
An(other) Entropy-Bounded Compressed Suffix Tree

Johannes Fischer1, Veli Mäkinen2, and Gonzalo Navarro1

1 Dept. of Computer Science, Univ. of Chile. {jfischer|gnavarro}@dcc.uchile.cl
2 Dept. of Computer Science, Univ. of Helsinki, Finland. vmakinen@cs.helsinki.fi

Abstract. Suffix trees are one of the most important data structures in stringology, with myriads of
applications in fluorishing areas like bioinformatics. As their main problem is space usage, recent efforts
have focused on compressed suffix tree representations, which obtain large space reductions in exchange
for moderate slowdowns. Such a smaller suffix tree could fit in a faster memory, outweighting by far the
theoretical slowdown. We present a novel compressed suffix tree. Compared to the current compressed
suffix trees, it is the first achieving at the same time sublogarithmic complexity for the operations,
and space usage which goes to zero as the entropy of the text does. Our development contains several
novel ideas, such as compressing the longest common prefix information, and totally getting rid of the
suffix tree topology, expressing all the suffix tree operations using range minimum queries and a new
primitive called next/previous smaller value in a sequence.

1 Introduction

Suffix trees are probably the most important structure ever invented in stringology. They have been
said to have “myriads of virtues” [2], and also have myriads of applications in many areas, most
prominently bioinformatics [12]. One of the main drawbacks of suffix trees is their considerable
space requirement, which is usually close to 20n bytes for a sequence of n symbols, and at the very
least 10n bytes [16]. For example, the Human genome, containing approximately 3 billion bases,
could easily fit in the main memory of a desktop computer (as each DNA symbol needs just 2 bits).
However, its suffix tree would require 30GB to 60GB, too large to fit in normal main memories.
Although there has been some progress in managing suffix trees in secondary storage [14] and it is
an active area of research [15], it will always be faster to operate the suffix tree in main memory.

This situation has stimulated research on compressed representation of suffix trees, where the
data structure operates without uncompressing it. Even if many more operations are needed to
carry out the operations on the compressed representation, this is clearly advantageous compared
to having to manage it on secondary memory. A large body of research focuses on compressed suffix
arrays [21], which offer a reduced suffix tree functionality. In particular, they miss the important
suffix-link operation. The same restrictions apply to early compressed suffix trees [20, 11].

The first fully-functional compressed suffix tree is due to Sadakane [25]. It builds on top of a
compressed suffix array [24] that uses 1

ǫ
nH0 + O(n log log σ) bits of space, where H0 is the zero-

order entropy of the text T1,n, σ is the size of the alphabet of T , and 0 < ǫ < 1 is any constant. In
addition, the compressed suffix tree needs 6n+o(n) bits of space. Most of the suffix tree operations
can be carried out in constant time, except for knowing the string-depth of a node and the string
content of an edge, which take O(logǫ n) time, and moving to a child, which costs O(logǫ n log σ).
One could replace the compressed suffix array they use by Grossi et al.’s [10], which requires less
space: 1

ǫ
nHk + o(n log σ) bits for any k ≤ α logσ n, where Hk is the k-th empirical entropy of T [18]

and 0 < α < 1 is any constant. However, the O(logǫ n) time complexities become O(log
ǫ

1−ǫ
σ n log σ)

[10, Thm. 4.1]. In addition, the extra 6n bits in the space complexity remain, despite any reduction
we can achieve in the compressed suffix array. This term can be split into 2n bits to represent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14899983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(with a bitmap called Hgt) the longest common prefix (LCP) information, plus 4n bits to represent
the suffix tree topology with parentheses. Many operations are solved via constant-time range
minimum queries (RMQs) over the depths in the parentheses sequence. An RMQ from i to j ≥ i
over a sequence S[1, n] of numbers asks for rmqS(i, j) := argmini≤ℓ≤jS[ℓ].

Russo et al. [23] recently achieved fully-compressed suffix trees, that is, requiring nHk+o(n log σ)
bits of space (with the same limits on k as before), which is essentially the space required by the
smallest compressed suffix array, and asymptotically optimal under the k-th entropy model. The
main idea is to sample some suffix tree nodes and use the compressed suffix array as a tool to find
nearby sampled nodes. The most adequate compressed suffix array for this task is the alphabet-
friendly FM-index [5]. The time complexities for most operations are logarithmic at best, more
precisely, between O(log n) and O(log n log log n). Others are slightly more expensive, for example
moving to a child costs an additional O(log log n) factor, and some less common operations are as
costly as O((log n log log n)2).

We present a new fully-compressed suffix tree, by removing the 6n term in Sadakane’s space
complexity. The space we achieve is not as good as that of Russo et al., but most of our time
complexities are sublogarithmic. More precisely, our index needs nHk(

1
ǫ
+2 log 1

Hk
)+o(n log σ) bits

of space. Note that, although this is not the ideal nHk, it still goes to zero as Hk → 0, unlike the
uncompressible 6n bits in Sadakane’s structure. Our solution builds on two novel algorithmic ideas
to improve Sadakane’s compressed suffix tree.

1. We show that array Hgt, which encodes LCP information in 2n bits [25], actually contains 2R
runs, where R is the number of runs in ψ [21]. We show how to run-length compress Hgt into
2R log n

R
+ o(n) bits while retaining constant-time access. In order to relate R with nHk, we

use the result R ≤ nHk + σk for any k [17], although sometimes it is extremely pessimistic (in
particular it is useful only for Hk < 1, as obviously R ≤ n). This gives the 2nHk log 1

Hk
upper

bound to store Hgt.
2. We get rid of the suffix tree topology and identify suffix tree nodes with suffix array intervals. All

the tree traversal operations are simulated with RMQs on LCP (represented with Hgt), plus a
new type of queries called “Next/Previous Smaller Value”, that is, given a sequence of numbers
S[1, n], find the first cell in S following/preceding i whose value is smaller than S[i].1 We show
how to solve these queries in sublogarithmic time while spending only o(n) extra bits of space
on top of S. We believe this operation might have independent interest, and the challenge of
achieving constant time with sublinear space remains open.

2 Basic Concepts

The suffix tree S of a text T1,n over an alphabet Σ of size σ is a compact trie storing all the
suffixes Ti,n where the leaves point to the corresponding i values [2, 12]. For technical convenience
we assume that T is terminated with a special symbol, so that all lexicographical comparisons are
well defined. For a node v in S, π(v) denotes the string obtained by reading the edge-labels when
walking from the root to v (the path-label of v [23]). The string-depth of v is the length of π(v).

Definition 1. A suffix tree representation supports the following operations:

– Root(): the root of the suffix tree.

1 Computing NSVs/PSVs on the fly has been considered in parallel computing [3], yet not in the static scenario.

2

– Locate(v): the suffix position i if v is the leaf of suffix Ti,n, otherwise null.
– Ancestor(v,w): true if v is an ancestor of w.
– SDepth(v)/TDepth(v): the string-depth/tree-depth of v.
– Count(v): the number of leaves in the subtree rooted at v.
– Parent(v): the parent node of v.
– FChild(v)/NSibling(v): the alphabetically first child/next sibling of v.
– SLink(v): the suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σ.
– SLinki(v): the iterated suffix-link of v; (node w s.th. π(w) = β if π(v) = αβ for α ∈ Σi).
– LCA(v,w): the lowest common ancestor of v and w.
– Child(v, a): the node w s.th. the first letter on edge (v,w) is a ∈ Σ.
– Letter(v, i): the ith letter of v’s path-label, π(v)[i].
– LAQs(v, d)/LAQt(v, d): the highest ancestor of v with string-depth/tree-depth ≥ d.

Existing compressed suffix tree representations include a compressed full-text index [21, 24, 10,
5], which encodes in some form the suffix array SA[1, n] of T , with access time tSA. Array SA is a
permutation of [1, n] storing the pointers to the suffixes of T (i.e., the Locate values of the leaves
of S) in lexicographic order. Most full-text indexes also support access to permutation SA

−1 in time
O(tSA), as well as the efficient computation of permutation ψ[1, n], where ψ(i) = SA

−1[SA[i] + 1]
for 1 ≤ i ≤ n if SA[i] 6= n and SA

−1[1] otherwise. ψ(i) is computed in time tψ, which is at most
O(tSA), but usually less. Compressed suffix tree representations also include array LCP[1, n], which
stores the length of the longest common prefix (lcp) between consecutive suffixes in lexicographic
order, LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| for i > 1 and LCP [1] = 0. The access time for LCP is tLCP.

We make heavy use of the following complementary operations on bit arrays: rank(B, i) is
the number of bits set in B[1, i], and select(B, j) is the position of the j-th 1 in B. Bit vector
B[1, n] can be preprocessed to answer both queries in constant time using o(n) extra bits of space
[19]. If B contains only m bits set, then the representation of Raman et al. [22] compresses B to
m log n

m
+O(n log logn

logn) bits of space and retains constant-time rank and select queries.

3 Compressing LCP Information

Sadakane [25] describes an encoding of the LCP array that uses 2n+o(n) bits. The encoding is based
on the fact that values i + LCP[i] are nondecreasing when listed in text position order: Sequence
S = s1, . . . , sn−1, where sj = j + LCP[SA

−1[j]], is nondecreasing.
To represent S, Sadakane encodes each diff(j) = sj − sj−1 in unary: 1 0diff(j), where s0 = 0

and 0d denotes repetition of 0-bit d times. This encoding, call it U (similar to Hgt [25]), takes at
most 2n bits. Thus LCP[i] = select(U, j + 1) − j − 1, where j = SA[i], is computed in time O(tSA).

Let us now consider how to represent U in a yet more space-efficient form, i.e., in 2nHk log 1
Hk

+
o(n) bits, for small enough k. The result follows from the observation (to be shown below) that the
number of 1-bit runs in U is bounded by the number of runs in ψ. We call a run in ψ a maximal
sequence of consecutive i values where ψ(i) − ψ(i − 1) = 1 and TSA[i−1] = TSA[i], including one
preceding i where this does not hold [17]. Note that an area in ψ where the differences are not 1
corresponds to several length-1 runs. Let us call R ≤ n the overall number of runs.

We will represent U in run-length encoded form, coding each maximal run of both 0 and 1 bits.
We show soon that there are at most R 1-runs, and hence at most R 0-runs (as U starts with
a 1). If we encode the 1-run lengths o1, o2, . . . and the 0-run lengths z1, z2, . . . separately, it is
easy to compute select(U, j) by finding the largest r such that

∑r
i=1 oi < j and then answering

3

select(U, j) = j +
∑r

i=1 zi. This so-called searchable partial sums problem is easy to solve. Store
bitmap O[1, n] setting the bits at positions

∑r
i=1 oi, hence max{r,

∑r
i=1 oi < j} = rank(O, j − 1).

Likewise, bitmap Z[1, n] representing the zi’s solves
∑r

i=1 zi = select(Z, r). Since both O and Z

have at most R 1’s, O plus Z can be represented using 2R log n
R

+O(n log logn
logn) bits [22].

We now show the connection between runs in U and runs in ψ. Let us call position i a stopper
if i = 1 or ψ(i)−ψ(i− 1) 6= 1 or TSA[i−1] 6= TSA[i]. Hence ψ has exactly R stoppers by the definition
of runs in ψ. Say now that a chain in ψ is a maximal sequence i, ψ(i), ψ(ψ(i)), . . . such that each
ψj(i) is not a stopper except the last one. As ψ is a permutation with just one cycle, it follows
that in the path of ψj [SA

−1[1]], 0 ≤ j < n, we will find the R stoppers, and hence there are also R
chains in ψ [9].

We now show that each chain in ψ induces a run of 1’s of the same length in U . Let i, ψ(i), . . .,
ψℓ(i) be a chain. Hence ψj(i) − ψj(i− 1) = 1 for 0 ≤ j < ℓ. Let x = SA[i− 1] and y = SA[i]. Then
SA[ψj(i−1)] = x+j and SA[ψj(i)] = y+j. Then LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| = |lcp(Tx,n, Ty,n)|.

Note that Tx+LCP[i] 6= Ty+LCP[i], and hence SA
−1[y+LCP[i]] = ψLCPi is a stopper, thus ℓ ≤ LCP[i].

Moreover, LCP[ψj(i)] = |lcp(Tx+j,n, Ty+j,n)| = LCP[i] − j ≥ 0 for 0 ≤ j < ℓ. Now consider sy+j =
y+j+LCP[SA

−1[y+j]] = y+j+LCP[ψj(i)] = y+j+LCP[i]−j = y+LCP[i], all equal for 0 ≤ j < ℓ.
This produces ℓ − 1 diff values equal to 0, that is, a run of ℓ 1-bits in U . By traversing all the
chains in the cycle of ψ we sweep S left to right, producing at most R runs of 1’s and hence at most
R runs of 0’s. (Note that even an isolated 1 is a run with ℓ = 1.) Since R ≤ nHk+σk for any k [21],
we obtain the bound 2nHk log 1

Hk
+O(n log logn

logn) for any k ≤ α logσ n and any constant 0 < α < 1.
We emphasize that as 2R log n

R
is 2n in the worst case, our representation is asymptotically never

larger than the original Hgt.

4 Next-Smaller and Prev-Smaller Queries

In this section we consider queries next smaller value (NSV) and previous smaller value (PSV), and
show that they can be solved in sublogarithmic time using only a sublinear number of extra bits
on top of the raw data. We make heavy use of these queries in the design of our new compressed
suffix tree, and also believe that they can be of independent interest.

Definition 2. Let S[1, n] be a sequence of elements drawn from a set with a total order � (where
one can also define a ≺ b ⇔ a � b ∧ b 6� a). We define the query next smaller value and previous
smaller value as follows: NSV(S, i) = min{j, (i < j ≤ n∧S[j] ≺ S[i])∨ j = n+1} and PSV(S, i) =
max{j, (1 ≤ j < i ∧ S[j] ≺ S[i]) ∨ j = 0}, respectively.

The key idea to solve these queries reminds that for findopen and findclose operations in balanced
parentheses, in particular the recursive version [8]. However, there are several differences because
we have to deal with a sequence of generic values, not parentheses.

We will describe the solution for NSV, as that for PSV is symmetric. For shortness we will
write NSV(i) for NSV(S, i). We split S[1, n] into consecutive blocks of b values. A position i will be
called near if NSV(i) is within the same block of i. The first step when solving a NSV query will
be to scan the values S[i+ 1 . . . b · ⌈i/b⌉], that is from i+ 1 to the end of the block, looking for an
S[j] ≺ S[i]. This takes O(b) time and solves the query for near positions.

Positions that are not near are called far. We note that the far positions within a block, i1 <
i2 . . . < is form a nondecreasing sequence of values S[i1] � S[i2] . . . � S[is]. Moreover, their NSV
values form a nonincreasing sequence NSV(i1) ≥ NSV(i2) . . . ≥ NSV(is).

4

A far position i will be called a pioneer if NSV(i) is not in the same block of NSV(j), being j
the largest far position preceding i (the first far position is also a pioneer). It follows that, if j is
the last pioneer preceding i, then NSV(i) is in the same block of NSV(j) ≥ NSV(i). Hence, to solve
NSV(i), we find j and then scan (left to right) the block S[⌈NSV(j)/b⌉ − b+ 1 . . .NSV(j)], in time
O(b), for the first value S[j′] ≺ S[i].

So the problem boils down to efficiently finding the pioneer preceding each position i, and to
storing the answers for pioneers. We mark pioneers in a bitmap P [1, n]. We note that, since there
are O(n/b) pioneers overall [13], P can be represented using O(n log b

b
) + O(n log logn

logn) bits of space
[22]. With this representation, we can easily find the last pioneer preceding a far position i, as
j = select(P, rank(P, i)). We could now store the NSV answers for the pioneers in an answer array
A[1, n′] (n′ = O(n/b)), so that if j is a pioneer then NSV(j) = A[rank(P, j)]. This already gives us
a solution requiring O(n log b

b
) +O(n log logn

logn) +O(n logn
b

) bits of space and O(b) time. For example,
we can have O(n

log logn) bits of space and O(log n log log n) time.

However, we can do better by recursing on the idea. Instead of storing the answers explicitly
in array A, we will form a (virtual) reduced sequence S′[1, 2n′] containing all the pioneer values i
and their answers NSV(i). Sequence S′ is not explicitly stored. Rather, we set up a bitmap R[1, n]
where the selected values in S are marked. Hence we can retrieve any value S′[i] = S[select(R, i)].
Again, this can be computed in constant time using O(n log b

b
+ n log logn

logn) bits to represent R [22].

Because S′ is a subsequence of S, it holds that the answers to NSV in S′ are the same answers
mapped from S. That is, if i is a pioneer in S, mapped to i′ = rank(R, i) in S′, and NSV(i) is
mapped to j′ = rank(R,NSV(i)), then j′ = NSV(S′, i′), because any value in S′[i′ + 1 . . . j′ − 1]
correspond to values within S[i+1 . . .NSV(i)−1], which by definition of NSV are not smaller than
S[i]. Hence, we can find NSV(i) for pioneers i by the corresponding recursive query on S′, NSV(i) =
select(R,NSV(S′, rank(R, i))). We are left with the problem of solving queries NSV(S′, i).

We proceed again by splitting S′ into blocks of b values. Near positions in S′ are solved in O(b)
time by scanning the block. Recall that S′ is not explicitly stored, but rather we have to use select
on R to get its values from S. For far positions we define again pioneers, and solve NSV on far
positions in time O(b) using the answer for the preceding pioneer. Queries for pioneers are solved
in a third level by forming the virtual sequence S′′[1, 2n′′], n′′ = O(n′/b) = O(n/b2).

We continue the process recursively for r levels before storing the explicit answers in array
A[1, n(r)], n(r) = O(n/br). We remark that the P ℓ and Rℓ bitmaps at each level ℓ map positions
directly to S, not to the reduced sequence of the previous level. This permits accessing the Sℓ[i]
values at any level ℓ in constant time, Sℓ[i] = S[select(Rℓ, i)]. The pioneer preceding i in Sℓ is
found by first mapping to S with i′ = select(Rℓ, i), then finding the preceding pioneer directly
in the domain of S, j′ = select(P ℓ, rank(P ℓ, i′)), and finally mapping the pioneer back to Sℓ by
j = rank(Rℓ, j′).

Let us now analyze the time and space of this solution. Because we pay O(b) time at each level
and might have to resort to the next level in case our position is far, the total time is O(rb) because
the last level is solved in constant time. As for the space, all we store are the P ℓ and Rℓ bitmaps,
and the final array A. Array A takes O(n logn

br
) bits. As there are O(n/bℓ) elements in Sℓ, both P ℓ

and Rℓ require O(n
bℓ

log(bℓ) + n log logn
logn) bits of space (actually P ℓ is about half the size of Rℓ). The

sum of all the P ℓ and Rℓ takes order of

∑

1≤ℓ≤r

(

n

bℓ
log(bℓ) +

n log log n

log n

)

≤ n log b





∑

ℓ≥1

ℓ

bℓ



+r
n log log n

log n
= O

(

n log b

b
+ r

log log n

log n

)

.

5

vl vr x y

NSV
PSV

h h−1

RMQ

k

(x+1,y)

ψ ψ

Fig. 1. Left: Illustration to the representation of suffix tree nodes. The lengths of the bars indicate the LCP values.
All leaves in the subtree rooted at v = [vl, vr] share a longest common prefix of length at least h. Right: Schematic
view of the SLink operation. From v, first follow ψ, then perform an RMQ to find an (h − 1)-index k, and finally
locate the defining points of the desired interval by a PSV/NSV query from k.

We now state the main result of this section (rest of proof in Appendix A).

Theorem 1. Let S[1, n] be a sequence of elements drawn from a set with a total order, such that
access to any S[i] and any comparison S[i] ≺ S[j] can be computed in constant time. Then, for any
1 ≤ r, b ≤ n, it is possible to build a data structure on S taking O(n log b

b
+ rn log logn

logn + n logn
br

) bits,
so that queries NSV and PSV can be solved in worst-case time time O(rb). In particular, for any
f(n) = O(logn

log logn), one can achieve O(n
f(n)) bits of extra space and O(f(n) log log n) time.

Note that, if one is willing to spend 4n+o(n) bits of extra space, the operations can be solved in
constant time. The idea is to reduce PSV and NSV queries to O(1) findopen and findclose operations
in balanced parentheses [8]. For NSV, for 1 ≤ i ≤ n + 1 in this order, write a ’(’ and then x ’)’s
if there are x cells S[j] for which NSV(j) = i. The resulting sequence B is balanced if a final ’)’
is appended, and NSV(i) can be obtained by rank(B, findclose(B, select(B, i))), where a 1 in B
represents ’(’. The solution is symmetric for PSV, needing other 2n+ o(n) bits.

5 An Entropy-Bounded Compressed Suffix Tree

Let v be a node in the (virtual) suffix tree S for text T1,n. As in previous works [1, 4, 23], we
represent v by an interval [vl, vr] in SA such that SA[vl, vr] are exactly the leaves in S that are in
the subtree rooted at v. Let us first consider internal nodes, so vl < vr. Because S does not contain
unary nodes, it follows from the definition of LCP that at least one entry in LCP[vl + 1, vr] is equal
to the string-depth h of v; such a position is called h-index of [vl, vr]. We further have LCP[vl] < h,
LCP[i] ≥ h for all vl < i ≤ vr, and LCP[vr + 1] < h. Fig. 1 (left) illustrates. We state the easy yet
fundamental

Lemma 1. Let [vl, vr] be an interval in SA that corresponds to an internal node v in S. Then the
string-depth of v can be obtained as h = LCP(k), where k = rmqLCP(vl + 1, vr).

For leaves v = [vl, vl], the string-depth of v is simply given by n− SA[vl] + 1.

5.1 Range Minimum Queries in Sublinear Space

As Lemma 1 suggests, we wish to preprocess LCP such that rmqLCP can be answered in sublogarith-
mic time, using o(n) bits of additional space. A well-known strategy [6, 25] divides LCP iteratively

6

into blocks of decreasing size n > b1 > b2 > · · · > br. On level i, 1 ≤ i ≤ r, compute all answers
to rmqLCP that exactly span over blocks of size bi, but not over blocks of size bi−1 (set b0 = n

for handling the border case). This takes O(n
bi

log(
bi−1

bi
) log(bi−1)) bits of space if the answers are

stored relative to the beginning of the blocks on level i− 1, and if we only precompute queries that
span 2j blocks for some j ≤ ⌊log(bi−1

bi
)⌋ (this is sufficient because each query can be decomposed

into at most 2 possibly overlapping sub-queries whose lengths are a power of 2).
A general range minimum query is then decomposed into at most 2r + 1 non-overlapping sub-

queries q1, . . . , q2r+1 such that q1 and q2r+1 lie completely inside of blocks of size br, q2 and q2r
exactly span over blocks of size br, and so on. q1 and q2r+1 are solved by scanning in time O(br),

2

and all other queries can be answered by table-lookups in total time O(r). The final answer is
obtained by comparing at most 2r + 1 minima.

The next lemma gives a general result for RMQs using o(n) extra space (proof in Appendix A).

Lemma 2. Having constant-time access to elements in an array A[1, n], it is possible to answer
range minimum queries on A in time O(f(n)(log f(n))2) using O(n

f(n)) bits of space, for any f(n) =

Ω(log[r] n) and any constant r, where log[r] n denotes r applications of log to n.

5.2 Suffix-Tree Operations

Now we have all the ingredients for navigating in the suffix tree. The operations are described in
the following; the intuitive reason why an RMQ is often followed by a PSV/NSV-query is that
the RMQ gives us an h-index of the (yet unknown) interval, and the PSV/NSV takes us to the
delimiting points of this interval. Apart from tSA, tLCP, and tψ, we denote by trmq and tpnsv the
time to solve, respectively, RMQs or NSV/PSV queries (both on LCP from now on, hence they will
be multiplied by tLCP).

Root/Count/Ancestor: Root() returns the interval [1, n], Count(v) is simply vr − vl + 1,
Ancestor(v,w) is true iff wl ≤ vl ≤ vr ≤ wr. All these can be computed in O(1) time.

SDepth(v)/Locate(v): According to Lemma 1, SDepth(v) can be computed in time O(trmq·tLCP)
for internal nodes, and both operations need time O(tSA) for leaves. One knows in constant time
that v = [vl, vr] is a leaf iff vl = vr.

Parent(v): If v is the root, return null. Otherwise, since the suffix tree is compact, we must
have that the string-depth of Parent(v) is either LCP[vl] or LCP[vr + 1], whichever is greater
[23]. So, by setting k = if LCP[vl] > LCP[vr + 1] then vl else vr + 1, the parent interval of v is
[PSV(k),NSV(k) − 1]. Time is O(tpnsv · tLCP).

FChild(v): If v is a leaf, return null. Otherwise, because the minima in [vl, vr] are v’s h-indices
[6], the first child of v is given by [vl,rmq(vl + 1, vr) − 1], assuming that RMQs always return the
leftmost minimum in the case of ties (which is easy to arrange). Time is O(trmq · tLCP).

NSibling(v): First move to the parent of v by w = Parent(v). If vr = wr, return null, since v
does not have a next sibling. If vr + 1 = wr, v’s next sibling is a leaf, so return [wr, wr]. Otherwise,
return [vr + 1,rmq(vr + 2, wr) − 1]. The overall time is O((trmq + tpnsv) · tLCP).

SLink(v): If v is the root, return null. Otherwise, first follow the suffix links of the leaves vl and
vr, x = ψ(vl) and y = ψ(vr). Then locate an h-index of the target interval by k = rmq(x + 1, y);

2 The constant-time solutions [25, 6] also solve q1 and q2r+1 by accessing tables that require Θ(n) bits.

7

see Lemma 7.5 in [1] (the first character of all strings in {TSA[i],n : vl ≤ i ≤ vr} is the same, so the
h-indices in [vl, vr] appear also as (h− 1)-indices in [ψ(vl), ψ(vr)]). The final result is then given by
[PSV(k),NSV(k) − 1]. Time is O(tψ + (tpnsv + trmq) · tLCP)). Fig. 1 (right) illustrates.

SLinki(v): Same as above with x = ψi(vl) and y = ψi(vr). If the first Letter of x and y are
different, then the answer is Root. Otherwise we go on with k as before. Computing ψi can be
done in O(tSA) time using ψi(v) = SA

−1[SA[v] + i] [23]. Time is thus O(tSA + (tpnsv + trmq) · tLCP).

LCA(v,w): If one of v or w is an ancestor of the other, return this ancestor node. Otherwise,
w.l.o.g., assume vr < wl. The h-index of the target interval is given by an RMQ between v and w [25]:
k = rmq(vr+1, wl). The final answer is again [PSV(k),NSV(k)−1]. Time is O((trmq+tpnsv) ·tLCP).

Child(v, a): If v is a leaf, return null. Otherwise, the minima in LCP[vl + 1, vr] define v’s child-
intervals, so we need to find the position p ∈ [vl + 1, vr] where LCP[p] = mini∈[vl+1,vr] LCP[i], and
TSA[p]+LCP[p] = Letter([p, p],LCP[p]) = a. Then the final result is given by [p,rmq(p + 1, vr) − 1],
or null if there is no such position p. To find this p, split [vl, vr] into three sub-intervals [vl, x −
1], [x, y − 1], [y, vr], where x (y) is the first (last) position in [vl, vr] where a block of size br starts
(br is the smallest block size for precomputed RMQs, recall Sect. 5.1). Intervals [vl, x − 1] and
[y, vr] can be scanned for p in time O(trmq · (tLCP + tSA)). The big interval [x, y − 1] can be binary-
searched in time O(log σ · tSA), provided that we also store exact median positions of the minima
in the precomputed RMQs [25] (within the same space bounds). The only problem is how these
precomputations are carried out in O(n) time, as it is not obvious how to compute the exact median
of an interval from the medians in its left and right half, respectively. However, a solution to this
problem exists [7, Sect. 3.2]. Overall time is O((tLCP + tSA) · trmq + log σ · tSA).

Letter(v, i): If i = 1 we can easily solve the query in constant time with very little extra space.
Mark in a bitmap C[1, n] the first suffix in SA starting with each different letter, and store in a
string L[1, σ] the different letters that appear in T1,n in alphabetical order. Hence, if v = [vl, vr],
Letter(v, 1) = L[rank(C, vl)]. L requires O(σ log σ) bits and C, represented as a compressed
bitmap [22], requires O(σ log n

σ
+ n log logn

logn) bits of space. Hence both add up to O(σ log n+ n log logn
logn)

bits. Now, for i > 1, we just use Letter(v, i) = Letter(ψi−1(vl), 1), in time O(min(tSA, i · tψ)).
We remark that structures L and C are already present, in one form or another, in all compressed
text indexes implementing SA [10, 24, 5].

TDepth(v): Tree-depth can usually be maintained while performing the other operations (apart
from LCA and LAQs): it increases by 1 in FChild and Child, decreases by 1 (or i) in Parent

and SLink (SLinki), becomes d in LAQt(·, d), and stays the same otherwise.
However, there is also a direct way to support TDepth, using other 2nHk log 1

Hk
bits of space.

The idea is similar to Sadakane’s representation of LCP [25]: the key insight is that the tree depth
can decrease by at most 1 if we move from suffix Ti,n to Ti+1,n (i.e., when following ψ). Define
TDE[1, n] such that TDE[i] holds the tree-depth of the LCA of leaves SA[i] and SA[i−1] (similar to
the definition of LCP). Then the sequence (TDE[ψk(SA

−1[1])] + k)k=0,1,...,n−1 is nondecreasing and
in the range [1, n], and can hence be stored using 2n+ o(n) bits. Further, the repetitions appear in
the same way as in Hgt (Sect. 3), so the resulting sequence can be compressed to 2nHk log 1

Hk
bits

using the same mechanism as for LCP. The time is thus O(tLCP).

LAQs(v, d): Let u = [ul, ur] = LAQs(v, d) denote the (yet unknown) result. Because u is an
ancestor of v, we must have ul ≤ vl and vr ≤ ur. We further know that LCP[i] ≥ d for all
ul < i ≤ ur. Thus, ul is the largest position in [1, vl] with LCP[ul] < d. So the search for ul can

8

be conducted in a binary manner by means of RMQs: Letting k = rmq(⌊vl/2⌋, vl), we check if
LCP[k] ≥ d. If so, ul cannot be in [⌊vl/2⌋, vl], so we continue searching in [1, ⌊vl/2⌋ − 1]. If not, we
know that ul must be in [⌊vl/2⌋, vl], so we continue searching in there. The search for ur is handled
symmetrically. Total time is O(log n · trmq · tLCP).

LAQt(v, d): The same idea as for LAQs can be applied here, using the array TDE instead of LCP,
and RMQs on TDE. Time is also O(log n · trmq · tLCP).

6 Discussion

The final performance of our compressed suffix tree (CST) depends on the compressed full-text
index used to implement SA. Among the best choices we have Sadakane’s compressed suffix array
(SCSA) [24], which is not so attractive for its O(n log log σ) extra bits of space in a context where
we are focusing on using o(n) extra space. The alphabet-friendly FM-index (AFFM) [5] gives the
best space, but our CST over AFFM is worse than Russo et al.’s CST (RCST) [23] both in time
and space. Instead, we focus on using Grossi et al.’s compressed suffix array (GCSA) [10], which is
larger than AFFM but lets our CST achieve better times than RCST. (Interestingly enough, RCST
does not benefit from using the larger GCSA.) Our resulting CST is a space/time tradeoff between
Sadakane’s CST (SCST) [25] and RCST. Within this context, it makes sense to consider SCST on
top of GCSA, to remove the huge O(n log log σ) extra space of SCSA.

GCSA uses |GCSA| = (1+ 1
ǫ
)nHk+O(n log logn

logσ n
) bits of space for any k ≤ α logσ n and constant

0 < α < 1, and offers times tψ = O(1) and tSA = O(logǫ n log1−ǫ σ). On top of |GCSA|, SCST needs
6n+o(n) bits, whereas our CST needs 2nHk log 1

Hk
+o(n) extra bits. Our CST times are tLCP = tSA,

whereas trmq and tpnsv depend on how large is o(n). Instead, RCST needs |AFFM | + o(n) bits,
where |AFFM | = nHk + O(n log logn

logσ n
) + O(n logn

γ
) bits, for some γ = ω(logσ n), to maintain the

extra space o(n log σ). AFFM offers times tψ = O(1 + log σ
log logn) and tSA = O(γ(1 + log σ

log logn)). In

addition, RCST uses o(n) = O(n logn
δ

) bits for a parameter δ = ω(logσ n).
An exhaustive comparison is complicated, as it depends on ǫ, γ, δ, the nature of the o(n) extra

bits in our CST, σ, etc. In general, our CST loses to RCST if they use the same amount of space,
yet our CST can achieve sublogarithmic times by using some extra space, whereas RCST cannot.
We opt for focusing on a particular setting that exhibits this space/time tradeoff. The reader can
easily derive other settings. We focus on the case σ = O(1) and all extra spaces not related to
entropy limited to O(n

logǫ
′

n
) bits, for constant 0 < ǫ′ < 1 (so f(n) = logǫ

′

n in Thm. 1 and Lemma

2). Thus, our times are trmq = logǫ
′

n(log log n)2 and tpnsv = logǫ
′

n log log n. RCST’s γ and δ are
O(log1+ǫ′ n). Table 1 (Appendix B) shows a comparison under this setting. The first column also
summarizes the general complexities of our operations, with no assumptions on σ nor extra space
except tψ ≤ tSA = tLCP, as these are intrinsic of our structure.

Clearly SCST is generally faster than the others, but it requires 6n + o(n) non-compressible
extra bits on top of |CSA|. RCST is smaller than the others, but its time is typically O(log1+ǫ′ n)
for some constant 0 < ǫ′ < 1. The space of our CST is in between, with typical time O(logλ n) for
any constant λ > ǫ+ǫ′. This can be sublogarithmic when ǫ+ǫ′ < 1. To achieve this, the permissible
space in the entropy-related part is larger than 2(1+log 1

Hk
)nHk. With less than that space our CST

is slower than the smaller RCST, but using more than that space our CST achieves sublogarithmic
times (except for level ancestor queries), being the only compressed suffix tree achieving it within
o(n) extra space.

9

Acknowledgments. JF wishes to thank Volker Heun and Enno Ohlebusch for interesting dis-
cussions on this subject. GN was partially funded by Millennium Institute for Cell Dynamics and
Biotechnology, Grant ICM P05-001-F, Mideplan, Chile.

References

1. M. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix arrays. J. Discrete

Algorithms, 2(1):53–86, 2004.
2. A. Apostolico. The myriad virtues of subword trees, pages 85–96. Combinatorial Algorithms on Words. NATO

ISI Series. Springer-Verlag, 1985.
3. O. Berkman, B. Schieber, and U. Vishkin. Optimal doubly logarithmic parallel algorithms based on finding all

nearest smaller values. J. Algorithms, 14(3):344–370, 1993.
4. R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists: structures for faster text indexing. In

Proc. 33rd ICALP, LNCS 4051, pages 358–369, 2006.
5. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences and full-text

indexes. ACM Transactions on Algorithms, 3(2):article 20, 2007.
6. J. Fischer and V. Heun. A new succinct representation of RMQ-information and improvements in the enhanced

suffix array. In Proc. ESCAPE, LNCS 4614, pages 459–470, 2007.
7. J. Fischer and V. Heun. Range median of minima queries, super cartesian trees, and text indexing. Manuscript.

Available at www.bio.ifi.lmu.de/∼fischer/fischer10range.pdf, 2007.
8. R. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for balanced parentheses. In

Proc. 15th CPM, LNCS 3109, pages 159–172, 2004.
9. R. González and G. Navarro. Compressed text indexes with fast locate. In Proc. 18th CPM, LNCS 4580, pages

216–227, 2007.
10. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proc. 14th SODA, pages

841–850, 2003.
11. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string

matching. SIAM J. on Computing, 35(2):378–407, 2006.
12. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cam-

bridge University Press, 1997.
13. G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th FOCS, pages 549–554, 1989.
14. J. Kärkkäinen and S. Rao. Algorithms for Memory Hierarchies, chapter 7: Full-text indexes in external memory,

pages 149–170. LNCS 2625. Springer, 2003.
15. P. Ko and S. Aluru. Optimal self-adjusting trees for dynamic string data in secondary storage. In Proc. 14th

SPIRE, LNCS 4726, pages 184–194, 2007.
16. S. Kurtz. Reducing the space requirements of suffix trees. Software: Practice and Experience, 29(13):1149–1171,

1999.
17. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. Nordic J. of Computing,

12(1):40–66, 2005.
18. G. Manzini. An analysis of the Burrows-Wheeler transform. J. of the ACM, 48(3):407–430, 2001.
19. I. Munro. Tables. In Proc. 16th FSTTCS, LNCS 1180, pages 37–42, 1996.
20. I. Munro, V. Raman, and S. Rao. Space efficient suffix trees. J. of Algorithms, 39(2):205–222, 2001.
21. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39(1):article 2, 2007.
22. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applications to encoding k-ary trees and

multisets. In Proc. 13th SODA, pages 233–242, 2002.
23. L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In Proc. 8th LATIN, LNCS, 2008. To

appear.
24. K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J. of Algorithms, 48(2):294–313,

2003.
25. K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing Systems, 2007. To appear.

DOI 10.1007/s00224-006-1198-x.

10

A Proofs

Theorem 1. The general formula for any r, b has been obtained thruoghout the section. As
for the formulas in terms of f(n), let us set the space limit to O(n

f(n)). Then n log b
b

= O(n
f(n))

implies b = Ω(f(n) log f(n)). Also, n logn
br

= O(n
f(n)) implies r ≥ log logn+log f(n)−O(1)

log b . Hence

rb ≥ b
log b (log log n + log f(n) − O(1)). Thus it is best to minimize b. By setting b = f(n) log f(n),

we get rb = f(n) log f(n)
log f(n)+log log f(n) (log log n + log f(n) − O(1)) = Θ(f(n)(log log n + log f(n))). The

final constraint is rn log logn
logn = O(n

f(n)), which, by substituting r = log logn+log f(n)
log b and considering

that b = Ω(f(n) log f(n)), yields the condition f(n) = O(logn
log logn). Thus log log n + log f(n) =

O(log log n). ⊓⊔

Lemma 2. We use r + 1 = O(1) levels 1 . . . r + 1, so it is sufficient that n
bi

log2 bi−1 = O(n
f(n)) for

all 1 ≤ i ≤ r+ 1, where b0 = n. From the condition n
b1

log2 b0 = O(n
f(n)) we get b1 = Θ(f(n) log2 n)

(the smallest possible bi values are best). From n
b2

log2 b1 = O(n
f(n)) we get b2 = Θ(f(n) log2 b1) =

Θ(f(n)(log f(n) + log log n)2). In turn, from n
b3

log2 b2 = O(n
f(n)) we get b3 = Θ(f(n) log2 b2) =

Θ(f(n)(log f(n) + log log log n)2). This continues until br+1 = Θ(f(n) log2 br) = Θ(f(n)(log f(n) +
log[r+1] n))2 = Θ(f(n) log2 f(n)). ⊓⊔

B Tables

Operation Our suffix tree Other suffix trees
General over GCSA [10] SCST [25] RCST [23]

Root,Count,Ancestor 1 1 1 1

Locate tSA logǫ n logǫ n log1+ǫ′ n

SDepth tSA · trmq logǫ+ǫ
′

n(log log n)2 logǫ n log1+ǫ′ n

Parent tSA · tpnsv logǫ+ǫ
′

n log log n 1 log1+ǫ′ n

FChild tSA · trmq logǫ+ǫ
′

n(log log n)2 1 log1+ǫ′ n

NSibling tSA(trmq + tpnsv) logǫ+ǫ
′

n(log log n)2 1 log1+ǫ′ n

SLink,LCA tSA(trmq + tpnsv) logǫ+ǫ
′

n(log log n)2 1 log1+ǫ′ n

SLinki tSA(trmq + tpnsv) logǫ+ǫ
′

n(log log n)2 logǫ n log1+ǫ′ n

Child tSA(trmq + log σ) logǫ+ǫ
′

n(log log n)2 logǫ n log1+ǫ′ n log log n

Letter tSA logǫ n logǫ n log1+ǫ′ n

TDepth tSA
(∗) logǫ n 1 log2+2ǫ′ n

LAQs tSA · trmq · log n log1+ǫ+ǫ′ n(log log n)2 Not supported log1+ǫ′ n

LAQt tSA · trmq · log n (∗) log1+ǫ+ǫ′ n(log log n)2 1 log2+2ǫ′ n
(∗) Our CST needs other 2nHk log 1

H
k

+ o(n) extra bits to implement TDepth and LAQt.

Table 1. Comparison between ours and alternative compressed suffix trees. The column labeled ‘General’ assumes
tψ ≤ tSA = tLCP. All other columns further assume σ = O(1), and that the extra spaces is O(n

logǫ′ n
).

11

