
Space-Efficient String Mining under Frequency Constraints

Johannes Fischer
Universiät Tübingen

Algorithms in Bioinformatics
Sand 14, D-72076 Tübingen

fischer@informatik.uni-tuebingen.de

Veli Mäkinen and Niko Välimäki
Department of Computer Science

University of Helsinki
Helsinki, Finland

{vmakinen|nvalimak}@cs.helsinki.fi

Abstract

Let D1 and D2 be two databases (i.e. multisets) of d
strings, over an alphabet Σ, with overall length n. We study
the problem of mining discriminative patterns between D1

and D2 — e.g., patterns that are frequent in one database
but not in the other, emerging patterns, or patterns sat-
isfying other frequency-related constraints. Using the al-
gorithmic framework by Hui (CPM 1992), one can solve
several variants of this problem in the optimal linear time
with the aid of suffix trees or suffix arrays. This stands
in high contrast to other pattern domains such as item-
sets or subgraphs, where super-linear lower bounds are
known. However, the space requirement of existing solu-
tions is O(n logn) bits, which is not optimal for |Σ| << n
(in particular for constant |Σ|), as the databases themselves
occupy only n log |Σ| bits.

Because in many real-life applications space is a more
critical resource than time, the aim of this article is to re-
duce the space, at the cost of an increased running time. In
particular, we give a solution for the above problems that
uses O(n log |Σ|+ d logn) bits, while the time requirement
is increased from the optimal linear time toO(n logn). Our
new method is tested extensively on a biologically relevant
datasets and shown to be usable even on a genome-scale
data.

1. Introduction

In many applications, e.g., in computational biology, the
goal is to find interesting string patterns that discriminate
well between two classes of data. Application areas are,
among others, finding discriminative features for sequence
classification or segmentation [4], discovering new binding
motifs of transcription factors [6], or computation of the
classical ranking scores in Information Retrieval [3].

In this paper, we focus on string mining under fre-
quency constraints, i.e., predicates over patterns depending

solely on the frequency of their occurrence in the data [13].
This category encompasses combined minimum/maximum
support constraints, constraints concerning emerging sub-
strings, and other constraints concerning statistically signif-
icant substrings. While most of these problems have their
motivation in itemset mining [1], data miners also consider
them for the domain of strings [8], as plenty of naturally
occurring data can be modeled as strings (biological se-
quences, MIDI-data, etc.).

We concentrate on the fundamental instance of exact
substring patterns, where optimal linear time algorithms can
be obtained, which stands in high contrast to other pattern
domains such as itemsets or sub-graphs, where super-linear
lower bounds are known [33, 9]. Much of the related work
in the domain of strings studies more complicated pattern
classes, where the search space is typically of exponential
size, and the objective is to optimize the time needed per
each output element satisfying the frequency constraints,
see e.g. [28, 2] for recent results on this line of research.

Our objective is to provide practical tools for the mining
of very large data sets, such as the genome-scale sequences
of molecular biology. For such data sets, one needs to pay
special attention to the space usage. Even if the algorithm
takes linear space proportional to the overall length n of se-
quences in the database, this may be too much: Measured
in bits, a data structure having O(1) integers per text char-
acter occupies asymptotically O(n logn) bits, whereas the
database can be stored in n log |Σ| bits, where Σ is the un-
derlying alphabet. Especially on DNA sequences (where
|Σ| = 4) this is a significant difference.

1.1. Contributions of our work

In this paper, we show that frequency constrained min-
ing tasks on exact substring patterns can be solved in much
less space than previously known. We improve the known
O(n log n) bits space usage into O(n log |Σ|+ d logn) bits
with a logarithmic penalty in computation time against the
optimal linear time algorithm [13]. Here, d << n is the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14899984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

number of strings in the databases. We emphasize that our
algorithmic framework is general enough to handle all data
mining tasks whose predicates are based on the frequency
of strings alone (e.g., frequent substrings, emerging sub-
strings, strings passing the χ2-test, . . .); this approach is
much more general than designing individual solutions for
each of these tasks seperately.

We have also tested our method empirically on
realistically-sized data sets from computational biology and
shown that in practice space is reduced by a factor of 6–7
compared to the optimal algorithm [13], while the running
time is increased by a factor of about 80–90. Given that
users are usually willing to wait longer if they can handle
larger data sets in exchange, the increase in running time is
compensated by the fact that due to the use of more input
data (which is nowadays available in fast- evolving domains
such as computational biology), the results of the mining
tasks will be more significant in practice.

Sadakane [31] gives another succinct version for calcu-
lating frequencies. However, his problem setting is quite
different from ours, as he designs a succinct index that al-
lows to answer frequency queries for a given pattern. Our
work, on the other hand, is situated in the field of data min-
ing, where the goal is to extract interesting strings from sta-
tistical constraints alone. Because Sadakane’s index needs
O(n logn) bits at construction time [31], we cannot use it
for our task, as it would result in no advantage at all over
the non-succinct version. Moreover, our algorithm can be
modified to give a space-efficient algorithm to build a part
of Sadakane’s succinct index.

1.2. Outline

In the following, we first give the formal definitions of
the mining tasks we consider (§2). In §3, we explain the
existing optimal algorithm. Then we show how the optimal
algorithm can be carefully re-engineered to use less space
(§4). The paper continues with other space/time-tradeoffs
that can be obtained for the problem (§5), and with appli-
cations to Sadakane’s succinct index for storing document
frequencies. Experiments are reported in §6.

2. Preliminaries

For a finite ordered alphabet Σ, a (text) string T ∈ Σ?

is a chain T1 . . . Tn of letters Ti ∈ Σ. Here, Σ? is the set
of all strings over Σ. We write Ti..j to denote the substring
of T ranging from position i to j. We use |Ti..j | to denote
the length j − i + 1 of Ti..j . Substrings T1..j , 1 ≤ j ≤ n,
are called prefixes and substrings Ti..n, 1 ≤ i ≤ n, are
called suffixes of T . For strings φ, ψ ∈ Σ? we write φ � ψ
if φ is a substring of ψ. Then lcp(φ, ψ) gives the length

of the longest common prefix (lcp) of φ and ψ. For exam-
ple, lcp(aab, abab) = 1. When clear from the context,
we also use lcp for the longest common prefix itself (not
its length). Given a multiset D ⊆ Σ? with strings over
Σ (called database), we write |D| to denote the number
of strings in D, and ‖D‖ to denote their total length, i.e.,
‖D‖ =

∑
φ∈D |φ|. We define the frequency of a pattern

φ ∈ Σ? in D as follows:

freq(φ,D) := |{d ∈ D : φ � d}|

Note that this is not the same as counting all occurrences of
a φ inD, because one database entry could contain multiple
occurrences of φ. In data mining applications it is important
to use this definition of frequency, as one is usually looking
for patterns that are highly relevant for the whole database,
and not only for one or a few of its entries.

Now the support of a pattern φ ∈ Σ? inD can be defined
as

supp(φ,D) :=
freq(φ,D)

|D| .

The first example problem that can be solved with our
method is as follows (cf. [1]).

Problem 1 Givenm databasesD1, . . . ,Dm of strings over
Σ, and m pairs of support thresholds (ρi, τi)i=1,...,m sat-
isfying 0 < ρi ≤ τi ≤ 1 for all i, the Frequent Pattern
Mining Problem is to return all strings φ ∈ Σ? that satisfy
ρi ≤ supp(φ,Di) ≤ τi for all 1 ≤ i ≤ m. �

As another example mining problem that can be solved
with our algorithm, we consider a 2-class problem for a
(positive) database D1 and a (negative) database D2. For
this, we define the growth-rate from D2 to D1 of a string φ
as

growthD2→D1
(φ) :=

supp(φ,D1)

supp(φ,D2)
, if supp(φ,D2) 6= 0 ,

and growthD2→D1
(φ) = ∞ otherwise. The following def-

inition is motivated by the problem of mining Emerging
Itemsets [10]:

Problem 2 Given two databasesD1 andD2 of strings over
Σ, a support threshold ρs (1/|D1| ≤ ρs ≤ 1), and a
minimum growth rate ρg > 1, the Emerging Substrings
Mining Problem is to find all strings φ ∈ Σ? such that
supp(φ,D1) ≥ ρs and growthD2→D1

(φ) ≥ ρg. �

The patterns satisfying both the support- and the growth-
rate condition are called Emerging Substrings (ESs). ESs
with an infinite growth-rate are called Jumping Emerging
Substrings (JESs), because they are highly discriminative

#2#1

#1 #2
#1

#2

#2
#1

#2
#1

#2

#2
#1

#2

#4

#3 #4

#3 #4
#4

#3
#4

#3
#4

#3

#3

#3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

LCP=
5 12 18 23 4 22 8 9 1 10 2 6 15 19 11 17 3 21 7 14 16 20
0 0 0 0 0 1 1 2 3 1 2 3 2 3 0 1 1 2 2 2 1 2 3

a b a a a ba a b a b b a b b a b b a
13

a a a
a
a
b

a
a
b

a
a
b
a

a
b

a
b
a

a
b
a
a
a
b

a
b
b

a
b
b
a

b b b
a

b
a

b
a
a
a
b

b
a
b
b

b
b

b
b
a

b
b
a
b
b

SA=
T=

Figure 1. The suffix array for T and its lcp-table. Below position i we draw the string TSA[i]..n until
reaching the first end-of-string marker. The solid line going through these strings indicates the
lcp-values.

for the two databases.1

Example 1 Let D1 = {aaba, abaaab}, D2 = {bbabb,
abba}, ρs = 1, and ρg = 2. Then the emerging substrings
from D2 to D1 are aa, aab and aba. These are also the
JESs. �

2.1. Suffix- and lcp-arrays

This section introduces two fundamental data structures
that we need for our algorithm.

The suffix array SA (see [26]) for T describes the lex-
icographic order of T ’s suffixes, in the sense that it “enu-
merates” the suffixes from the smallest to the largest. More
formally, SA[1, n] is an array of integers s.t. its entries form
a permutation of [1 : n], and TSA[i]..n is lexicographically
less than TSA[i+1]..n for all 1 ≤ i < n. The generalized
suffix array of two databases D1 = {φ1, . . . , φ|D1|} and
D2 = {ψ1, . . . , ψ|D2|} of strings is simply the suffix array
built on top of the concatenated string

T := φ1#1 . . . φ|D1|#|D1|ψ1#|D1|+1 . . . ψ|D2|#|D1|+|D2|.

The #j’s are (conceptual) new characters (lexicographi-
cally smaller than other characters) to separate the individ-
ual strings. See Fig. 1 for an example, which builds on the
databasesD1 andD2 from Ex. 1.

The suffix array for T can be computed inO(n) time, ei-
ther indirectly by constructing a suffix tree for T , or directly
with some recent methods, e.g. [21].

Instead of suffix array SA we can use a compressed suf-
fix array [27]. Different tradeoffs between space and access

1Notice that to reduce the size of the output, it is customary to con-
sider so-called left-maximal and right-maximal strings (those that cannot
be extended to any direction to obtain another string satisfying the thresh-
olds). For conciseness, we do not consider these enhancements. How-
ever, right-maximality is trivial to accommodate in our algorithms, and
left-maximality requires more care, but can be solved within the same
time/space bounds.

time to SA[i] are possible, e.g. one can access any SA[i]
within time tSA = O(logε n) for an arbitrary 0 < ε ≤ 1, us-
ing an index of sizeO(n(H0 +log log |Σ|)) = O(n log |Σ|)
bits [15, 29]. Here H0 = H0(T) ≤ log |Σ| is the 0’th order
empirical entropy of the text T (lower bound for the average
number of bits needed to code a symbol using a fixed code
table).

The lcp-array LCP[1, n] for T is defined by LCP[i] =
lcp(TSA[i]..n, TSA[i−1]..n) for all 1 < i ≤ n, and LCP[1] =
0. That is, LCP contains the lengths of the longest com-
mon prefixes of T ’s suffixes that are consecutive in lexico-
graphic order. Kasai et al. [20] gave an algorithm to com-
pute LCP in O(n) time. Sadakane [30] shows that repre-
senting the LCP-array can be done using 2n + o(n) bits
(and constructed within that space), while accessing LCP[i]
then takes O(tSA) time.

2.2. Range Minimum Queries

Another tool we need for our approach is a prepro-
cessing of the lcp-array such that range minimum queries
(RMQs) can be answered in constant time. The reason
for using RMQs on LCP is that they generalize the lcp-
array, in the sense that we can compute the lcp between
arbitrary suffixes, and not only between those that are lex-
icographically adjacent. Formally, for two given indices
i and j the query RMQLCP(i, j) asks for the position of
the minimum element in LCP[i, j], i.e., RMQLCP(i, j) :=
argmink∈{i,...,j}{LCP[k]}. We return the smallest index if
the minimum is not unique.

Lemma 1 Let T ∈ Σ? be a text and LCP be the lcp-
array for T . Then for all 1 ≤ i < j ≤ |T |,
lcp(TSA[i]..|T |, TSA[j]..|T |) is given by LCP[RMQLCP(i +
1, j)].

This follows immediately from the definition of the lcp-
array. Stated differently, Lemma 1 says that the i’th-

and the j’th-smallest suffix of t are equal in exactly their
LCP[RMQLCP(i+ 1, j)] first characters.

It is well known that a linear preprocessing of any input
array A is sufficient to find RMQA(i, j) in time O(1). This
method has recently been refined to use only 2n + o(n)
bits in addition to the input array, also at construction time
[12]. With the succinct representation of the lcp-array, we
thus need 4n + o(n) space to answer arbitrary lcp-queries
in O(tSA) time.

3. Basic Mining Algorithm

This section reviews the basic algorithm for computing
the string frequencies. It is a tight integration of Kasai et
al.’s algorithm for visiting all branching2 substrings of a text
[20], and Hui’s color set size technique [18]. Note that it is
enough to visit all branching substrings, as by definition the
frequencies of all other strings are equal to the frequency of
their longest branching prefix. From now on, let T denote
the string formed from the (positive and negative) databases
D1 andD2 as explained in §2. Let d denote the total number
of strings in the databases (d = |D1|+ |D2|), and n denote
T ’s length (n = ‖D1‖+ ‖D2‖+ d).

3.1. Visiting All Branching Substrings

First, we summarize the algorithm for visiting all branch-
ing substrings [20]. The idea is to simulate a depth-first
traversal of the (virtual) suffix tree, solely by means of the
suffix- and lcp-array. This works by visiting the leaves of
the suffix tree in lexicographic order (i.e., in the order of the
suffix array), keeping on a stack R just the rightmost path
of the part of the suffix-tree that has been seen so far. Step
i first deletes the elements from R that are removed from
the rightmost path, and then inserts new elements to R. The
details are as follows.

Consider step i+1 of the algorithm, so we are just about
to visit suffix SA[i+ 1] (see also Fig. 2). The stack R con-
tains the lengths of the prefixes of TSA[i]..n that are branch-
ing (the so-called string-depths of nodes on the rightmost
path). Then we pop all elements from R whose string-
depth is greater than LCP[i + 1], because LCP[i + 1] is
the string-depth of the lowest common ancestor (lca) v of
the leaves represented by SA[i] and SA[i + 1]. If v is not
already present in R, we push it on R (with string-depth
LCP[i+ 1]). Finally, we push SA[i+ 1] on R (with string-
depth n− SA[i+ 1] + 1). It is shown in [20] that this algo-
rithm visits all branching substrings of T . (The basic insight
is that every internal node is the lca of at least one pair of
leaves.)

2A substring α � T is called branching if there exist a, b ∈ Σ, a 6=
b, s.th. both αa and αb occur in T . These are exactly the strings that
correspond to an internal node in the (virtual) suffix tree of T .

pop

(push)

push

SA[i+1]

vlca=

SA[i]

Figure 2. Going from suffix TSA[i]..n to
TSA[i+1]..n when visiting all branching sub-
strings. Solid nodes are on the stack, dashed
nodes not yet. v is pushed if necessary, leaf
SA[i+ 1] is always pushed.

3.2. Calculating Frequencies of Branching
Substrings

Let us now describe Hui’s approach [18] to calculate
freq(φ,D) for all branching substrings φ of D. The idea
is to calculate two counters S(φ,D) and C(φ,D) for each
φ (simply S and C if clear from the context), such that
freq = S − C. S counts the number of all occurrences
of φ in D, and C counts the number of duplicates of
φ in the same string in D. More formally, S(φ,D) =∑
ψ∈D |{i ∈ [1 : |ψ|] : φ = ψi..i+|φ|−1}|, and C(φ,D) =∑
ψ:S(ψ,D)>0(S(ψ,D) − 1).
For what follows, we need to define an additional array

D[1, n] on top of the generalized suffix array such that D[i]
gives the string number where suffix TSA[i]..n points to, i.e.
D[i] = j if the first string separator in TSA[i]..n is #j . By
remembering the number h of the last string in D1, D also
allows to infer whether a suffix points to D1 or D2.

The S-counters are easy to calculate during the simu-
lated suffix-tree traversal: simply initialize them correctly
for leaves, and when popping a node v from the stack, add
v’s S-value to its parent-node on the stack. More formally,
when pushing a leaf l = TSA[i+1]..n on R, we initialize
S(l,D1) with 1 and S(l,D2) with 0 if D[i + 1] ≤ h, or
vice versa if D[i + 1] > h. When popping a node u from
R, we add S(u,Dj) to S(w,Dj) to the direct ancestor w of
u for j = 1, 2. Note that w is either the predecessor of u on
R (if the string-depth of this predecessor is ≥ LCP[i + 1]),
or the newly pushed internal node v (otherwise).

Calculation of theC-counters is a little bit more intricate.
We will just describe how to calculate C(φ,D1); the ideas
forD2 are similar. Hui’s key insight is that if a substring φ is
repeated within a string d ∈ D1 from D1, then φ must be a
prefix of the lcp of two different suffixes from d. Even more,
if we enumerate d’s suffixes in any order for all d ∈ D1 (say

RMQ# #j j

v’

v

propagate
counters

Figure 3. Determining the C-counters. Node
v′ represents the longest common prefix of
two suffixes from the same string j, so C[v′]
has to be increased by 1.

in the order they appear in SA), then the number of times
that φ is a prefix of the lcp of consecutive suffixes (in that
order) gives C(φ,D1).

With Lemma 1, this gives us all the tools we need to cal-
culate the C-counters “on the fly” while visiting all branch-
ing substrings (see also Fig. 3): remember the position of
the previous suffix of string j before position i for each
j ∈ [1 : d] in an array P [1, d] (i.e., P [j] = max{p ≤
i : D[p] = j}). Then when at position i + 1, calculate the
desired lcp as l = LCP[RMQLCP(P [D[i + 1]] + 1, i + 1)],
and increment by 1 the C-counter of the node v′ on R that
has string-depth exactly l. (Note that such a node must be
on R, as it is on the path from SA[i + 1] to the root.) The
easiest way to find v′ in R is to use another array of size n.

Like with the S-counters, when popping a node from R,
we need to add the C-counters to its parent node. This step
takes care of the fact that the RMQs from the above para-
graph just locate the longest duplicates; but all prefixes of
duplicates are duplicates as well.

3.3. Determining Interesting Patterns

In total, the integration of the above two techniques im-
plies that when a node v is popped from the stack, the fre-
quency of the respective substring is given by freq = S−C.
From this, we check if the string passes the frequency-based
predicate (e.g., if it is an emerging substring). If so, we out-
put TSA[i+1]+d−1 for all values d between the string-depth
of v (inclusive) and that of its parent-node (exclusive).

4. Space-Efficient Version

The problem with the algorithm from the previous para-
graph is that it still needs O(n log n) bits of space in the
worst case, even if we take compressed representations of

suffix- and lcp-arrays. This is because for degenerated suf-
fix trees, the rightmost path could containO(n) nodes from
the suffix tree; hence the space for stackR and all the coun-
ters would be O(n log n) bits. We show in this section how
to achieve O(n log |Σ|+ d log n) bits of space.

4.1. New Data Structures

We now step through the data structures from §3 and
show how to reduce the space for each of these.

4.1.1 Representing D and P

We use array P as is, but we will represent array D im-
plicitly. Array P occupies d logn bits. During the algo-
rithm one needs to inquery P [D[i + 1]] when inserting the
(i+ 1)-th suffix array element, after which one needs to up-
date P [D[i+ 1]] = i+ 1. Value D[i+ 1] can be computed
in time O(tSA) as follows: Store a bit-vector B that marks
the boundaries of documents in the concatenation T by set-
ting B[j] = 1 if position j starts a new document in T ,
otherwise B[j] = 0. Preprocess B for rank-queries, where
rank(B, j) gives the number of bits set in B[1, j]. That
is, rank(B, j) gives the document number in which the j-
th position in T belongs to. It is possible attach to B an
auxiliary structure of size o(n) bits so that rank(B, j) can
be answered in constant time for any j [19]. Now we have
D[i+ 1] = rank(B,SA[i + 1]). Using compressed suffix
array, the computation of SA[i + 1] takes time O(tSA) and
the rank-query on B takes constant time. The space used
in addition to the already used compressed suffix array is
n+ o(n) bits for the bit-vectorB and its rank-structure.

4.1.2 Representing R

Stack R needs more functionality than being accessed only
from top, as in order to increase the correct C-counter as
described in §3.2, we need to quickly find the node on R
with string-depth l = LCP[RMQLCP(P [D[i+1]]+1, i+1)].
Thus, storing R as a difference-encoded list in O(n) bits
[16] would result in having to scan R in O(n) time in the
worst case after each RMQ.

Instead, we represent R via a dynamic succinct data
structure for searchable partial sums. This is a data struc-
ture maintaining a sequence of symbols A = a1 . . . am,
supporting the following operations:

• sum(A, i): returns
∑

j≤i aj

• search(A, j): returns the smallest i such that
sum(A, i) ≥ j

• update(A, i,∆): adds ∆ to ai (∆ = O(polylog(n)))

• insert(A, i, x): inserts x between ai and ai+1

• delete(A, i): deletes ai

It has been shown in [25] that each of these operations can
be supported in O(log n) time, by using an extension of the
data structure from [5]. The space occupied by this data
structure is only n + o(n) + O(m) = O(n) bits, provided
that the sum of the numbers in A is always ≤ n.

In our case, if the elements in A represent the number of
letters on the incoming edges of the nodes on R (and 0 for
the root of the suffix tree), then the condition

∑m
i=1 ai ≤ n

is naturally satisfied (because the longest suffix has length
n). A query sum(A, i) gives the string-depth of the internal
nodes (needed for popping all nodes with a string-depth ≥
LCP[i+1]). The index (onR) of the node with string-depth
l can be found by r = search(A, l).

Note that we do not need the full functionality of the
dynamic searchable partial sum structure, as the function
update() is not used at all, and we only have to insert and
delete at the end of the sequence (corresponding to pushes
and pops on R).

4.1.3 Representing C-counters

The C-counters (for counting the duplicates in a string) are
also stored in a searchable partial sum data structure (see
the previous section). This time, we only need the functions
insert (when a new node is pushed on the stack), delete
(when a node is popped), and update(A, i,∆) (with ∆ = 1
when updating ar after an RMQ, or with ∆ being the C-
value of the node that has just been popped from the stack).

This structure needs again n+o(n)+O(m) = O(n) bits
if we can assure that that the sum of all C-counters on the
stack is always less than n. But this is true, as a C-counter
of u is added to its parent node if and only if u’s subtree has
been traversed completely. So each suffix can contribute at
most 1 to the set of all C-counters, hence the bound on their
sum.

4.1.4 Representing S-counters

The S-counters (for counting the total number of occur-
rences of a string) are easier to handle, as they only need
to be accessed from top of the stack. The only prop-
erty we need to know is that the sum of the S-counters is
never greater than n, as they “cover” disjoint sub-arrays
in SA. Thus, we can encode them with variable-length
prefix codes, e.g., Elias-δ-code [11]. This takes again
n+ o(n) +O(m) = O(n) bits, while supporting deletions
and insertions at the ends in O(1) time.

4.2. Space and Time Analysis

The Compressed Suffix Array takes O(n(H0 +
log log |Σ|)) bits of space. Compressed LCP and RMQ val-

ues take overall 4n + o(n) bits of space. The database oc-
cupies n log |Σ| bits. Array P takes d log n bits. Bit-vector
B and its rank-structure take n+ o(n) bits.

Interesting points are the peak space consumption of
the data structures we use and their construction time.
The Compressed Suffix Array can be constructed using
O(n log |Σ|) bits of space in O(n log log |Σ|) time [17],
or even within space of the final structure [23] but us-
ing O(n log n) time. Once the Compressed Suffix Ar-
ray is given, the lcp-representation can be constructed in
O(n logε n) time using no extra space in addition to the fi-
nal structure [16]. Then, given the Compressed Suffix Array
and the compressed lcp-representation, the linear time algo-
rithm to construct the RMQ structure [12] takesO(n logε n)
time using no extra space.

During the main algorithm, we also allocate space forR,
C and S. This space is bounded by O(n) bits as analyzed
earlier. The algorithm makes O(n) queries and updates
to the data structures. The most costly operations are the
searches on R and updates on C which both take O(log n)
time.

Theorem 1 There is an algorithm for determining all
F strings satisfying a frequency-based predicate in
O(n log |Σ| + d logn) bit of space and O(n log n) time.
Writing the output takes additional O(|F | logε n + ‖F‖)
time, where 0 < ε ≤ 1 affects the constant of the space
usage and ‖F‖ is the total length of the output.

5. Extensions and Applications

5.1. Less Space, More Time

Other tradeoffs are possible in Theorem 1 by using dif-
ferent variants of compressed suffix arrays. It is possible to
obtain nHk + o(n log |Σ|) + d logn bits of space with the
running time increasing to O(n log n(1 + log |Σ|

log logn)).Here
k = o(log|Σ| n) and Hk is the order-k entropy of D.
This is achieved by using the FM-index variant in [25, 14],
and building on top of it the additional structures needed
for the full functionality of compressed suffix arrays as in
[32]. In this case, the text is not required to be stored at
all (after the construction), as the structure is self-index
and supports displaying any text substring of length ` in
O((` + log1+ε n) log |Σ|) time. That is, outputting the
result of the algorithm in Theorem 1 takes in this case
O(|F | log1+ε n log |Σ| + ‖F‖ log |Σ|) time, for any ε > 0
affecting the constants of the sub-linear structures.

5.2. Application to Storing Document Fre-
quencies

Sadakane [31, Section 5.2] gives a succinct index struc-
ture that stores the document frequencies, i.e. values S[i]−

C[i] that we compute on-the-fly in our algorithm. His struc-
ture consists basically of the compressed suffix array and a
unary coding of the frequency values in the inorder of the
virtual suffix tree. Sadakane shows that the final structure
occupies |CSA|+ 2n+ o(n) bits, where |CSA| is the size
of the compressed suffix array used. He does not give a
space-efficient construction algorithm (a suffix tree is used
as an intermediate structure, hence taking O(n log n) bits).

We can construct the required unary coding during our
algorithm as follows: We maintain the balanced parenthe-
ses (BP) representation as in [32] using a dynamic bit-vector
occupying n + o(n) bits. This gives us the preorder of the
virtual suffix tree nodes at each step. We use another dy-
namic bit-vector to store the C-counter values in the same
unary coding as Sadakane uses. Using rank and select
(select(i) returns the position of the i’th 1 [19]) on both
bit-vectors gives us a mapping between BP bit-vector and
the C-counter bit-vector. Inserting a new node in BP means
inserting 1 in the corresponding place of the C-counter bit-
vector. Incrementing a C-counter works by finding the cor-
responding node in BP, mapping the position to C-counter
bit-vector, and inserting 0 there. Finally, after all values
are computed, the preorder of C-counter bit-vector can be
turned into the inorder used in Sadakane’s scheme, and the
intermediate structures can be deleted. The algorithm uses
the same space and time as reported in Theorem 1.

6. Experimental Results

We have implemented the algorithm from §4 in C++3

and compared it to the C++-implementation of the optimal
algorithm from §3. Our implementation deviates from our
theoretical proposal as we use a compressed suffix array that
is based on sampling. We use a standard sampling rate of
logn that minimize the space usage, as this is the main ob-
jective of our approach. However, we will also see that a
smaller (fixed) sampling rate drastically decreases the ex-
ecution time, while leading only to a moderate increase in
space usage. We present test results of time and maximum
memory usage for different datasets of protein and genome
data.

6.1. Protein Datasets

We used two datasets consisting of the primary struc-
ture of all protein data from human and mouse, which
were obtained from Swissprot using the keywords HUMAN
and MOUSE in the NEWT taxonomy browser. The hu-
man dataset (D1) contained 71,622 proteins of total length
≈27.3MB, and the mouse dataset (D2) contained 62,562

3The implementation can be downloaded from
http://www.cs.helsinki.fi/group/suds/

proteins of total length ≈26.3MB. It is interesting to com-
pare these data sets because the genome of human and
mouse is known to be largely the same, but (given the dif-
ferent phenotype of the two species!) must contain some
significant differences.

All tests on protein data were run on a 3.0GHz Intel Pen-
tium 4 CPU with 3GB of main memory. All output was
redirected to the “null”-device in order to remove influences
from secondary storage units.

The programs were tested both on mining frequent sub-
strings (Probl. 1) and emerging substrings (Probl. 2). The
results for the frequent substring mining are reported in Tbl.
1. Here, the maximum support threshold τ forD2 was fixed
to .95. The more striking property of the space-efficient al-
gorithm is that it uses only 183.1MB of memory, while the
optimal algorithm needs 1,267.3MB. This means a space
reduction of a factor of ≈ 6.9. As already mentioned in
the introduction, space is often a more critical resource than
time; e.g., users are often willing to wait 3–4 hours instead
of 3 minutes, if this allows them to apply their methods to
much bigger data sets.

Table 1. Running times (seconds) for mining
frequent strings for the optimal (§3) and the
space-efficient (§4) algorithm. ρ is the mini-
mum support threshold forD1. The maximum
support threshold τ was held fixed at .95. The
last column denotes the size of the output.

ρ optimal space-efficient |output|
.1 154.4 12,426 3,559
.2 151.5 12,403 1,211
.3 154.9 12,565 953
.4 156.5 12,442 694
.5 155.8 12,558 436
.6 152.6 13,420 196
.7 154.1 12,445 49
.8 155.2 12,524 7
.9 151.3 12,672 2

avg 154.0 12,606.1 —

The running times for the emerging substring tasks are
reported in Tbl. 2 (for ρg = 1.3333) and Tbl. 3 (for ρg =
2.0). The results are largely along the lines of the frequent
string mining tasks: space is reduced by a factor of 6–7,
and the running time is increased by about two orders of
magnitude.

To give an idea on how the dataset length affects compu-
tation time and space usage, we tested mining frequent sub-
strings from different size prefixes of the protein data. Tests
were run on dataset prefixes of total length 2–50MB and
on the whole dataset of length ≈53.6MB. Here, the maxi-

Table 2. Running times (seconds) for mining
emerging strings for the optimal (§3) and the
space-efficient (§4) algorithm. ρs is the min-
imum support threshold. The growth rate ρg
was held fixed at 1.3333. The last column de-
notes the size of the output.

ρs optimal space-efficient |output|
.1 154.2 12,597 12

.05 151.9 12,636 233

.01 155.1 12,734 35,839
.005 152.8 13,137 225,198
.001 156.0 12,679 60,449,586

Table 3. Running times (seconds) for mining
emerging strings for the optimal (§3) and the
space-efficient (§4) algorithm. ρs is the mini-
mum support threshold. The growth rate ρg
was held fixed at 2.0. The last column de-
notes the size of the output.

ρs optimal space-efficient |output|
.1 154.2 12,380 0

.05 155.9 12,538 64

.01 154.4 12,637 34,343
.005 157.1 12,674 220,585
.001 159.1 13,228 60,410,579

mum support threshold τ was fixed to .95 and the minimum
threshold ρ to .40. Maximum memory usage for the opti-
mal (§3) and the space-efficient (§4) algorithm on different
size datasets are reported in Fig. 4. Running times for the
same datasets are shown in Fig. 5. Both figures show also a
time-space tradeoff for the space-efficent algorithm by us-
ing a fixed samplerate (= 3) inside CSA — we see that a
modest increase in memory consumption (Fig. 4) increases
the running time by one order of magnitude (Fig. 5)!

Inspired by this, we tested various time-space tradeoffs
for the space-efficient algorithm by using a denser sampling
inside CSA. The test was run on the whole protein dataset
with the same parameteres as above. The samplerate of
CSA was given values between 3–25. The resulting time
and space usage for each samplerate is reported in Fig. 6.
Note that the default samplerate used by the algorithm is
blognc (= 25 for the whole dataset). We thus conclude that
in practice we should choose a denser sampling.

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00

Input size (MB)

M
em

or
y

us
ag

e
(M

B
)

Optimal
Space−efficient, default
Space−efficient, dense

Figure 4. Maximum memory usage while min-
ing frequent substrings from protein data for
the optimal (§3) and the space-efficient (§4)
algorithm. A time-space tradeoff with dense
sampling is shown for the space-efficent al-
gorithm.

6.2. Human Genome

To show that the space-efficient algorithm works also on
genome-scale data, we used a DNA dataset of 22 human
chromosomes (build NCBI34) of total length 2.9 billion
base pairs. We measured time and maximum memory us-
age to solve the frequent substrings and emerging substrings
problems. Time to output the result’s substrings was ex-
cluded from these test results. Tests were run on a 3.0GHz
Intel Xeon CPU with 128GB of main memory.

The space-efficient algorithm used 39.8 hours and re-
quired maximum of 9.3GB of memory for mining the whole
genome. With a different time-space tradeoff (by denser
sampling inside CSA) we achieved a running time of only
22.6 hours with 14.9GB of maximum memory usage.

The implementation of the optimal-time algorithm was
tuned for 32 bit word length which is not enough for
genome-scale data. However, we can estimate the time and
space requirements from tests with 9 small chromosomes
(a quarter of the whole genome). For this small portion of
the genome, the optimal time algorithm used≈17.3 minutes
and required maximum of≈13.1GB of heap. This suggests
that genome-scale mining would require about an hour of
time and about 50GB of memory. Note that the integer ar-

0 10 20 30 40 50

1
10

10
0

10
00

10
00

0

Input size (MB)

Ti
m

e
(s

)

Optimal
Space−efficient, default
Space−efficient, dense

Figure 5. Running times for frequent sub-
string mining with the optimal (§3) and the
space-efficient (§4) algorithm on a logarith-
mic scale. A time-space tradeoff with dense
sampling is shown for the space-efficent al-
gorithm.

rays for SA, LCP and C-counters already require 3n logn
bytes of memory (≈32.0GB for the whole genome).

6.3. Comparison to Other Algorithms

Let us briefly describe other algorithms for mining sub-
strings. Algorithms VST [8] and FAVST [24] rely on a data
structure called Version Space Tree. Because this tree is
basically a suffix trie with O(n2) nodes in the worst case,
these algorithms suffer from high memory requirement. In
practice, we could not test these algorithms on any of the
datasets above, as they are only applicable to input sizes up
to several hundred kilobytes.

Chan et al. [7] presented an algorithm for the emerging
substrings problem, but we could not find an implementa-
tion of their approach. Furthermore, no information about
the practical memory requirement is reported. The algo-
rithm itself is based on a merged suffix tree withO(n) nodes
that suggests a space requirement of O(n log n) bits. It has
already been shown in a previous study [13] that suffix-
array based methods are superior to those built on suffix
trees or tries both in terms of time and space.

Two very recent improvements [22, 34] of the origi-
nal linear-time algorithm [13] also addresses the problem

2000 4000 6000 8000 10000 12000

18
0

20
0

22
0

24
0

26
0

28
0

Time (s)

M
em

or
y

us
ag

e
(M

B
)

252015

10

5

3
Space−efficient

Figure 6. Time-space tradeoff for the space-
effient algorithm with samplerates 3–25 on
protein data. Decreasing the samplerate in-
creases memory usage but makes our algo-
rithm significantly faster.

of lowering the space consumption; however, they only
achieve about half the space of the orignal algorithm. Fur-
thermore, their theoretical space guarantee is no better than
the O(n logn) bits of the original solution. Nevertheless,
it must be said that due to the simplicity of these two algo-
rithms [22, 34] they work faster in practice.

7. Conclusions

We hence conclude from the experiments that the prac-
tical performance of the two algorithms are in accordance
with their theoretical guarantees. However, we must also
say that the constants involved in the time-performance of
the succinct data structures (§4) are still large.

Acknowledgments

Thanks to the discussions with Luis Russo after the
Workshop on Compression, Text, and Algorithms, orga-
nized by Gonzalo Navarro at University of Chile, Novem-
ber, 2007, we were able to improve our result significantly.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 487–499. Morgan Kaufmann, 1994.

[2] H. Arimura and T. Uno. An efficient polynomial space
and polynomial delay algorithm for enumeration of maximal
motifs in a sequence. Journal of Combinatorial Optimiza-
tion, 13:243–262, 2006. Special issue on bioinformatics.

[3] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[4] F. Birzele and S. Kramer. A new representation for protein
secondary structure prediction based on frequent patterns.
Bioinformatics, 22(24):2628–2634, 2006.

[5] D. K. Blandford and G. E. Blelloch. Compact represen-
tations of ordered sets. In Proc. SODA, pages 11–19.
ACM/SIAM, 2004.

[6] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Prediction
of regulatory elements in silico on a genomic scale. Genome
Research, 8:1202–1215, 1998.

[7] S. Chan, B. Kao, C. L. Yip, and M. Tang. Mining emerging
substrings. In Proc. of the Itl. Conf. on Database Systems
for Advanced Applications (DASFAA), pages 119–126. IEEE
Computer Society, 2003.

[8] L. De Raedt, M. Jäger, S. D. Lee, and H. Mannila. A theory
of inductive query answering. In Proc. Int. Conf. on Data
Mining (ICDM), pages 123–130. IEEE Computer Society,
2002.

[9] L. De Raedt and S. Kramer. The levelwise version space
algorithm and its application to molecular fragment mining.
In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI),
pages 853–862. Morgan Kaufmann, 2001.

[10] G. Dong and J. Li. Efficient mining of emerging patterns:
Discovering trends and differences. In Proc. Int. Conf. on
Knowledge Discovery and Data Mining (KDD), pages 43–
52. ACM Press, 1999.

[11] P. Elias. Universal codeword sets and representations of
the integers. IEEE Transactions on Information Theory,
21(2):194–203, 1975.

[12] J. Fischer and V. Heun. A new succinct representation of
RMQ-information and improvements in the enhanced suffix
array. In Proc. Int. Symp. on Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies (ESCAPE),
volume 4614 of LNCS, pages 459–470. Springer, 2007.

[13] J. Fischer, V. Heun, and S. Kramer. Optimal string min-
ing under frequency constraints. In Proc. European Conf.
on Principles and Practice of Knowledge Discovery in
Databases (PKDD), volume 4213 of LNCS, pages 139–150.
Springer, 2006.

[14] R. González and G. Navarro. Improved dynamic rank-select
entropy-bound structures. In Proc. Latin American Symp.
on Theoretical Informatics (LATIN), volume 4957 of LNCS,
pages 374–386. Springer, 2008.

[15] R. Grossi and J. S. Vitter. Compressed suffix arrays and suf-
fix trees with applications to text indexing and string match-
ing. SIAM J. Comput., 35(2):378–407, 2005.

[16] W.-K. Hon and K. Sadakane. Space-economical algorithms
for finding maximal unique matches. In Proc. Annual Symp.
on Combinatorial Pattern Matching (CPM), volume 2373 of
LNCS, pages 144–152. Springer, 2002.

[17] W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking a time-
and-space barrier in constructing full-text indices. In Proc.
FOCS, pages 251–260. IEEE Computer Society, 2003.

[18] L. C. K. Hui. Color set size problem with application to
string matching. In Proc. Annual Symp. on Combinatorial
Pattern Matching (CPM), volume 644 of LNCS, pages 230–
243. Springer, 1992.

[19] G. Jacobson. Space-efficient static trees and graphs. In Proc.
FOCS, pages 549–554. IEEE Computer Society, 1989.

[20] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park.
Linear-time longest-common-prefix computation in suffix
arrays and its applications. In Proc. Annual Symp. on Com-
binatorial Pattern Matching (CPM), volume 2089 of LNCS,
pages 181–192. Springer, 2001.

[21] P. Ko and S. Aluru. Space efficient linear time construc-
tion of suffix arrays. In Proc. Annual Symp. on Combinato-
rial Pattern Matching (CPM), volume 2676 of LNCS, pages
200–210. Springer, 2003.

[22] A. Kügel and E. Ohlebusch. A space efficient solution to the
frequent string mining problem for many databases. Data
Mining and Knowledge Discovery, 17(1):24–38, 2008.

[23] T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A
space- and time-efficient algorithm for constructing com-
pressed suffix arrays. In Proc. Annual Int. Computing and
Combinatorics Conf. (COCOON), LNCS 2387, pages 401–
410. Springer, 2002.

[24] S. D. Lee and L. De Raedt. An efficient algorithm for mining
string databases under constraints. In Proc. Itl. Workshop
on Knowledge Discovery in Inductive Databases (KDID),
volume 3377 of LNCS, pages 108–129. Springer, 2005.

[25] V. Mäkinen and G. Navarro. Dynamic entropy-compressed
sequences and full-text indexes. ACM Transactions on Al-
gorithms, to appear 2008.

[26] U. Manber and E. W. Myers. Suffix arrays: A new method
for on-line string searches. SIAM J. Comput., 22(5):935–
948, 1993.

[27] G. Navarro and V. Mäkinen. Compressed full-text indexes.
ACM Computing Surveys, 39(1):Article No. 2, 2007.

[28] L. Parida. Pattern Discovery in Bioinformatics: Theory and
Algorithms. Chapman & Hall / CRC, 2007.

[29] K. Sadakane. New text indexing functionalities of the com-
pressed suffix arrays. J. Algorithms, 48(2):294–313, 2003.

[30] K. Sadakane. Compressed suffix trees with full functional-
ity. Theory of Computing Systems, 41(4):569–607, 2007.

[31] K. Sadakane. Succinct data structures for flexible text re-
trieval systems. J. Discrete Algorithms, 5(1):12–22, 2007.

[32] N. Välimäki, W. Gerlach, K. Dixit, and V. Mäkinen. Engi-
neering a compressed suffix tree implementation. In Proc.
Int. Workshop on Experimental Algorithms (WEA), LNCS
4525, pages 217–228. Springer, 2007.

[33] L. Wang, H. Zhao, G. Dong, and J. Li. On the complexity of
finding emerging patterns. Theor. Comput. Sci., 335(1):15–
27, 2005.

[34] D. Weese and M. H. Schulz. Efficient string mining under
constraints via the deferred frequency index. In Proc. 8th
Industrial Conf. on Data Mining (ICDM), volume 5077 of
LNCS, pages 374–388. Springer, 2008.

