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Vibrational coordinates and their gradients: A geometric algebra approach
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The gradients of vibrational coordinates are needed in order to form the exact vibrational kinetic
energy operator of a polyatomic molecule. The conventional methods used to obtain these gradients
are often quite laborious. However, by the methods ofgeometric algebra, the gradients for any
vibrational coordinate can be easily calculated. Examples are given, and special attention is directed
to ring coordinates. ©2000 American Institute of Physics.@S0021-9606~00!01106-5#
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I. INTRODUCTION

In the past, the molecular vibrations were common
studied by using the rectilinear normal coordinates based
the infinitesimal approximation of the true nucle
displacements.1,2 However, the rectilinear coordinates are n
the best choice for the systems involving large displacem
from the equilibrium configuration. Hence, in the rece
years, much work has been done using the true curvilin
internal coordinates. For some recent work, see Refs. 3–
for extensive bibliography, see Ref. 3.

The use of curvilinear internal coordinates offers seve
advantages compared to the use of rectilinear normal c
dinates. First, curvilinear internal coordinates must be us
if one wishes to take the advantage of the isotope-invar
Born–Oppenheimer potential energy surfaces.7,9 Second, po-
tential energy surface expansions converge usually fa
when expressed in terms of the curvilinear internal coo
nates than when written in terms of rectilinear norm
coordinates.12 This is especially true, if large amplitud
motions10,11 are present. Last, but not least, the internal
ordinates offer a simple and physical picture of vibration
motions in question.13–16For example, in the curvilinear per
spective, the dominant contributions to the nonlinear Fe
resonance arise from the anharmonic cubic kinetic ene
and potential energy couplings.8,13 This is expected, since th
Fermi resonance couples the vibrational modes of the
frequency ratio. In the rectilinear perspective, however
major component to the Fermi resonance is due to thehar-
monic force constants associated with the exact inter
coordinates.13

The kinetic energy operator is more complicated in c
vilinear internal coordinates than in rectilinear coordinat
The purpose of this work is to present a simple algebraic w
to obtain the gradients of the vibrational coordinates, wh
inner products give the exact kinetic energy operator.

II. VIBRATIONAL KINETIC ENERGY

By using the suitable internal coordinatesqi , the expec-
tation value of the vibrational part of the kinetic energy of
N-atom molecule,
3120021-9606/2000/112(7)/3121/12/$17.00
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^T&52
\2

2 (
a51

N E dtC*
“a

2

ma
C ~1!

can be written as17,18

^T&52
\2

2 E dtC* (
i j

S ]

]qi
1

1

J

]J

]qi
Dg(qiqj )

]

]qj
C, ~2!

whereC is the eigenfunction of the full vibrational Hamil
tonian,ma is the mass of the nucleusa, and“a is the vector
derivative~gradient! operator with respect to the spatial p
sition vectorxa of the nucleusa and

g(qiqj )5(
a

N
1

ma
~¹aqi !•~¹aqj ! ~3!

are the elements of the mass weighted reciprocal metric
sor, whose values at the reference configuration are the
song-matrix elements.1 In terms of a fixed three-dimensiona
orthonormal basis$u1 ,u2 ,u3% the gradient operator pos
sesses a representation

“a5(
k

3

uk

]

]xak

, ~4!

wherexak
5xa•uk is thekth Cartesian coordinate of the po

sition vectorxa . The volume element of the integration
dt5Jdq1dq2 . . . , whereJ is the functional determinant~the
Jacobian! of the coordinate transformation. In the curviline
case, theg(qiqj ) elements are generally functions of the inte
nal coordinates.

In order to form the vibrational kinetic energy operato
the gradients“aqi must be calculated. Unfortunately, this
not always easy with the conventional methods. It see
surprising that no practicalalgebraic method to calculate
these gradients has been presented in the literature. How
there exists a branch of mathematics,geometric algebra,
which enables one to obtain the gradients forevery internal
coordinate both easily, straightforwardly and most surp
ingly, coordinate freely.19–24

III. RUDIMENTS OF GEOMETRIC ALGEBRA

Physics today is blended with different mathematic
formalisms, each introduced to handle some specific pr
1 © 2000 American Institute of Physics
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lems. For example, the classical electrodynamics is c
monly formulated in terms of the vector algebra develop
by Gibbs, but on the other hand, the classical mechanic
the vibratingN-body system is formulated more readily b
the matrix algebra. In some other cases, such as in the
sical treatment of the forced linear oscillator, the comp
algebra is more appropriate. Geometric algebra integrate
these algebraic systems in a coherent mathematical langu
which retains the advantages of each of these subalge
but also possesses powerful new capabilities.

In the geometric algebra, aninvertiblegeometric product
is defined. Hence vectors can be divided and multiplied
other vectors~or any elements by any other elements for th
matter! so they can be directly manipulated instead of m
nipulating their components. The geometric product for ar
trary vectorsa andb is defined as19,21,23

ab5a"b1a`b, ~5!

wherea"b is the scalar valued inner product~the usual ‘‘dot
product’’!, anda`b is a bivector~two-blade! valued outer
product. The outer and inner products of two vectors can
vice versa expressed in terms of the geometric product o
as

a"b5 1
2~ab1ba!5b"a, ~6!

a`b5 1
2 ~ab2ba!52b`a. ~7!

As seen from Eqs.~6! and ~7!, generally

abÞba, ~8!

and they are equal only ifa is collinear withb. However, the
geometric product is both distributive and associative, i.e

a~b1c!5ab1ac, ~9!

abc5a~bc!5~ab!c. ~10!

The inverse of the vectora is given by

a215
a

a2
~11!

and it fulfills

aa215a21a51 ~12!

as seen by the direct substitution ofb5a/a2 to Eq. ~5!.
The bivectora1`a2 of two vectorsa1 and a2 can be

pictured as an oriented parallelogram with sidesa1 and a2.
Similarly, a trivectora1`a2`a3 can be pictured as an or
ented parallelepiped with sidesa1 , a2, and a3. The inner,
outer, and geometric products can be generalized as20,21

a•Ak̄5 1
2~aAk̄2~21!kAk̄a!5~21!k11Ak̄•a, ~13!

a`Ak̄5 1
2~aAk̄1~21!kAk̄a!5~21!kAk̄`a, ~14!

aAk̄5a•Ak̄1a`Ak̄ ~15!

for a vectora and anyk-blade Ak̄5a1`a2`•••`ak . The
inner producta•Ak̄ is a k21 blade, and the outer produc
a`Ak̄ is a k11 blade. Note, that the geometric product
two bladesAk̄ andBl̄ is generallynot related by the formula
analogous to Eq.~15! if both k,l .1. However, one can write
Downloaded 20 Aug 2007 to 128.214.3.188. Redistribution subject to AIP
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Ak̄•Bl̄ 5^Ak̄Bl̄ & uk2 l ū if k,l .0, ~16!

Ak̄•Bl̄ 50 if k50 or l 50, ~17!

Ak̄`Bl̄ 5^Ak̄Bl̄ &k1 l̄ , ~18!

where^Ak̄Bl̄ &m̄ denotes them-blade part ofAk̄Bl̄ . Generally,
the geometric productAk̄Bl̄ results in the terms of interme
diate grade fromuk2 l u to k1 l in the steps of two, i.e.,

Ak̄Bl̄ 5 (
m50

(k1 l 2uk2 l u)/2

^Ak̄Bl̄ & uk2 l u12m̄ . ~19!

Since Eqs.~13!–~15! are sufficient for the purpose of grad
ent calculations, the explicit formulas need not be given
the factors of the right-hand side of Eq.~19!. However, the
special case of Eq.~17! together with Eq.~19! assures that
scalars~the 0-blades! commute with every other blades, an
that

lAk̄5l`Ak̄5Ak̄`l5Ak̄l. ~20!

The magnitude of any multivectorA is a positive
scalar,19–21

uAu5^A†A& 0̄
1/2

>0, ~21!

where (a1`a2`•••`ak)
†5ak`•••`a2`a1 and ^A†A& k̄ de-

notes thek-blade part ofA†A. Generally, if

A5A0̄1A1̄1A2̄1•••, ~22!

the square of the magnitude ofA is given by the sum of the
squares of itsk-blade parts (k50,1,2, . . . ), i.e.,

uAu25uA0̄u21uA1̄u21uA2̄u21•••

5A0̄
2
1A1̄

†
•A1̄1A2̄

†
•A2̄1 . . . . ~23!

By using the Laplace’s expansion formula~A1! given in Ap-
pendix A, the inner products of thek-blade parts in~23! can
be expanded in terms of their vector factors.

In the three-dimensional space, the outer producta1

`a2`•••`ak is zero fork.3, and any trivector can be ex
pressed as a multiple of a unit trivectori. As implied by its
name, the unit trivectori is of the unit magnitude, i.e.,i †i
515u i u. On the other hand,i 2521. Furthermore, in the
three-dimensional space, the unit trivector commutes with
other elements of the algebra. Hence it is justifiable to s
that the unit trivectori plays the role of the imaginary unit in
the three-dimensional space. Also, the vector cross pro
a13a2 is related to the bivectora1`a2 as

a13a252 i ~a1`a2!. ~24!

This very rudimentary introduction to the geometric a
gebra has been quite formal. However, an unlimited num
of geometricalrelations can be extracted by the simple alg
braic manipulation of the rules given above. For examp
any vectora can be decomposed to the components para
(ai) and orthogonal (a') to some given vectorn by simply
multiplying it by nn21. This results

ann215
ann

n2
5

~an!n

n2
5

1

n2
~a"n¿a`n!n5ai1a' .

~25!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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3123J. Chem. Phys., Vol. 112, No. 7, 15 February 2000 Coordinates: A geometric algebra approach
Similarly, any vectora can be decomposed to the comp
nents parallel (ai) and orthogonal (a') to some given plane
B5n`m as

ai5~a•B!B21, ~26!

a'5~a`B!B21. ~27!

In the geometric algebra, each geometrical point is rep
sented by a vector, and any geometric quantity can be
scribed in terms of its intrinsic properties alone, without
troducing any external coordinate frames~see especially
Chaps. 2–6 of Ref.19!. This means thatany internal coordi-
nate can be written in terms of the relative position vectors
the nuclei only. Once this has been done, the gradients
be easily obtained by the methods of the geometric alge
The effort required in part of the reader to master the ba
of the geometric algebra is more than compensated by
simplifications in the gradient calculations.

To eliminate some brackets, I shall use in this work t
convention that the inner and outer products have prefere
over adjacent geometric products, and the outer product
preference over the adjacent inner product. For exam
ab"c`dÆa@b"„c`d)]Þ(ab)"(c`d).

IV. GRADIENTS OF THE INTERNAL COORDINATES

The starting point is the following simple yet useful fac
In the geometric algebra, the gradients“aqi are the vector
derivatives of the coordinate qi with respect to the spatia
position vectorxa ,21,22 that is,

“aqi[]xa
qi . ~28!

Much of the gradient calculations resemble those of the u
scalar calculus. For example, the vector differentiation is d
tributive,

“a~F1G!5“aF1“aG ~29!

for anyF andG. If l5l(xa) is scalar valued function, the

“a~lG!5~“al!G1l“aG. ~30!

However, in the general case the gradient operator does
commute with multivectors, and the product rule must
written as

“a~FG!5¹̀aF̀G1¹̀aFG̀, ~31!

where the target of differentiation is implicated by the a
cents. To make the notation as unambiguous as possib
follow the convention that the vector derivative“a differen-
tiates the quantities of its immediate right only. For examp

“aFGH5¹̀aF̀GH, ~32!

“a~FG!H5¹̀aF̀GH1¹̀aFG̀H. ~33!

Unlike in the conventional vector calculus, vector d
rivatives are defined for all elements of the algebra. As
above notation implies, the“aF is interpreted as the geo
metric product of the“a with the F. Hence by using Eq
~15!, the vector derivative can be written as

“aF5“a•F1“a`F5“a•F1 i“a3F, ~34!
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where the last form is restricted to three-dimensional sp
only. It follows from Eq.~34! that the vector derivative op
erator changes the grade of the object it operates on by61.
For example, the vector derivative of the scalarl(xa) is a
vector~becausea•l[0 for any scalarl, soal5a`l), and
the vector derivative of the vectorf(xa) is a scalar plus a
bivector.

The derivatives of handful of simple functions~given in
Appendix A! combined with the product and chain rule a
low the evaluation of any internal coordinate gradient. So
of these most basic identities are easily derived21 by express-
ing “a as in Eq.~4! and using

ukuj52ujuk for kÞ j , ~35!

uk
251. ~36!

For example,

“axa5(
k, j

3

ukuj

]xa j

]xak

5(
k

3 ]xak

]xak

53, ~37!

“aa•xa5(
k

3

ukS a•
]xa

]xak
D 5(

k

3

uka•uk5a5“axa•a

~38!

for any a independent ofxa . Due to the distribution rule in
Eq. ~29!, these results generalize to those given in the A
pendix A, namely,

“brab5352“arab ~39!

and

“ba"rab5a52“aa"rab , ~40!

where rab5xb2xa . These simple results can be used
evaluate the vector derivatives of more complicated fu
tions. For example, the product rule of Eq.~31! together with
Eq. ~38! can be used to evaluate

“brab
2 5¹̀b r̀ab•rab1¹̀brab• r̀ab52rab . ~41!

In the internal coordinate gradient calculations followin
chain rule is needed frequently:

]xM ~l~x!!5]x~l~x!!
]M

]l
, ~42!

wherel5l(x) is a scalar valued function of the vector var
able x, and M is a multivector function of the scalar argu
mentl(x). This rule can also be used to obtain other vec
derivatives. For example,

“br ab
2 52r ab“br ab , ~43!

where r ab5urabu. Becauserab
2 5r ab

2 , it follows from Eqs.
~41! and ~43! that

“br ab5
rab

r ab
. ~44!

More vector derivatives can be obtained by combining
chain rule in Eq.~42! together with the derivative in Eq
~44!. For example, the vector derivative ofr ab

k for any inte-
ger k is easily obtained as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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“br ab
k 5~“br ab!krab

k215krabr ab
k22. ~45!

Similarly,

“b~r ab
k rab!5~“br ab

k !rab1r ab
k ~“brab!

5krabr ab
k22rab¿r ab

k
“brab5~k13!r ab

k ,

~46!

where Eqs.~30! and ~39! were used.
It is emphasized, that the gradients of the internal co

dinates derived by geometric algebra areexact, not just some
approximations in the limit of infinitesimal vibrations. Th
following properties of the internal coordinate gradients c
be used to check the gradients derived:1

~1! The sum of the internal displacements must be zero~i.e.,
the internal displacements cannot translate the m
ecule!, so

(
a

“aqi50. ~47!

~2! The internal displacements cannot rotate the molec
so

(
a

xa3“aqi50. ~48!

A. Some acyclic internal coordinates

In this section, the gradients for two the most basic
ternal coordinates, bond stretching and valence angle b
ing are derived using geometric calculus. These are inclu
to emphasize the elegancy and the effectiveness of the
metric algebra approach compared to other methods.
thermore, I derive thecompletegradients of the out-of-plane
coordinate. Last, I define a newtwisting coordinateand de-
rive its gradients. All the calculations are presented in so
detail to allow the reader to compare my method to ot
possible ways to obtain the gradients. It should be mentio
that geometric algebra was used earlier to define the in
sion coordinate of ammonia and to derive its gradients.11

1. Bond stretching

The most basic of all possible internal coordinates is
bond lengthr ab5urabu, whererab5xb2xa ~see Fig. 1!. The
gradients are obtained by the simple vectorial differentiati

]xa
r ab52urab

[“ar ab , ~49!

]xb
r ab5urab

, ~50!

whereurab
is a unit vector in the direction ofrab @see the

derivation of Eq.~44!#. This is, of course, a familiar result.1,2

2. Valence angle bending

The valence angleubag ~see Fig. 2! is defined via

rab•rag5r abr ag cosubag , ~51!

where rag5xg2xa and, by construction, it is always th
smaller of the two possible angles~i.e., 0<ubag<p). To
relate a variation in the bond angle to the atomic positio
Downloaded 20 Aug 2007 to 128.214.3.188. Redistribution subject to AIP
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xa , xb , and xg , both sides of Eq.~51! are needed. The
gradient of the left-hand side is obtained with Eq.~40! as

]xb
~rab•rag!5rag . ~52!

The right-hand side is differentiated as

]xb
~r abr ag cosubag!5~]xb

r ab!r ag cosubag

1r abr ag]xb
~cosubag!

5urab
r ag cosubag

2r abr ag sinubag]xb
ubag , ~53!

where the product rule of Eq.~30! and the chain rule of Eq
~42! were used to obtain the final result. The gradients
therefore

]xb
ubag5

urab
cosubag2urag

r ab sinubag
, ~54!

]xg
ubag5

urag
cosubag2urab

r ag sinubag
. ~55!

FIG. 1. Bond stretchingr ab5urabu.

FIG. 2. Valence angleubag spanned by the bondsrab and rag .
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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3125J. Chem. Phys., Vol. 112, No. 7, 15 February 2000 Coordinates: A geometric algebra approach
The gradient of the central atom is obtained by direct diff
entiation as

]xa
ubag52~]xb

ubag1]xg
ubag! ~56!

in accordance with Eq.~47!. These results are identical t
those given in Refs. 1,2.

3. Out-of-plane bending

The chiral out-of-plane bending coordinatewabgk is de-
fined as the signed volume of the parallelepiped spanne
the bondsrab , rag and rak divided by the lengths of thes
bonds,16 i.e.,

wabgk52 i
rab`rag`rak

r abr agr ak
, ~57!

wherei is the dextral~right-handed! unit trivector.@One can
write wabgk5(rab•rag3rak)/(r abr agr ak) as well, since
rab`rag`rak5 i rab•rag3rak .# If the dextral order of the
bond vectors is fixed as$rab ,rag ,rak%, the positive sign of
wabgk means that the bond vectors form a right-handed
~and the molecule has bent ‘‘up;’’ see Fig. 3!. Likewise, if
the sign ofwabgk is negative, the bond vectors form a lef
handed set~and the molecule has bent ‘‘down’’!. The gradi-
ents of the out-of-plane coordinate are easily obtained
directly differentiating the both sides of Eq.~57! with respect
to the atomic positions. This results in

]xb
wabgk52 i F 1

r abr agr ak
]xb

rab`rag`rak

1S ]xb

1

r abr agr ak
D rab`rag`rakG

5
rag3rak

r abr agr ak
1 i

~]xb
r ab!rab`rag`rak

r ab
2 r agr ak

5
rag3rak

r abr agr ak
2wabgk

rab

r ab
2

, ~58!

where the identity

2 i ]xb
~rab`rag`rak!52 i rag`rak5rag3rak ~59!

FIG. 3. Bond vectorsrab , rag , andrak in dextral order~and the value of
out-of-plane coordinatewabgk is positive!.
Downloaded 20 Aug 2007 to 128.214.3.188. Redistribution subject to AIP
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was used~see Appendix A!. The gradients]xg
wabgk and

]xk
wabgk are obtained by cyclically permuting indicesb, g,

andk, and they are given in Table I. The central atom g
dient is given by

]xa
wabgk52~]xb

wabgk1]xg
wabgk1]xk

wabgk!. ~60!

4. Twisting

I define the twisting coordinatejabgkl as the dihedral
angle20 between the planesrab`rag and rak`ral ~Fig. 4!.
In terms of the unit bond vectors,

cosjabgkl5
~urab

`urag
!†

uurab
`urag

u
•

urak
`ural

uurak
`ural

u

5
urag

`urab

uurab
`urag

u
•

urak
`ural

uurak
`ural

u

5
urab

•urak
urag

•ural
2urag

•urak
urab

•ural

sinubag sinukal
,

~61!

where the last equality follows from Laplace’s expansi
rule ~A1! and from the definitions~21! and~23!. By express-
ing the inner products in terms of the valence angles,
reads as

sinubag sinukal cosjabgkl

5cosubak cosugal2cosugak cosubal . ~62!

The gradients are obtained by differentiating both sides
Eq. ~62!. This results in a set of equations of the type,

cosubag~]xb
ubag!sinukal cosjabgkl

2sinubag sinukal sinjabgkl]xb
jabgkl

52cosugal sinubak]xb
ubak

1cosugak sinubal]xb
ubal , ~63!

which, after the insertion of the known derivatives, reads
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]xb
jabgkl52

cosugak

sinjabgkl sinubag sinukal
S urab

cosubal2ural

r ab
D 1

cosugal

sinjabgkl sinubag sinukal
S urab

cosubak2urak

r ab
D

1
cosubag cosjabgkl

sinjabgkl sin2 ubag

S urab
cosubag2urag

r ab
D . ~64!

Similarly,

]xg
jabgkl52

cosubal

sinjabgkl sinubag sinukal
S urag

cosugak2urak

r ag
D 1

cosubak

sinjabgkl sinubag sinukal
S urag

cosugal2ural

r ag
D

1
cosubag cosjabgkl

sinjabgkl sin2ubag

S urag
cosubag2urab

r ag
D . ~65!

TABLE I. Gradients of the internal coordinates~see text for the definitions of the coordinates!.

“bwabgk5
rag3rak

r abr agr ak
2wabgk

rab

r ab
2

“gwabgk5
rak3rab

r abr agr ak
2wabgk

rag

r ag
2

“kwabgk5
rab3rag

r abr agr ak
2wabgk

rak

r ak
2

“awabgk52~“bwabgk1“gwabgk1“kwabgk!

“bjabgkl52
cosugak

sinjabgkl sinubag sinukal
Surab

cosubal2ural

r ab
D 1

cosugal

sinjabgkl sinubag sinukal
Surab

cosubak2urak

r ab
D 1

cosubag cosjabgkl

sinjabgkl sin2 ubag

Surab
cosubag2urag

r ab
D

“gjabgkl52
cosubal

sinjabgkl sinubag sinukal
Surag

cosugak2urak

r ag
D 1

cosubak

sinjabgkl sinubag sinukal
Surag

cosugal2ural

r ag
D 1

cosubag cosjabgkl

sinjabgkl sin2 ubag

Surag
cosubag2urab

r ag
D

“kjabgkl52
cosubal

sinjabgkl sinubag sinukal
Surak

cosugak2urag

r ak
D 1

cosugal

sinjabgkl sinubagsinukal
Surak

cosubak2urab

r ak
D 1

cosukal cosjabgkl

sinjabgkl sin2 ukal

Surak
cosukal2ural

r ak
D

“ljabgkl52
cosugak

sinjabgkl sinubag sinukal
Sural

cosubal2urab

r al
D 1

cosubak

sinjabgkl sinubag sinukal
Sural

cosugal2urag

r al
D 1

cosukal cosjabgkl

sinjabgkl sin2 ukal

Sural
cosukal2urak

r al
D

“ajabgkl52~“bjabgkl1“gjabgkl1“kjabgkl1“ljabgkl!

“bZabgk5
rgk3rag

2r abr gk sinuabgk
2Surab

2urgk
cosuabgk

rab sin2 uabgk
DZabgk

“gZabgk5
rab3rak

2r abr gk sinuabgk
2Surab

cosuabgk2urgk

r gk sin2 uabgk
DZabgk

“kZabgk5
rag3rab

2r abr gk sinuabgk
2Surgk

2urab
cosuabgk

rgk sin2 uabgk
DZabgk

“aZabgk52~“bZabgk1“gZabgk1“kZabgk!

“bÃabgk5ScosÃabgk cosubag sinubak2cosubak sinubag

sinÃabgk sinubag sinubak
DSurab

cosubag2urag

r ab sinubag
D1ScosÃabgk sinubag cosubak2sinubak cosubag

sinÃabgk sinubag sinubak
DSurab

cosubak2urak

r ab sinubak
D

“gÃabgk5S sinugak

sinÃabgk sinubag sinubak
DSurag

cosugak2urak

r ag sinugak
D1ScosÃabgk cosubag sinubak2cosubak sinubag

sinÃabgk sinubag sinubak
DSurag

cosubag2urab

r ag sinubag
D

“kÃabgk5S sinugak

sinÃabgk sinubag sinubak
DSurak

cosugak2urag

r ak sinugak
D1ScosÃabgk cosubak sinubag2cosubag sinubak

sinÃabgk sinubag sinubak
DSurak

cosubak2urab

r ak sinubak
D

“aÃabgk52~“bÃabgk1“gÃabgk1“kÃabgk!
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The gradients]xk
jabgkl and ]xl

jabgkl are given by ex-
changing the indicesb andk and the indicesg andl in Eqs.
~64! and ~65!. They are tabulated in Table I. The centr
atom gradient is given by

]xa
jabgkl52~]xb

jabgkl1]xg
jabgkl1]xk

jabgkl

1]xl
jabgkl!. ~66!

B. Some ring coordinates

Ring coordinates are especially designed to represen
relative motion of different parts of the ring~such as the ring
puckering! or the motion of the ring as a whole~such as the
ring breathing coordinate!.25 In the latter case, the ring coor
dinates are typically symmetrized linear combinations
some already familiar internal coordinates~for example, the
breathing coordinate is a sum of ring bond lengths!. An im-
portant property for any ring structure is the ring closure;
sum of all the ring bond vectors is zero,

( rab50. ~67!

Generally, if there areR possible cyclic paths, then ther
exist R ring closure conditions~see Fig. 5!. Luckily, these
closure conditions do not complicate the gradient calcu
tions. The reason is obvious; any independent or depen
relative position vectorrab5xb2xa is a function of end
atom position vectors only. Hence, the closure conditions
~67! can be ignored in the gradient calculations@but if need
be, they can be substituted to the gradie
“aqi(r1 ,r2 , . . . ,rN1R), which produces the same resu
“aqi(r1 ,r2 , . . . ,rN) as if the ring coordinateqi had been
expressed in the first place as a function of independent
vectorsr1 ,r2 , . . . ,rN]. However, the closure conditions ca
be expressed in terms of coordinates, and hence use
eliminate the dependent coordinates by the method give
the Ref. 16. Usually, the inner products (“aqi)•(“aqj ) of
the ring coordinates are more easily expressed in term
some independent plus dependent coordinates, than in t
of independent coordinates only.

By using geometric algebra, the gradients for any r
coordinate are easily calculated. In the next subsections
gradients are calculated for the first time for the familiar ri
breathing coordinate and the ring puckering coordinate. F
thermore, I define adiagonal book anglecoordinate to de-
scribe the relative orientation of two parts of the ring, a
derive its gradients.
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1. Ring breathing

In the ring breathing mode, the length of the rin
changes in a symmetric fashion~this is depicted for a four-
atom ring in Fig. 6!. A natural definition of the ring breathing
coordinate for anN-atom ring is therefore

e123•••N5r 121r 231•••1r N21,N1r N,1 . ~68!

Using the bond vectors, this can be written as

e123•••N5~r12•r12!
1/21~r23•r23!

1/21•••

1~rN21,N•rN21,N!1/21~rN,1•rN,1!
1/2. ~69!

By regarding all the bond vectors as independent vect
there are gradients of the type,

]xa
e123•••N5ura21,a

2ura,a11
. ~70!

For example,

]x2
e123•••N5ur1,2

2ur2,3
. ~71!

Due to the ring closure condition, one of the ring vectors, s
rN,1 , is equal to minus of the sum of the other ring vecto

rN,152~r121r231•••1rN21,N!. ~72!

If wanted ~although this is unnecessary!, the dependent ring
vector can be written in terms of independent ring vecto
and hence the gradients]xN

e123•••N and]x1
e123•••N become

FIG. 4. Twistingjabgkl .
his would
]xN
e123•••N5urN21,N

2
rN,1

r N,1
5urN21,N

1
r121r231•••1rN21,N

@r 12
2 12r12•r231•••12r12•rN21,N1r 23

2 12r23•r341•••1r N21,N
2 #1/2

~73!

and

]x1
e123•••N5

rN,1

r N,1
2ur12

52
r121r231•••1rN21,N

@r 12
2 12r12•r231•••12r12•rN21,N1r 23

2 12r23•r341•••1r N21,N
2 #1/2

2ur12
. ~74!

These results are the same as if the dependent ring vector would have been eliminated and the gradients taken. T
have produced
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]xa
e123•••N5]xa

~r 121r 231•••1r N21,N!1
]xa

~r 12
2 12r12•r231•••12r12•rN21,N1r 23

2 12r23•r341•••1r N21,N
2 !

2@r 12
2 12r12•r231•••12r12•rN21,N1r 23

2 12r23•r341•••1r N21,N
2 #1/2

. ~75!
A

te
o

r
,
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rs

r

e

With the help of the vector derivatives given in Appendix
one can confirm that this gives Eq.~70! for a52,3,•••,N
21, Eq. ~74! for a51, and Eq.~73! for a5N.

2. Ring puckering

The absolute value of the ring puckering coordina
Zabgk is defined25 as the half of the distance between the tw
ring diagonalsrab5xb2xa and rgk5xk2xg , i.e.,

uZabgku5
dabgk

2
, ~76!

where dabgk5(dabgk
†

•dabgk)1/2>0 is the minimum chord
distance, and

dabgk5~xg2xa!`rab`rgk~rab`rgk!21

5rag`rab`rgk~rab`rgk!21 ~77!

is the directance from the linerab to the line rgk ~see the
answer to exercise 6.7 in the Sec. 2-6 of Ref. 19!. The ring
puckering coordinateZ2413 is depicted in the Fig. 7 for a fou
atom ring. The sign of the puckering coordinate reveals
the nucleia and b ~or g and k) have moved ‘‘above’’ or
‘‘below’’ the reference plane. Hence, a natural definition f
the ring puckering is

Zabgk52
i rag`rab`rgk

2urab`rgku
52

i rag`rab`rgk

2r abr gk sinuabgk
, ~78!

where i is the unit trivector anduabgk stands for the angle
betweenrab and rgk . In the current notation, the valenc
angles can be written asubag[uabag . If the dextral order of
the relative position vectorsrag , rab , and rgk is fixed as
$rag ,rab ,rgk%, the positive sign ofZabgk means that the
relative position vectorsrag , rab , and rgk form a right-
handed set~the diagonalrgk points ‘‘upward’’!. Likewise, if
the sign ofZabgk is negative, the relative position vecto
form a left-handed set~the diagonalrgk points ‘‘down-
ward’’!. Note, that in Fig. 7 the triplet$r21,r24,r13% is right-

FIG. 5. A double ring.
Downloaded 20 Aug 2007 to 128.214.3.188. Redistribution subject to AIP
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r

handed~and the diagonalr13 points ‘‘upward’’!, so the value
of the corresponding ring puckering coordinateZ2413 is
positive.

The gradient]xb
Zabgk is obtained by taking the vecto

derivative of both sides of Eq.~78!. This produces

]xb
Zabgk52

i ]xb
~rag`rab`rgk!

2r abr gk sinuabgk

1
i ~]xb

r ab!~rag`rab`rgk!

2r ab
2 r gk sinuabgk

1
icosuabgk~]xb

uabgk!rag`rab`rgk

2r abr gk sin2 uabgk

,

~79!

where the gradients of the anglesuabgk are given by simple
vectorial differentiation~like in the case of the valenc
angles! as

]xb
uabgk5

urab
cosuabgk2urgk

r ab sinuabgk
52]xa

uabgk , ~80!

]xg
uabgk5

urab
2urgk

cosuabgk

r gk sinuabgk
52]xk

uabgk , ~81!

whereaÞb,g,k, bÞg,k andgÞk. The vector derivative
of the trivectorrag`rab`rgk is given by

]xb
~rag`rab`rgk!52rag`rgk52 i rag3rgk ~82!

~see Appendix A!. Hence

FIG. 6. Ring breathing for a four atom ring.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



te
l

3129J. Chem. Phys., Vol. 112, No. 7, 15 February 2000 Coordinates: A geometric algebra approach
]xb
Zabgk

5
rgk3rag

2r abr gk sinuabgk
1

iurab
rag`rab`rgk

2r ab
2 r gk sinuabgk

1 i S urab
cosuabgk2urgk

r ab sinuabgk
D cosuabgkrag`rab`rgk

2r abr gk sin2 uabgk

5
rgk3rag

2r abr gk sinuabgk

2S urab
2urgk

cosuabgk

r absin2uabgk
D Zabgk . ~83!

Similarly,

]xk
Zabgk

5
rag3rab

2r abr gksinuabgk
2S urgk

2urab
cosuabgk

r gk sin2 uabgk
D Zabgk .

~84!
Downloaded 20 Aug 2007 to 128.214.3.188. Redistribution subject to AIP
The other gradients are given in Table I.

3. Diagonal book angle

A possible alternative for the ring puckering coordina
is the diagonal book angleÃabgk defined as the dihedra
angle of the planes spanned by the diagonalrab5xb2xa

and the bond vectorsrag5xg2xa andrak5xk2xa ~see Fig.
8!, i.e.,

cosÃabgk5
~urab

`urag
!†

uurab
`urag

u
•

urab
`urak

uurab
`urak

u

5
urag

`urab

uurab
`urag

u
•

urab
`urak

uurab
`urak

u

5
cosugak2cosubak cosubag

sinubag sinubak
. ~85!

By taking the vector derivative]xb
of the both sides of Eq.

~85!,
2sinÃabgk]xb
Ãabgk5

sinubak cosubag]xb
ubak1cosubak sinubag]xb

ubag

sinubag sinubak

2
~cosugak2cosubak cosubag!~cosubag sinubak]xb

ubag1sinubag cosubak]xb
ubak!

sin2 ubag sin2 ubak

~86!

follows, and hence

]xb
Ãabgk5S cosÃabgk cosubag sinubak2cosubak sinubag

sinÃabgk sinubag sinubak
D S urab

cosubag2urag

r ab sinubag
D

1S cosÃabgk sinubag cosubak2sinubak cosubag

sinÃabgk sinubag sinubak
D S urab

cosubak2urak

r ab sinubak
D . ~87!
ges
, in
tors
and
riva-
and
tic

ra
r
ts
tely

aic,
Similarly,

]xg
Ãabgk

5S sinugak

sinÃabgk sinubag sinubak
D S urag

cosugak2urak

r ag sinugak
D

1S cosÃabgk cosubag sinubak2cosubak sinubag

sinÃabgk sinubag sinubak
D

3S urag
cosubag2urab

r ag sinubag
D . ~88!

The gradient]xk
Ãabgk is obtained from Eq.~88! by ex-

changing the indicesg and k. As usual, the central atom
gradient is given by

]xa
Ãabgk52~]xb

Ãabgk1]xg
Ãabgk1]xk

Ãabgk!.
~89!
V. CONCLUSION

The geometric algebra approach offers some advanta
over other methods presented in the literature. First of all
the geometric algebra approach, the atomic position vec
themselves are manipulated instead of their components,
hence the expressions are simple at each stage of the de
tion. This is not the case when Cartesian components
back substitution are used to obtain the vibrational kine
energy operator.26 Furthermore, while the geometric algeb
approach is general~that is, independent of any particula
molecular part in question!, the use of Cartesian componen
forces one to select an external coordinate frame separa
for each molecular part.

The geometric algebra method is also purely algebr
unlike the conventional ‘‘Wilson’ss-vector method,’’1,2,27

where the gradients“aqi are deduced geometricallyat some
point by displacing the nucleusa infinitesimally ~not by a
unit displacement, as is often erroneously stated! and keep-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ing the others fixed. This gives only the valu
“aqi(q1

(e) ,q2
(e) , . . . ) of thegradient in terms of a referenc

configurationq1
(e) ,q2

(e) , . . . used~see Appendix B!, and one
simply assumes that the gradient is obtained from this
replacingqi

(e) by qi . While in some cases this works, i
other cases, where some coordinates are zero at the refe
configuration, it may miss some part of the gradient. F
example, this would happen if one calculated gradients
out-of-plane bending using a planar reference configura
~this is shown at the end of Appendix B!.

Incidentally, by using geometric algebra, Wilson
method could be generalized as20,21

]xa
qi~xa!Æ]aa

qi~xa ;aa!, ~90!

where

qi~xa ;aa!5 lim
d→0

qi~xa1daa!2qi~xa!

d
~91!

is the differential ofqi at the arbitrary positionsaa andxa of
nucleusa. This is an exact result~i.e., the vectoraa need be
neither infinitesimal nor collinear with“aqi uxa

). However,
since one can directly take the gradients of any coordin
there is no point in calculating them via differentials. In m
opinion, ‘‘Wilson’s s-vector method’’ is not a practical wa
to obtain the gradients of the internal coordinates excep
the simplest cases, like bond stretchings and valence a
bends, where the correct gradient can be determined
metrically without the need to use Eq.~90!.

In the case of ring coordinates, the geometric alge
approach offers an ideal tool in obtainingg(qiqj ) as a sum of
the inner product of gradients of the coordinates. On
other hand, the covariant approach of the Ref. 25 is restri
to numerical work. In that approach, one forms the covari
metric tensor gqiqj

5(ama (dxa /dqi)•(dxa /dqj ), which
must be inverted to obtain the reciprocal metric tensorg(qiqj )

that appears in the kinetic energy operator. In practice,
cannot be done analytically, since the elements ofgqiqj

are
functions of the internal coordinates.

It must be added thatall the computational complica
tions of the conventional methods are actually due to

FIG. 7. Ring puckeringZ2413.
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imperfections of the Gibbs–Heaviside vectorial system23

For example, since the vectorial division~or a genuine vec-
torial product for that matter! is not defined in the Gibbs–
Heaviside system, one is forced to use the components o
vectors instead of the vectors themselves in the actual
nipulations.
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APPENDIX A: SOME USEFUL VECTOR DERIVATIVES
AND EXPANSION RULES

Let rab5xb2xa and rag5xg2xa . Furthermore, leta
be a vector andAp̄5a1`a2`•••`ap a p-blade independen
of xa , xb , andxg . Then,20

f ]xb
f ]xa

f

rab 3 23

raba 3a 23a

arab 2a a

a•rab a 2a

r ab
k krab

k22rab 2krab
k22rab

r ab
k rab ~k13!r ab

k 2~k13!r ab
k

rab`Ap̄ ~32p!Ap̄ 2~32p!Ap̄

rab•rag rag 2~rab1rag!,

wherek50,61,62,63, . . . .
Laplace’s expansion rule for the inner product of tw

p-blades is given by19

~ap`•••`a1!•~b1`•••`bp!

5 (
k51

p

~21!k11~a1•bk!~ap`•••`a2!

•~b1`•••`b̌k`•••`bp!, ~A1!

FIG. 8. Diagonal book angleÃ2413.
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whereb̌k means that the vectorbk is omitted from the prod-
uct. Analogously, the expansion rule for the inner produc
a vectora and ap-bladeb1`•••`bp is given by

a•~b1`•••`bp!5 (
k51

p

~21!k11a

•~b1`•••`b̌k`•••`bp!. ~A2!

APPENDIX B: TAYLOR SERIES, WILSON’S METHOD,
AND GRADIENTS AT THE REFERENCE
CONFIGURATION

The Taylor expansion of the internal coordinateqi at the
point xa1aa is19,21

qi~xa1aa!5qi~xa!1aa•“aqi~xa!1
~aa•“a!2

2!
qi~xa!1•••

~B1!

in terms of the positionxa of the nucleusa. This is valid for
any pointxa1aa . In the infinitesimal limit@i.e., when (aa

•u)2→0 for any unit vectoru], Eq. ~B1! simplifies to

qi~xa1daa!5qi~xa!1daa•“aqi~xa!. ~B2!

The infinitesimal displacement is implied by the notati
daa . Furthermore, ifdaa is collinear with“aqi(xa), the
inner product in Eq.~B2! can be replaced with the geometr
product, and

qi~xa1dsa
(qi )!5qi~xa!1dsa

(qi )
“aqi~xa!, ~B3!

where dsa
(qi ) is an infinitesimal displacement vector to th

direction of the gradient“aqi(xa). Hence, in the infinitesi-
mal limit, and at the direction of the gradient,

dsa
(qi )

“aqi~xa!5qi~xa1dsa
(qi )!2qi~xa!. ~B4!

By multiplying both sides of Eq. ~B4! by uds
a

(qi )

5 dsa
(qi )/udsa

(qi )u, the result

“aqi~xa!5
dqi

dsa
(qi )

uds
a

(qi ) ~B5!

follows, where dqi5qi(xa1dsa
(qi ))2qi(xa) and dsa

(qi )

5udsa
(qi )u.

Equation~B5! is the mathematical content of Wilson
method. However, it is better to write the result given in E
~B5! as

¹aqi uq(e)5
dqi

dsa
(qi )

uds
a

(qi ) ~B6!

because in practice the direction of the gradient is dedu
geometricallyat some configurationq(e)5$q1

(e) ,q2
(e) , . . . %,

and the nucleusa is displaced by an infinitesimal amoun
dsa

(qi ) to this directionuds
a

(qi )5 (“aqi /u“aqi u) uq(e). The dqi

is the infinitesimal change in the coordinateqi resulting from
the infinitesimal displacement of the nucleusa. These results
are highlighted in the following subsections.

It should also be mentioned that the internal displa
ment coordinates
Downloaded 20 Aug 2007 to 128.214.3.188. Redistribution subject to AIP
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Dqi~a1 ,a2 , . . . !5qi~x11a1 ,x21a2 , . . . !

2qi~x1 ,x2 , . . . ! ~B7!

are definedin Ref. 1 by the many variable version of Eq
~B2! as

Dqi5(
a

N

aa•“aqi~x1 ,x2 , . . . !. ~B8!

Equation ~B8! is a linear approximation of Eq.~B7!, and
they are equal only for the infinitesimal displacementsdaa .
For example, the coordinate called the ‘‘bond length d
placementDr ab’’ in Ref. 1, does not equal to the change
the bond lengthr ab , except in the case that nucleia andb
are displaced by an infinitesimal amount. By expressing
displacement vectoraa of Eq. ~B8! in some orthonormal
basis $u1 ,u2 ,u3% as aa5(k

3aak
uk , these linearly approxi-

mated displacement coordinates can be written asDqi

5(a
N(k

3Bi ,ak
aak

, where theB-matrix elements are given a
Bi ,ak

5uk•“aqi(x1 ,x2 , . . . ).

1. Simple example: Valence angle bending

The most efficient way to increase the valence an
ubag by displacing the nucleusb is ~by intuition! to the
direction perpendicular torab outwards. This is the direction
of the gradientuds

b

(ubag)5 (“bubag /u“bubagu), and in the

terms of bond vectors it reads as

uds
b

(ubag)5
urab

cosubag2urag

sinubag
~B9!

which fortunately is true for any configuration 0,ubag,p.
The displacementdsb

(ubag) of the nucleusb to the direction
uds

b

(ubag) produces a changedubag in ubag , where

sin~dubag!5
dsb

(ubag)

r ab
'dubag . ~B10!

The latter equality is exact in the case of an infinitesim
displacement, but it would not hold in the case of a u
displacement. Hence, using Eq.~B6!, or in this case, Eq.
~B5!,

“bubag5
urab

cosubag2urag

r ab sinubag
~B11!

which agrees with the result in Eq.~54! derived by using
geometric algebra.

2. Not so simple example: Out-of-plane bending

In this subsection, I try to derive the gradient“bwabgk

by using Wilson’s method at theplanar configuration. At the
planar configuration, the most efficient way to increase v
ume of the parallelepiped spanned by the bond vectors
displacing the nucleusb is ~by intuition! to the direction
perpendicular to the original planerag`rak . This is the di-
rection of the gradientuds

b

(wabgk)5 (“bwabgk /u“bwabgku) at

the planar configuration, and in the terms of bond vector
reads as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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uds
b

(wabgk)5
rag3rak

urag3raku
5

rag3rak

r agr ak sinugak
. ~B12!

The infinitesimal displacementdsb
(wabgk) of the nucleusb to

the directionuds
b

(wabgk) produces a change

dwabgk5
sinugakdsb

(wabgk)

r ab
~B13!

in wabgk . Hence, using Eq.~B6!,

“bwabgkuwabgk505
rag3rak

r abr agr ak
. ~B14!

However, this isonly a part of the true gradient; the
term 2wabgk (rab /r ab

2 ) is missing. This omission is cause
by Eq.~B12!, which is validonly at the planar configuration
This example clearly shows that the success of Wilso
method may crucially depend on the reference configura
selected. Had the bent instead of planar reference config
tion used, the correct gradient could have been obtained~at
least in principle, if not in practice—the direction of greate
change is not so obvious in the bent case!. Similarly, the
‘‘ s-vectors’’ for the bent configuration give the correct gr
dients for the angle between a bond and a plane define
two bonds1 even at the planar reference configuration.
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