∗/α in G. This completes
the proof of Theorem 3.

6. LINK SCHEDULING

We proceed to consider fractional covering by independent sets in local
conflict graphs. For an independent set I, we let I(v) = 1 if v ∈ I and I(v) = 0
if v /∈ I.
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Figure 6
An link schedule of length 5/2.

Definition 11. In the link scheduling problem, the input consists of an N-local
conflict graph (G,τ,ρ) and a requirement r(v)≥ 0 for each vertex v in G. The
task is to

minimise ∑I x(I)

subject to ∑I I(v)x(I)≥ r(v) for all v,

x(I)≥ 0 for all I,
(1)

where v ranges over all vertices in G and I ranges over all independent sets in
G. The value L = ∑I x(I) is called the length of the schedule.

If G is a conflict graph and r(v) is the amount of data that has to be trans-
mitted on the link from τ(v) to ρ(v), the link scheduling problem corresponds
to finding an optimal schedule of data transmissions in a wireless communi-
cation network. In this setting, the vector x is interpreted as a schedule that
assigns to independent set I the time slice x(I).

The special case r(v) = 1 for all v corresponds to fractional colouring; the
minimum schedule length is the fractional chromatic number of G.

Example 12. Consider the example in Figure 3, and assume that r(v) = 1
for each v. Let I1 = {b,c,d,g}, I2 = {b,c,h}, I3 = {a, f,h}, I4 = {a,e, f},
and I5 = {d,e,g}; each of these sets is an independent set. Choose x(I1) =
x(I2) = x(I3) = x(I4) = x(I5) = 1/2. Now x is a solution to the link scheduling
problem, and the length of the schedule equals 5/2. See Figure 6 for an
illustration.
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The number of variables in the above LP may be exponential in the size
of the input. However, it is not necessary to construct the LP explicitly: the
link scheduling problem can be solved (α + ε)-approximately in polynomial
time for any ε > 0 as long as there is a polynomial-time α-approximation
algorithm for finding the maximum-weight independent set of G for arbitrary
weights [2, 3]. Thus, Theorem 2 has the following corollary.

Corollary 13. The link scheduling problem for N-local conflict graphs admits
a polynomial-time (5+ ε)-approximation algorithm for any constants ε > 0
and N.

The main result of this section shows that approximating beyond a certain
constant factor remains hard.

Theorem 14. The link scheduling problem for N-local conflict graphs admits
no PTAS for any N unless P = NP.

We begin with the following lemma.

Lemma 15. There are constants k, c > 1, and ∆ such that the following
problem is NP-hard: Given a graph with maximum vertex degree at most ∆,
decide whether its fractional chromatic number is at most k or at least ck.

Proof. Khot [5] established that it is NP-hard to colour a k-colourable graph
with klog(k)/25 colours for all sufficiently large constants k, even for graphs
of bounded degree. In fact, Khot’s proof shows that distinguishing between
the following two cases is NP-hard for graphs of bounded degree: (i) There
is a k-colouring. Thus, also the fractional chromatic number is at most k.
(ii) The ratio of the number of vertices to the maximum size of an independent
set is at least klog(k)/25. Thus, the fractional chromatic number is at least
klog(k)/25.

Proof of Theorem 14. We show that a PTAS for link scheduling in N-local
conflict graphs can be used to solve the NP-hard problem in Lemma 15. Let
G = (V,E) be an arbitrary graph with maximum vertex degree at most ∆.
Label the vertices so that V ⊆ Z. We associate with each v ∈ V three points,
v1, v2, and v3, by setting v j = (3v,3 j). No unit disk contains more than one
point.

Construct an instance of the link scheduling problem: an N-local conflict
graph G′ = (V ′,E ′) and the corresponding requirements r(v′) for each v′ ∈V ′.
We refer to the elements v′ ∈V ′ as links, the intuition being that they corres-
pond to a pair of transmitter and receiver; we reserve the word vertex for the
elements v ∈V .
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For each vertex v ∈ V , introduce two links (v1,v2) ∈V ′ and (v2,v3) ∈V ′

with the requirements r((v1,v2)) = k− 1 and r((v2,v3)) = 1. For each edge
{u,v} ∈ E, introduce two links (u2,v2)∈V ′ and (v2,u2)∈V ′ with the require-
ments r((u2,v2)) = r((v2,u2)) = 1. Finally, let

τ((x,y)) = x,

ρ((x,y)) = y,

E ′ = {{(x,y),(y,z)} | (x,y) ∈V ′,(y,z) ∈V ′}.

Select a positive

ε
′ < min

{√
c−1
2

,
1−1/

√
c

2k∆

}
,

and use the PTAS to solve the constructed link scheduling instance within
factor (1+ ε ′). Let the length of the schedule be L.

Let the fractional chromatic number of G be χ f . If χ f ≤ k, we may use
a fractional colouring of size k to construct a feasible schedule of length k
for the link scheduling instance as follows. Interpret the fractional colouring
as a schedule in which the vertices may be active or inactive. Without loss
of generality we may assume that the schedule is exact; that is, each vertex
is active for exactly 1 time unit. Whenever v ∈ V is active, transmit data on
links (v2,v3) and (v2,u2) for each vertex u adjacent to v in G; this is possible
since the vertices adjacent to v cannot be active and thus are not transmitting
at the same time. Whenever v ∈V is inactive, transmit data on (v1,v2). Note
that each vertex is active for 1 time unit and inactive for k− 1 time units,
implying that the requirements r(v′) are met. Observe that if χ f ≤ k, we have
L ≤ (1 + ε ′)k since the length of the schedule cannot be more than k and we
solved the link scheduling instance within factor (1+ ε ′).

On the other hand, if L ≤ (1 + 2ε ′)k, we may use a schedule of length
(1 + 2ε ′)k to construct a fractional colouring. Let T (v′) be the union of all
time intervals when the link v′ ∈ V ′ is active in the schedule, and let |T (v′)|
be the total length of these time intervals. Consider an arbitrary vertex v ∈V .
Let V ′(v) be the set of all links (v2,u2) ∈V ′ with u ∈V . We have

T ((v1,v2)) ∩ T (v′) = /0

for all v′ ∈ V ′(v). Furthermore, |T (v1,v2)| ≥ k− 1, and the total schedule
length equals k +2ε ′k. Thus,∣∣∣ ⋃

v′∈V ′(v)

T (v′)
∣∣∣ ≤ 1+2ε

′k.
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On the other hand, |T (v′)| ≥ 1 for each v′ ∈V ′(v). Observe that∣∣∣ ⋂
v′∈V ′(v)

T (v′)
∣∣∣ ≥ 1−2ε

′k|V ′(v)|

since each new edge introduced to the intersection shortens the intersection
by at most 2ε ′k units. Also observe that |V ′(v)| ≤ ∆.

A non-isolated vertex v in the fractional colouring problem may be active
in time intervals ⋂

v′∈V ′(v)

T (v′)

because none of its neighbours may be active at the same time; for an isolated
vertex (the case of an empty V ′(v)), colouring is trivial. Thus, we have a
partial fractional covering of length (1 + 2ε ′)k that covers each vertex for at
least 1−2ε ′k∆ units of time. Multiply all time assignments by 1/(1−2ε ′k∆)
to obtain a fractional colouring of size

(1+2ε ′)k
1−2ε ′k∆

<
(1+(

√
c−1))k

1− (1−1/
√

c)
= ck

that covers each vertex for at least 1 unit of time. Thus, χ f < ck.
To summarise, χ f ≤ k implies L ≤ (1 + ε ′)k and χ f ≥ ck implies L >

(1 + 2ε ′)k. This shows that we can use a PTAS to distinguish in polynomial
time between the two cases in Lemma 15.

Remark
It is not known whether Theorem 14 could be obtained as a simple corol-

lary of Theorem 3. For example, the conversion method by Erlebach and
Jansen [20] cannot be applied directly as it requires that the family of graphs
is closed not only under the deletion of vertices but also under the duplication
of vertices.

7. JOINT ROUTING AND SCHEDULING

We generalise the link scheduling LP (1) by letting the link capacity re-
quirements r(v) be variables constrained by a flow routing task in the com-
munication network. We focus on one basic task: routing and scheduling m
end-to-end flows between pairs of devices.

Let F = (D,V ) be a directed graph that models the communication net-
work. The set D consists of the devices in the network and the set V consists
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of the directed wireless links between devices. Let G be the associated con-
flict graph for the links V . For k = 1,2, . . . ,m, let (sk, tk) be an ordered pair of
devices, sk, tk ∈ D, and let R(k) > 0 be the amount of data that is to be routed
from the source device sk to the target device tk. Denote by Pk the set of all di-
rected (simple) paths of links from sk to tk in the network F . Let P =

⋃m
k=1 Pk.

For a path P ∈ P and a link v ∈ V , we write v ∈ P to indicate that the link v
occurs in P. Associated with each path P is a variable r(P) giving the data
rate on P.

Definition 16. In the end-to-end routing and scheduling problem, the in-
put consists of the communication network F , the conflict graph G, and the
source–target pairs (sk, tk) with their data amounts R(k) > 0, k = 1,2, . . . ,m.
The task is to

minimise ∑I x(I)

subject to ∑I:v∈I x(I)≥ r(v) for all v,

∑P:v∈P r(P)≤ r(v) for all v,

∑P:P∈Pk
r(P)≥ R(k) for all k,

x(I),r(v),r(P)≥ 0 for all I,v,P,

(2)

where v ranges over the links V , I ranges over the independent sets of G, and
P ranges over the paths P.

In other words, the task is to route the ∑k R(k) units of data in the min-
imum possible total time subject to the interference constraints. The first con-
straint guarantees that each link v is active for a period of time long enough
to transfer r(v) data units. The second constraint guarantees that the data vol-
ume on paths through v does not exceed the allocated volume r(v). The third
constraint guarantees that in total R(k) data units are routed on paths from sk

to tk. A solution is assumed to consist of the paths P ∈ P with r(P) > 0 and
the independent sets I with x(I) > 0, both accompanied by their respective
values r(P) and x(I).

A general result of Jansen [2] implies that we can approximate (2) if we
can approximate MWIS.

Theorem 17. The end-to-end routing and scheduling problem admits an
α-approximation algorithm if MWIS admits an α-approximation algorithm.

Proof (sketch). An α-approximation algorithm to MWIS solves the follow-
ing problem in polynomial time: for a given conflict graph G and link weights
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w(v)≥ 0, find an independent set J with

α ∑
v∈J

w(v)≥ max
{
∑
v∈I

w(v) : I is an independent set
}

. (3)

Assume such an algorithm exists.
The dual of (2) is to

maximise ∑k R(k)z(k)

subject to ∑v∈I w(v)≤ 1 for all I,

`(v)≤ w(v) for all v,

z(k)≤ ∑v∈P`(v) for all k and P ∈ Pk,

w(v), `(v),z(k)≥ 0 for all v,k.

(4)

Let K⊆Rn be the polytope defined by the dual constraints (4). Represent
K as K = S∩R, where S and R are the polyhedra defined by the constraints
indexed by I and all the other constraints, respectively.

We now claim that we have a polynomial-time algorithm A that given
(w, `,z) ∈Qn either (i) asserts that (w, `,z) ∈ (αS)∩R or (ii) finds an inequal-
ity in (4) violated by (w, `,z) and thus witnessing that (w, `,z) /∈ S∩R. In-
deed, we first check whether (w, `,z) violates an inequality defining R; this
can be done in time polynomial in the size of the input. To see this, observe
that testing nonnegativity and `(v) ≤ w(v) is trivial, and that the inequali-
ties indexed by P ∈ Pk and k can be checked by a shortest-path computation
from sk to tk in F (for example, using Dijkstra’s algorithm) with the nonneg-
ative link lengths `(v). If all inequalities defining R are satisfied, we run our
α-approximation algorithm for MWIS to obtain an independent set J, and
check whether ∑v∈J w(v) ≤ 1 holds. If not, J yields a witness to (ii), other-
wise we can assert (i) because of the approximation guarantee (3).

In the terminology used by Jansen [2], algorithm A constitutes a strong
approximate separation oracle for the fractional packing polytope K. Ob-
serving that K contains the all-zero vector, [2, Theorem 4.2] enables the
α-approximate solution of (4) using the central cut ellipsoid algorithm [21,
§3.2] and the method of continued fractions [21, §5.1]. Furthermore (see the
proof of [2, Theorem 5.1] for a detailed development), the witness inequal-
ities returned by algorithm A during the α-approximate solution of (4) give,
by LP duality, a polynomial-size explicit restriction of the primal (2). The op-
timum of this restriction is within a factor α of the optimum of (2). Solving
the restriction gives an α-approximate solution of (2).



22 COORDINATING CONCURRENT TRANSMISSIONS

It is immediate that the previous proof is to a large extent oblivious to
the actual routing task at hand; essentially the only requirement is that the
“routing polyhedron” R has a polynomial-time strong separation oracle (see
[21]). Thus, besides routing end-to-end flows, an analogue of Theorem 17
can be established for many other basic routing tasks.

8. BEYOND PAIRWISE INTERFERENCE

Throughout this work, we have studied the case of pairwise conflicts
which can be represented as a conflict graph. In real wireless networks, more
complicated patterns of interference occur. In this section, we show how to
extend our positive results to more general settings.

In wireless networks, the joint effect of simultaneous interfering transmis-
sions fundamentally depends on the signal-to-interference-plus-noise ratio
(SINR) at the receiver, that is, the ratio of the signal power received from the
intended transmitter to the sum of the noise and the interfering power received
from other transmitters [7, 22]. The SINR not only determines whether the
reception is successful at all, but also determines the capacity of the wireless
link. In practice, wireless devices may switch to a more robust modulation
with a lower symbol rate in the case of a lower SINR.

In Section 4, we have presented an approximation algorithm where we
have used so-called contributions C(v, I). Let us redefine C(v, I) as the (ap-
proximate) capacity of the wireless link v, assuming that the set of active
transmissions is I ⊆ V . We no longer have a conflict graph G but we still
require that each device is embedded in the two-dimensional space and that
the bounded density of the devices holds.

The assumptions on C(v, I) made in Section 4 can now be rephrased as
follows:

• We can obtain the estimate C(v, I) by some efficient algorithm.

• If the link v is not active, no data is transmitted; the capacity is zero.

• If the link v is active, activating other transmissions cannot increase the
capacity C(v, I).

• Activating transmitters which are far from the receiver of v do not affect
the capacity C(v, I).

The first assumption is reasonable even if we base our estimates on real
measurements on the received power. For example, we can measure and tab-
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ulate the received power for each transmitter–receiver pair (there is a polyno-
mial number of these), and we can use this information to estimate the SINR
at the receiver of the link v, assuming the links I are active. Then we can use
the SINR to determine the capacity C(v, I).

The next two assumptions are clear, but the fourth assumption — locality
of interference — may call for some justification. Intuitively, we assume that
even the joint effect of all interfering transmitters very far from us all around
the world is insignificant in comparison with the noise when we estimate the
SINR. A theoretical justification can be derived if we assume that, due to
obstacles, the received power is approximately proportional to the distance
raised to the power a for some value a > 2.

With this reinterpretation of C(v, I), our approximation algorithm from
Section 4 is able to find a set of radio transmissions which approximately
maximises the weighted sum of link capacities. We are no longer confined
to pairwise interference but we consider the joint effect of interfering trans-
mitters close to the receiver; furthermore, we allow for networks where each
link is able to operate at different bit rates depending on the interference and
noise. The observations in Sections 6 and 7 also generalise to this setting —
we are able to approximate link scheduling and joint scheduling and routing
even under this generalisation.

9. SCALABLE DISTRIBUTED APPROXIMATION SCHEME

The existence and nonexistence of centralised approximation algorithms
gives us insight into the computational complexity of fundamental network
coordination tasks. However, centralised algorithms are hardly practical in
very large-scale wireless networks, and approximation within large constant
factors may not be an attractive alternative to, say, time-proven heuristics in
real-world tasks.

To conclude this work, we have a look at the possibility of constructing
a family of efficient distributed algorithms for the link scheduling problem
with which we can achieve any constant approximation guarantee 1+ε where
ε > 0. By Theorem 14, further assumptions on the structure of the input are
needed beyond the assumptions (i) and (ii) mentioned in Definition 1. In
particular, we focus on the following assumption, bounded range of radio
transmissions:

(iii) For all v ∈V it holds that d(τ(v),ρ(v)) < 1.
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We immediately obtain a centralised PTAS for this restricted variant, as
we can simply omit all parts that deal with the “long links” in the approxi-
mation algorithm and its analysis in Section 4. However, obtaining a highly
scalable distributed algorithm is less straightforward. First, the shifting strat-
egy that we used to obtain the approximation algorithm for MWIS has some
inherent centrality [23]; for example, in our algorithm the final step involves
comparing all candidate solutions I ∈ N and choosing the best one. Second,
even if we could overcome this hurdle, we would still need to turn Corol-
lary 13 into its distributed counterpart in order to obtain a distributed approx-
imation algorithm for link scheduling. Fortunately, a more direct alternative
is available: we may be able to solve link scheduling by a distributed approx-
imation algorithm without solving MWIS as an intermediate step. Before
presenting the algorithm, we need to introduce the distributed setting.

In the centralised setting, we have assumed that the conflict graph G is
available at some central location; we have ignored the details of gathering
this information and propagating it in some communication network. In the
distributed setting, we cannot ignore these details any more; we need to make
the communication infrastructure explicit, as well as the computational agents
who are involved in the distributed computation.

Let us first choose the computational agents. For simplicity, we assume
that each vertex v ∈V is an autonomous computational agent. In practice, the
computation related to the wireless link v ∈V could be realised, for example,
at the transmitter τ(v). We assume that the agent v knows the coordinates of
τ(v) and ρ(v) as well as its neighbours in the graph G.

Then we need to introduce the communication infrastructure which en-
ables the vertices v ∈V to communicate with each other. We model the com-
munication infrastructure as a graph H = (V,EH) where an edge {u,v} ∈ EH

indicates that the computational agents u and v can directly exchange mes-
sages with each other.

We do not assume that the structure of G and H is directly connected
with each other — both are graphs on the same set of vertices, but we do
not assume that an edge in G implies an edge in H or vice versa. However,
we need to make some assumptions on the graph H so that the agents can
efficiently co-operate. For the sake of concreteness, we make the following
assumption on the structure of H.

(iv) There is a constant σ > 0 such that the graph H is a geometric σ -
spanner in the following sense: dH(u,v) ≤ σdd(τ(u),τ(v))e for all
u,v ∈ V , where dH is the shortest-path hop count between u and v in
the communication graph H.
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Intuitively, we assume that the computational agents which are physically
close to each other are also able to communicate with each other through a
multi-hop path with some bounded number of hops. We arrive at the problem
family similar to the one studied in Floréen et al. [24].

Now for each pair (i, j), the agent v can determine whether v ∈ Xi j or not.
Furthermore, if v ∈ Xi j, it holds that v ∈ Xi jβ for some β . The agent v does
not know the value of β , but it is able to determine which other agents u ∈V
are contained in the same set Xi jβ , as follows. If u,v ∈ Xi jβ then d(u,v) is
bounded by a constant. Therefore dH(u,v) is bounded, and v can reach u by
querying all agents in its constant-radius neighbourhood in the communica-
tion graph H. By comparing (τ(u),ρ(u)) with (τ(v),ρ(v)), the agent v can
determine if u,v ∈ Xi jβ for some β .

For each Xi jβ , one agent v ∈ Xi jβ is chosen as the leader — we can use
the coordinates to break the symmetry. The leader v finds an optimal link
schedule for the subproblem Xi jβ ; the size of the subproblem is bounded by a
constant. The leader communicates the schedule to all other agents in Xi jβ .

Next we apply the same strategy as presented for activity scheduling in
Floréen et al. [25, §4.3]. We proceed in short time steps, by using globally
synchronised clocks. We iterate repeatedly through k2 different pairs (i, j);
for each time step, we fix a particular pair (i, j). We execute the local solutions
of Xi jβ for any β independently in parallel; the lengths of the local solutions
are scaled down to span exactly one time step.

The schedule obtained this way is feasible: for any pair (i, j), at any point
in time, the set of active links within each Xi jβ forms an independent set, and
there are no edges in the conflict graph between Xi jβ and Xi jβ ′ for β 6= β ′.

To see that the schedule is near-optimal, interpret the subproblem Xi jβ
as being derived from the original problem by removing some constraints.
Therefore the optimum of the subproblem is at most as high as the optimum of
the original problem. If v ∈ Xi jβ for some β , that is, v ∈ Xi j, then the relative
amount of time that the link v is active is at least as high as in the global
optimum of the original problem. It suffices to show that for any given link v,
only a small fraction of pairs (i, j) are such that v /∈ Xi j. This is immediate if
k is large; cf. Lemma 10.

Thus the entire network executes a link schedule which is valid and which
is able to satisfy all data transmission needs r(v) in a near-optimal time. At
no point we need to gather the full problem instance or the full solution at any
central location: the input for a particular agent was locally available, and the
output was used locally to schedule data transmissions.
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In summary, we have obtained a distributed approximation scheme for
link scheduling. Moreover, the algorithm is local [26, 27]: the decision of
each agent only depends on its constant-radius neighbourhood in the graph H.
To obtain this result, we exploited the assumptions (i), (ii) and (iii) on the
conflict graph G, and the assumption (iv) on the communication graph H.
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[25] Patrik Floréen, Petteri Kaski, Topi Musto, and Jukka Suomela. Local approximation algo-
rithms for scheduling problems in sensor networks. In Proc. 3rd International Workshop
on Algorithmic Aspects of Wireless Sensor Networks (Algosensors, Wrocław, Poland, July
2007), volume 4837 of Lecture Notes in Computer Science, pages 99–113, Berlin, Ger-
many, 2008. Springer-Verlag.

[26] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[27] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

[28] Petteri Kaski, Aleksi Penttinen, and Jukka Suomela. Coordinating concurrent transmis-
sions: A constant-factor approximation of maximum-weight independent set in local con-
flict graphs. In Proc. 6th International Conference on Ad-Hoc Networks & Wireless
(AdHoc-NOW, Morelia, Mexico, September 2007), volume 4686 of Lecture Notes in Com-
puter Science, pages 74–86, Berlin, Germany, 2007. Springer-Verlag.


	Introduction
	Interference in Wireless Networks
	Algorithmic Problems and Earlier Work
	Contribution

	Statement of Results
	Representability
	Approximability
	Generalisation of the Problem
	The Special Case of MWIS
	Assumptions on the Contributions
	Subproblems
	The Approximation Algorithm
	Proof of Correctness

	Inapproximability
	Maximum-Weight Directed Cut
	Reduction

	Link Scheduling
	Remark

	Joint Routing and Scheduling
	Beyond Pairwise Interference
	Scalable Distributed Approximation Scheme
	Acknowledgements


