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Vibrational coordinates and their gradients: A geometric algebra approach
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The gradients of vibrational coordinates are needed in order to form the exact vibrational kinetic
energy operator of a polyatomic molecule. The conventional methods used to obtain these gradients
are often quite laborious. However, by the methodgi@bmetric algebrathe gradients for any
vibrational coordinate can be easily calculated. Examples are given, and special attention is directed
to ring coordinates. ©2000 American Institute of Physids§0021-960680)01106-5

I. INTRODUCTION 52 N V2
o (M==—= 2> | drv*—=w 1)
In the past, the molecular vibrations were commonly 2 &=1 me
studied by using the rectilinear normal coordinates based 0g,, pe written <18
the infinitesimal approximation of the true nuclear
. 2 - . hz
displacement$? However, the rectilinear coordinates are not (Ty=— _f dT\If*E
the best choice for the systems involving large displacements 2

1) ]
from the equilibrium configuration. Hence, in the recent

years, much work has been done using the true curvilinea‘fyhereqf is the eigenfunction of the full vibrational Hamil-

internal coordinates. For some recent work, see Refs. 3—-1 onian,m, 1S thg mass of the ngcleuts andv, is the ve.ctor
for extensive bibliography, see Ref. 3. derivative (gradien} operator with respect to the spatial po-

The use of curvilinear internal coordinates offers severaf 10" VECtOXq of the nucleus» and
advantages compared to the use of rectilinear normal coor- N
dinates. First, curvilinear internal coordinates must be used, g% = > o (Vati) - (Va0)) ()
if one wishes to take the advantage of the isotope-invariant “ e
Born—Oppenheimer potential energy surfat®Second, po- are the elements of the mass weighted reciprocal metric ten-
tential energy surface expansions converge usually fastesor, whose values at the reference configuration are the Wil-
when expressed in terms of the curvilinear internal coordi-song-matrix elements.In terms of a fixed three-dimensional
nates than when written in terms of rectilinear normalorthonormal basis{u;,u,,us} the gradient operator pos-
coordinates? This is especially true, if large amplitude sesses a representation
motions®! are present. Last, but not least, the internal co- 3
ordinates offer a simple and physical picture of vibrational Va=2 Uy
motions in questior>~®For example, in the curvilinear per- K
spective, the dominant contributions to the nonlinear Ferm;

. . o wherex, =X, Uy is thekth Cartesian coordinate of the po-
resonance arise from the anharmonic cubic kinetic energy. K

and potential energy couplin§<3 This is expected, since the Sition vectorx,. The volume element of the integration is

Fermi resonance couples the vibrational modes of the 2:97':‘](_qudqz T ,wh(_areJ is the funct|o_nal determma@je
frequency ratio. In the rectilinear perspective, however a]acoblamof the coordinate transformation. In the curvilinear

- . . (aiq;) i i -
major component to the Fermi resonance is due tohtre case, thgy'99’ elements are generally functions of the inter

monic force constants associated with the exact interna'@ coordinates. o o
coordinated? In order to form the vibrational kinetic energy operator,

The kinetic energy operator is more complicated in cur-1€ grlad|ent§aqi m_urs]t k;]e calculated. Ulnfortuhna(;ely, this is
vilinear internal coordinates than in rectilinear coordinatesn°t aways easy with the conventional methods. It seems
urprising that no practicahlgebraic method to calculate

The purpose of this work is to present a simple algebraic Waz_‘ i has b dinthe I
to obtain the gradients of the vibrational coordinates, whos&€Se gradients has been presented in the literature. However,
there exists a branch of mathematiggometric algebra

inner products give the exact kinetic energy operator. i . : |
P g g9y op which enables one to obtain the gradients deeryinternal
coordinate both easily, straightforwardly and most surpris-
ingly, coordinate freely®=24

(aia;) J ¥, (2
[ i) —— ,
aq;i  J dq

d 1(9J)

4

2

II. VIBRATIONAL KINETIC ENERGY

By using the suitable internal coordinatgs the expec- lll. RUDIMENTS OF GEOMETRIC ALGEBRA

tation value of the vibrational part of the kinetic energy of an Physics today is blended with different mathematical
N-atom molecule, formalisms, each introduced to handle some specific prob-
0021-9606/2000/112(7)/3121/12/$17.00 3121 © 2000 American Institute of Physics
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lems. For example, the classical electrodynamics is com- A BT=<AEBT>W if k,I>0, (16)
monly formulated in terms of the vector algebra developed )

by Gibbs, but on the other hand, the classical mechanics of Ax:Bi=0 if k=0 or 1=0, (17
the vibratingN-body system is formulated more readily by A/\Bi=(ABDiTT (18)

the matrix algebra. In some other cases, such as in the clas-

sical treatment of the forced linear oscillator, the complexwhere(A,Bi), denotes then-blade part oA, B~ Generally,

algebra is more appropriate. Geometric algebra integrates dfte geometric produck, By results in the terms of interme-

these algebraic systems in a coherent mathematical languagbate grade fronjk—1| to k+1 in the steps of two, i.e.,

which retains the advantages of each of these subalgebras, (k+1—k=1])12

but also possesses powerful new cgpabilities. _ E <Aﬂ3W
In the geometric algebra, anvertible geometric product =

is defined. Hence vectors can be divided and multiplied bygice Eqs(13)—(15) are sufficient for the purpose of gradi-
other vectorgor any elements by any other elements for thatgt caiculations, the explicit formulas need not be given for
mattej so they can be directly manipulated instead of Mma+he factors of the right-hand side of EQL9). However, the

nipulating their components. The geometric product for arbi'special case of Eq17) together with Eq(19) assures that

ABI= (19

trary vectorsa andb is defined a¥?%%®
ab=ab+a/\b, 5)

wherea-b is the scalar valued inner produthe usual “dot
product”), anda/\b is a bivector(two-blade valued outer

scalars(the 0-bladescommute with every other blades, and

that
MNAEANAE=ANAN=AN. (20

The magnitude of any multivectoA is a positive

product. The outer and inner products of two vectors can bgg44/19-21
vice versa expressed in terms of the geometric product only ’

as
ab= }ab+ba)=b-a, (6)
a/\b= }(ab—ba)=—b/\a. (7)
As seen from Eqs(6) and(7), generally
ab# ba, (8

and they are equal only # s collinear withb. However, the
geometric product is both distributive and associative, i.e.,

a(b+c)=ab+ac, 9
abc=a(bc)=(ab)c. (10
The inverse of the vecta is given by
a*lzi2 (11)
a
and it fulfills
aa '=ala=1 (12)

as seen by the direct substitutiontof a/a? to Eq. (5).

The bivectora;/\a, of two vectorsa; and a, can be
pictured as an oriented parallelogram with sidgsand as.
Similarly, a trivectora;/\a,/\a; can be pictured as an ori-
ented parallelepiped with sides, a,, and a;. The inner,
outer, and geometric products can be generalizé%4*as

a-A=3(aA— (- D*A@) = (- 1) A a, (13
a A= 3(AH (— D*A@) = (- 1)*A\a, (14
aA=a A+ aNAL (15

for a vectora and anyk-blade Ay=a;/\a,/\---A\a,. The
inner producta- Ay is ak—1 blade, and the outer product
a/\A is ak+1 blade. Note, that the geometric product of
two bladesA;, andBj is generallynot related by the formula
analogous to Eq15) if both k,I>1. However, one can write

12_

|A|=(ATA)= (21)

where @ /\ay/\--N\ay) '=a,/\---/\a,/\a; and (ATA); de-
notes thek-blade part ofATA. Generally, if

A=Ap+AT+HAZ+ -,

0;

(22

the square of the magnitude Afis given by the sum of the
squares of itk-blade partsk=0,1,2...),i.e,,

|Al2=| Aol + | Agl+ | Agl?+ -

=AS+ AL ATHAL AGE L (23

By using the Laplace’s expansion formulal) given in Ap-
pendix A, the inner products of tHeblade parts if23) can
be expanded in terms of their vector factors.

In the three-dimensional space, the outer prodaict
Nay/\---Nay is zero fork>3, and any trivector can be ex-
pressed as a multiple of a unit trivectorAs implied by its
name, the unit trivector is of the unit magnitude, i.eii
=1=|i|. On the other hand,?=—1. Furthermore, in the
three-dimensional space, the unit trivector commutes with all
other elements of the algebra. Hence it is justifiable to say,
that the unit trivector plays the role of the imaginary unit in
the three-dimensional space. Also, the vector cross product
a; X a, is related to the bivectos;/\a, as

a1>< = _i(al/\az). (24)

This very rudimentary introduction to the geometric al-
gebra has been quite formal. However, an unlimited number
of geometricalrelations can be extracted by the simple alge-
braic manipulation of the rules given above. For example,
any vectora can be decomposed to the components parallel
(a) and orthogonald, ) to some given vecton by simply
multiplying it by nn~2. This results

ann (an)n 1

ann l=——= (an+a/\n)n=a+a, .
n

(29

2 n2 n2
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Similarly, any vectora can be decomposed to the compo-where the last form is restricted to three-dimensional space
nents parallel §) and orthogonald, ) to some given plane only. It follows from Eq.(34) that the vector derivative op-
B=n/\m as erator changes the grade of the object it operates ot by

For example, the vector derivative of the scaldk,) is a

= . _1
§=(a-B)B™, (26) vector(becausea- A\=0 for any scalan, soax=a/\\), and
a =(a/\B)B~ 1. (270 the vector derivative of the vectd(x,) is a scalar plus a

In the geometric algebra, each geometrical point is re ret_)ivector.
g 9 ’ 9 b P The derivatives of handful of simple functiofgiven in

Semed t.)y a vector,. ar_ld any geometr_|c quantity can be_ d?&ppendix A combined with the product and chain rule al-
scribed in terms of its intrinsic properties alone, without in-

: . . low the evaluation of any internal coordinate gradient. Some
troducing any extemal coordinate framesee especially of these most basic identities are easily derivéxy express-
Chaps. 2-6 of Ref.19This means thaany internal coordi- y P

nate can be written in terms of the relative position vectors mlng V. asin Eq.(4) and using

the nuclei only. Once this has been done, the gradients can uu;=—uju, for k#j, (35
be easily obtained by the methods of the geometric algebra.
The effort required in part of the reader to master the basics u=1. (36)

of the geometric algebra is more than compensated by thegr example,
simplifications in the gradient calculations.

To eliminate some brackets, | shall use in this work the > IXg, S Ky,
convention that the inner and outer products have preference VaXa= kEJ Ul o~ Ek IX
over adjacent geometric products, and the outer product has ' a" K

=3, (37

preference over the adjacent inner product. For example, 3 X, 3
ab-c/\d=a[ b-(c/\d)] # (ab)-(c/\d). V.a xa=; uk( a - ):Ek ua-u=a=V_,x, a
Ak
(38)
IV. GRADIENTS OF THE INTERNAL COORDINATES for any a independent ok, . Due to the distribution rule in

) o ) ] Eq. (29), these results generalize to those given in the Ap-
The starting point is the following simple yet useful fact: pendix A, namely,

In the geometric algebra, the gradien®,q; are the vector

derivatives of the coordinate; quith respect to the spatial Virap=3==Vlag (39
position vectorx,, ,>*??that is and
V.0i=dx i (28) Vear,g=a=—V,arl,z, (40)

Much of the gradient calculations resemble those of the usugherer, =Xz—X,. These simple results can be used to
scalar calculus. For example, the vector differentiation is dispyajuate the vector derivatives of more complicated func-

tributive, tions. For example, the product rule of Eg1) together with
V. (F+G)=V F+V,G (290  Eq.(38) can be used to evaluate

for anyF andG. If A=\(x,) is scalar valued function, then Vﬁriﬁzﬁﬁf[w Mgt @Braﬁ- faBZZraﬁ. (42
V. AG)=(VN)G+A\V _G. (30 In the internal coordinate gradient calculations following

However, in the general case the gradient operator does nSPa'” rule is needed frequently:

commute with multivectors, and the product rule must be M
written as IxM (M (X)) = (N (X)) ==, (42
V.(FG)=V,FG+V,FG, (3D wherex=\(x) is a scalar valued function of the vector vari-

where the target of differentiation is implicated by the ac-ablex, andM is a multivector function of the scalar argu-
cents. To make the notation as unambiguous as possible,MeNtA(x). This rule can also be used to obtain other vector
follow the convention that the vector derivati¥e, differen- ~ derivatives. For example,

tiates the quan\titifas of its immediate right only. For example, ngfw: 20 sV 4 ap (43)
V.FGH=V,FGH, (32 wherer ,z=|r,4l. Because’,=r2,, it follows from Egs.
V.(FG)H=V,FGH+V,FGH. (33 (4D and(43) that

_ l_JnIike in the_ conventional vector calculus, vector de- Braﬁ:ﬁ' (44)
rivatives are defined for all elements of the algebra. As the lap

above notation implies, th¥ ,F is interpreted as the geo-
metric product of theV , with the F. Hence by using Eq.
(15), the vector derivative can be written as

More vector derivatives can be obtained by combining the
chain rule in Eq.(42) together with the derivative in Eq.
(44). For example, the vector derivative djﬁ for any inte-
V.,F=V,F+V AF=V_ . F+iV_XF, (39 gerk is easily obtained as
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k k—1 k—2
Varap=(Varap)Krag =Kr gl o5 (45)
Similarly,
k _ k k
Vﬂ(raﬁraﬁ) - (Vﬁraﬁ)raﬂ+ raﬁ(vﬁraﬁ)
— k—2 k _ k
=Kropl op T aptl gV gl ap=(K+3)r 5,

(46)

where Egs(30) and(39) were used.

It is emphasized, that the gradients of the internal coor-
dinates derived by geometric algebra axract not just some
approximations in the limit of infinitesimal vibrations. The
following properties of the internal coordinate gradients can
be used to check the gradients derived:

(1) The sum of the internal displacements must be Zieeg
the internal displacements cannot translate the mol-
ecule, so

FIG. 1. Bond stretching ,z=|r ,4/.

> V,6=0. 47

(2) The internal displacements cannot rotate the moleculexa, X, andx,, both sides of Eq(51) are needed. The
S0 gradient of the left-hand side is obtained with E4Q) as
2 XXV 40=0, (48) O (T Tay) =Ty (52

A. Some acyclic internal coordinates The right-hand side is differentiated as

In this section, the gradients for two the most basic in- %" agl ay €0S0par) = (Ox,l ap)V ay COSOpa,y
ternal coordinates, bond stretching and valence angle bend-

ing are derived using geometric calculus. These are included " r"ﬁr”axﬂ(cosaﬁ‘”)

to emphasize the elegancy and the effectiveness of the geo- =U; 14, COSOg,,

metric algebra approach compared to other methods. Fur- b

thermore, | derive theompletegradients of the out-of-plane =T o oy SIN aﬁayaxﬂeﬂw, (53

coordinate. Last, | define a netwisting coordinateand de- )
rive its gradients. All the calculations are presented in somd/nere the product rule of E¢30) and the chain rule of Eg.

detail to allow the reader to compare my method to othe42) were used to obtain the final result. The gradients are

possible ways to obtain the gradients. It should be mentioneti'éréfore
that geometric algebra was used earlier to define the inver- Uy  COSOp,,— Uy
sion coordinate of ammonia and to derive its gradiéhts. Iy Opay= i . =, (54)
B lagSINOg,,
1. Bond stretching U, COSB g, Uy ,
The most basic of all possible internal coordinates is the ~ 9x,0pay= r _sing : (59)
ay Bay

bond lengthr ,s=1r 4|, wherer ,;=xz—x, (see Fig. 1L The
gradients are obtained by the simple vectorial differentiation,

axaraﬂz_uraﬁzvaraﬁi (49)
axﬂraﬁzuraﬁv (50

whereura is a unit vector in the direction af,; [see the
derivation of Eq(44)]. This is, of course, a familiar resutt

2. Valence angle bending
The valence anglé,,, (see Fig. 2is defined via
Fap T oy =" apl oy COSOpay, (51

wherer,,=x,—X, and, by construction, it is always the
smaller of the two possible anglése., 0<6g,,<m). To
relate a variation in the bond angle to the atomic positions  FIG. 2. Valence angl®,,,, spanned by the bonds andr,,, .
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was used(see Appendix A The gradientsaxycpaﬁy,( and
Ox Papyx A€ obtained by cyclically permuting indicgs v,

and k, and they are given in Table I. The central atom gra-
dient is given by

axagoaﬁyl(: - ((?XB(PaByK+ aXY(PaB)/K_F &XKQDa,ByK) . (60)

FIG. 3. Bond vectors .z, r,,, andr,, in dextral order(and the value of
out-of-plane coordinate,., is positive.

4. Twisting
The gradient of the central atom is obtained by direct differ- | define the twisting coordinaté,g.,, as the dihedral
entiation as anglé® between the planes,g/\r,, andr ., /\r,, (Fig. 4).
In terms of the unit bond vectors,
axaaﬁay: - (axﬁaﬂay+ axyaﬁay) (56)
in accordance with Eq47). These results are identical to
those given in Refs. 1,2. (u,aﬂ/\urw)T U AU
COSE 4 gyun = :
oy AU T o, Ay ]
3. Out-of-plane bending
The chiral out-of-plane bending coordinagg,, is de- u. Au u. Au
. . . ra/y raﬁ Tak Tax
fined as the signed volume of the parallelepiped spanned by = = . =
the bonds .4, 1., andr,, divided by the lengths of these [CANTI B [TANT SN
bonds!®i.e., G U U U U U U -u
_ raﬂ ok rozy Tan ray Mok rozﬂ Tan
I DPYAN GRVAN g c SiNBg,, SIN G, '
=—] _—
Fapme F gl ay a 57 (61)

wherei is the dextralright-handed unit trivector.[One can

WItE @ gy =(Nap T ayXT ) (F apl oyl o) @S Well, since

[0/ ay/ N\ e =11 0 T 0y X T o] If the dextral order of the where the last equality follows from Laplace’s expansion
bond vectors is fixed a8 4.1 4yl ai}, the positive sign of rule (A1) and from the definition$21) and(23). By express-
®.py Means that the bond vectors form a right-handed seng the inner products in terms of the valence angles, this
(and the molecule has bent “up;” see Fig). 3ikewise, if reads as

the sign ofe .4, is negative, the bond vectors form a left-
handed setand the molecule has bent “dowh’ " The gradi-
ents of the out-of-plane coordinate are easily obtained b
directly differentiating the both sides of EGh7) with respect

to the atomic positions. This results in =C0S0p4, COSO,,4\ —COSH,,, COSOp,) - (62

¥in 0 g4y SINO,cq\ COSE 4510

ﬁx raﬁ/\ray/\rak . . . .. .
apfaylax P The gradients are obtained by differentiating both sides of
1 Eqg. (62). This results in a set of equations of the type,
+(<9 —)raﬁ/\ray/\rak}

X
Br a,Brayr ak

0xﬁ¢aﬁyK: —i r

COSOg,( o7xﬁ0ﬁa7)sin 0 can COSE g yin

rayX P i (axﬁraﬂ)raﬁ/\ray/\rak

raﬂrayrak riﬁra,/rak _SinaﬁaySin eka)\ Singaﬁyk)\axﬁgaﬁyk)\
_ rayX [ e “LB (58) == Cosgya)\ sin gﬂaxaxﬁeﬁmc
- afyk 2 .
Fapl ayl ax Map +COS0 ¢ SN O I, O (63

where the identity

_'axﬁ(raﬁ/\ray/\r“"): —|ray/\ra,<=ra7><rm< (59 which, after the insertion of the known derivatives, reads as

Downloaded 20 Aug 2007 to 128.214.3.188. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3126 J. Chem. Phys., Vol. 112, No. 7, 15 February 2000 Janne Pesonen

TABLE I. Gradients of the internal coordinatésee text for the definitions of the coordinagtes

-~ rayxra,( lap
Vﬁ‘Pa,eyK——r T T Papyc 5
apl ay' ak raB

B [ lap Iy
VoPapy= T Papyc 3
raﬁrayrak rm/

_ I'HBX Ty [
ngoaﬁyx_r o _q}aﬁyxT
ap! ay' ak (I

Vo®apy= " (V0upyt Voy@apyet ViPapyi)

S COS 0,0 (Uraﬂ COS g —Ur N COS 0,00 (Urw COSOpa—Ur, N COS g4, COSEnpyin (Uraﬂ Cosgﬂay_urm/)
poapyx sin §aﬁy:<)\ sin Hﬁay sin HKa)\ raB sin §0(B’}/K}\ sin HBay sin HKO()\ raB sin gww‘ SII’\2 0’30”, raB
Vi, =m COSOpp (Urpry COS Oy —Ur N COS e (u,ay cosem—urm) . COS0pay COSE, gy (Ura7 COSH,BW—UW)
7oeBys sin gaﬁyx)\ sin 0ﬂm/ sin 0;«0\ ray sin faﬁyx)\ sin 0,8&7 sin 0»«1}\ ray sin ‘faﬁw()\ SII']2 Gﬁay ray
v o COS B, (Urm COS Oy —Ur N COS 0,0 (Urw Coseﬁafurnﬂ) | cos O COSEapyan (Urm( COS@KaFUrM)
== : . . : . : -
KSabys sin gaﬁy}()\ sin 0ﬁay sin 6)«1)\ [P sin faﬂy;()\ sin 0,Ba~ySIn eka)\ Tk sin gaﬁ)/f()\ S|n2 0,(“)\ I ax
v o COS 0,0 (UrM COSOpam—Ur . N COS g, (UrM Cosayavurw) N COS O COSEpyan (UrcM Cosemrurw)
N == : . . : . : -
“pre SIN &upyan SIN Oy SIN O,y Fax SINEqpyian SIN Ogayy SIN O, Fan SiN &, gy SINE G Fan

Viapyon=—(Véapyat Vibasyat Vidasyot Viadasya)

v.z _ I’,/KXI'm/ _ uraﬁ_ urw Coseaﬁyx
BEABYCT 20 T e SN O F o SIMP Oy s
Vyz _ ruBX [ _ uraﬁ Coseaﬂyxiurw( 7
apy« 2r gﬁr yK sin Haﬁyk rw S|r\2 9{157« b

B rayx lap l'lrw_uraﬁ COSHCYB'}/K
VKZOIB’}/Ki 2r afyk

a,Br K sin 0&/371( Iy sir? HHB’}/K
VaZaByK: - (VBZaByK+ Vyza,ByK+ VKza,ByK)

(COSGIQB,/K cos 95017 sin HﬁaKicOSHBaK sin HBLW) ( uraﬂ cos 0'8‘“'7 u'dv) + (COSmaB*/K sin 0,3017 cos HBaxfsin 0/3w< COS 050(7) ( uraB cos 6180“‘7 urax)

ViD= SIND gy SIN Oy, SIN Oy I o SIN Opey SIND o gy SIN Oy SIN Oy I o SIN Opose
S Sil’.l Oy . Ur,, Cos.e‘yaK_ul’m( N COST 45, c.os Opery si.n Hﬁa,(—(.:osﬂﬁm( Sin B, (urm/ Cos.eﬁay_uraﬁ
Yy sin W gy SIN gy SIN O Moy SIN O, SIN 5y, SIN O, SIN O Iyy SiNOg,,
Ve SiN 6,4, (Urak COS@yM—UrM)Jr COST o5, COS O SiN O, —COS b, SIN 0BM) ur COSﬁ,eM—UrnB)
«Habye | gin @ oy SIN Ogy SIN O I i SIN O SIN 45y, SN Oy SIN O I e SIN O
Vawa/iyl(: - (VBmaByK_'_ VymaByK+ kaa/iy:()
5 & B COSO.,0c U, COSOpar—Ur | . COSO.0) U, COSOpa—Ur
X NT o ; ; F F ;
poaByK SINEgyin SINOgay SING, o\ lap SINEygyin SINOgay SINO o\ Map
COSOg0y COSE ypyen | Uros COSOBay—Ur, 64
SINE 4 gyn S O gy lap
Similarly,
5 ¢ B COSO g, U, COSOya—Ur . COSOg, Uy, COSOyan—Ur |
X NT T o ; ; ; ; F
y2aByx SINE gyser SINOgar, SN, oy ey SINE o gyser SINOgar, SING, oy My
COSOg0y COSE wpyen [ Uy COSOpay = Ur 5

SINE 4 gyin SIP O30, Moy
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The gradients&xkgaﬁy,(x and Ix Eapyrr ar€ given by ex-

h\
changing the indiceg andx and the indicegy and\ in Egs. \
(64) and (65). They are tabulated in Table I. The central \ s
atom gradient is given by '
\
1

aXagaﬁ’}/K)\ = (axﬁgaﬂyf()\ + axygaﬁyk)\ + anga’,B’yK)\

+ Uv)x}\gaﬂyk)\) . (66)

|}
)
\]
B. Some ring coordinates

Ring coordinates are especially designed to represent the
relative motion of different parts of the rifguch as the ring
puckering or the motion of the ring as a wholsuch as the
ring breathing coordinajé® In the latter case, the ring coor-
dinates are typically symmetrized linear combinations of
some already familiar internal coordinatésr example, the
breathing coordinate is a sum of ring bond lenytiAg im- FIG. 4. Twistingagy.c -
portant property for any ring structure is the ring closure; the
sum of all the ring bond vectors is zero,

1. Ring breathing

(67) . . :
In the ring breathing mode, the length of the ring
Generally, if there areR possible cyclic paths, then there changes in a symmetric fashidthis is depicted for a four-
exist R ring closure conditiongsee Fig. 5. Luckily, these ~atomring in Fig. §. A natural definition of the ring breathing
closure conditions do not complicate the gradient calculacoordinate for arN-atom ring is therefore
tions. The reason is obvious; any independent or dependent
. i ' . . N=TotTogt Iy Nt INT- 68
relative position vector ,;=xz—X, is a function of end €123-NTT127 123 NZINTINL (68)
atom position vectors only. Hence, the closure conditions EqUsing the bond vectors, this can be written as
(67) can be ignored in the gradient calculatidihsit if need
. . € :(r .r 2)1/2+(r .r 3)1/2_|_...
be, they <can be substituted to the gradient 123N 12'71 2312

V., qi(ri,r2, ... INeR) 'which .produces. the same result +(erl,N'erl,N)1/2+(rN,1'rN,l)llz- (69)
V.qi(rq,ro, ... ry) as if the ring coordinatg; had been

expressed in the first place as a function of independent ringy regarding all the bond vectors as independent vectors,
vectorsry,r,, ... ryl. However, the closure conditions can there are gradients of the type,

be expressed in terms of coordinates, and hence used to 0 € —u u (70)
eliminate the dependent coordinates by the method given in =~ "X 123 "N" " re_10 “raast’

the Ref. 16. Usually, the inner product¥ (qg;)-(V,q;) of  pqr example,

the ring coordinates are more easily expressed in terms of
some independent plus dependent coordinates, than in terms axzflzguN:Urlvz_ u,
of independent coordinates only.

By using geometric algebra, the gradients for any ringPue to the ring closure condition, one of the ring vectors, say
coordinate are easily calculated. In the next subsections, tHes,1. iS €qual to minus of the sum of the other ring vectors,
gradients are cglculated for the_ first time for the familiar ring Fra= — (ot gt o Ty 1) (72)
breathing coordinate and the ring puckering coordinate. Fur- ' '
thermore, | define aliagonal book angleoordinate to de- If wanted (although this is unnecessayyhe dependent ring
scribe the relative orientation of two parts of the ring, andvector can be written in terms of independent ring vectors,

(71

2,3

derive its gradients. and hence the gradie €103..n ANA I, €153 .. DECOME
W E123 N %, €123 N
|
N1 Moozt +IN_1N
aXN6123’"N:urN—1N_ - rN—1N+ 2 2 2 1/2 (73)
AR T r it 2rp rogt e+ 20 Iy N Togt 2005 gt -+ TR ]
and
_Ina B Fipotrogt - +rIn_1n
dx, €123 - N= 7 ~U =7 —5 2 2 12 Uiy (74
N1 (Mot 2r o ozt o +2r o Iy Nt 53T 205 gt o+ \]

These results are the same as if the dependent ring vector would have been eliminated and the gradients taken. This would
have produced
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2 2 2
x (Mgt 2019 ozt o+ 200 Iy g N T T3t 23 gt o T 1 )

dx €123--N=0x (F12F gt "+ Ty_1n) T (79

2 2 2 X
2[r o+ 21y Togt o+ 205 Iy N5t 2005 Tggt -+ TR 0]

With the help of the vector derivatives given in Appendix A handedand the diagonal;; points “upward”), so the value
one can confirm that this gives E(Z0) for =2,3;--,N  of the corresponding ring puckering coordinafg,,; is
—1, Eq.(74) for =1, and Eq(73) for a=N. positive.
The gradienwxﬁzaﬁw is obtained by taking the vector
derivative of both sides of Eq78). This produces
2. Ring puckering

The absolute value of the ring puckering coordinate _ 0, (T ay/\F ap/\T )
Zopy IS defined® as the half of the distance between the two XgaByx 21 o8l 3 SNG4
ring diagonalsr,z=Xz—X, andr,=X,—X,, i.e., _

d I(axﬁraﬁ)(ray/\raﬂ/\ryk)
_ Yapyx + N

|Zapye = =5 (76) 21241, SIN0,p.,
where d,g,.= (Al 4., dupy) ¥?=0 is the minimum chord 1 COF gy 9, Oy /T /N i
distance, and + - ,

» 21 450 3 SITP 0,5,
daByK:(Xy_xa)/\raﬁ/\r'yk(raﬁ/\rwc)

(79
LAY SVYAN S ( SP7AN 0 I (77
is the directance from the ling,; to the liner ., (see the ~Where the gradients of the anglég;,, are given by simple
answer to exercise 6.7 in the Sec. 2-6 of Refl. The ring  Vectorial differentiation(like in the case of the valence
puckering coordinat&.,;sis depicted in the Fig. 7 for a four angles as
atom ring. The sign of the puckering coordinate reveals, if

the nucleia and 8 (or y and «) have moved “above” or Ur,, COSO g Up
a Y

“below” the reference plane. Hence, a natural definition for Iy, Oapy= - S =—0, O apyic (80)
. N B arY Mo SiNOypy, o @PY
the ring puckering is Y
. LA P A SOPE | POV YA o 79 U —U, cOSf
aByk™ == : ' _ Tap Ty arye_
201 5/ \F ol 21 45" 3 SINB g ‘9x7‘9aﬁw— o SiNGp = —dx Oapyir (81

wherei is the unit trivector and,,z4,,. stands for the angle
betweenr,; andr,, . In the current notation, the valence
angles can be written a&;,,, = 6,4, - |f the dextral order of
the relative position vectors,,, r,sz, andr,, is fixed as
{raysTag T}, the positive sign ofZ,4,, means that the )
rela;/tiveﬁpoysition VECLOrS ., Top, angyr,/,( form a right- Iy (Tay/\Vap/\T ) =~V ay/NF = =11, X1 (82)
handed sefthe diagonat . points “upward”). Likewise, if

the sign ofZ,,, is negative, the relative position vectors (see Appendix A Hence

form a left-handed sefthe diagonalr,, points “down-

ward”). Note, that in Fig. 7 the triplefr,;,ro4,r13} is right-

wherea# B,y,k, B# v,k and y# k. The vector derivative
of the trivectorr,,,/\r,g/\r., is given by

o T \
R Lo
7 "
| Iy ' |
& <4 3 : '
'
'
Path 1 _ '
Path 2 . r, =@, +x 'y,
I. 3 '
56 ' '
1
'
Ly =Hp + i, TG iy +1,) : .
(&) - Y > ' ,
S
Fe1 Ty /*\ :\
Path 3 T /; oSS ssssseses ,\\ /\
I
FIG. 5. A double ring. FIG. 6. Ring breathing for a four atom ring.
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axﬁzaﬁyx

- X oy |u,aﬁray/\raﬁ/\ry,<
21 ol i SING

2 .
aByk  2F el SO,y
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The other gradients are given in Table 1.

3. Diagonal book angle

A possible alternative for the ring puckering coordinate
is the diagonal book angles g, defined as the dihedral
angle of the planes spanned by the diagangl=xz—x,
and the bond vectors,,=x,— X, andr,, =X, — X, (see Fig.

(U, N )
Er ue A L Tue, A

uraﬁ/\urak

u, Ay, u. Au,
ay af af ak

o A T A

€080, COSOg4, COSOg4y

SiN0gg, SIN O (89

By taking the vector derivativéxﬁ of the both sides of Eq.

N uraﬁcosﬁamk—urw)coseaﬂykra/\fa/s/\ryx
Fp SN0 45y, 21 51 3 SIN? 0
_ r’yKX I’ay 8)1 Iev
21 450 5 SING 45
(Ur —urwcosﬁaﬁyk> CoSw
B ' By (83
I pSIN?0 5
Similarly,
axkzaﬁyx
— rayxraﬁ _ uryk_uraﬂcosaaﬁyk
21 81 i SING oy gy M yw sir? Oapyx e
(84  (8H),
|
i 9 _SineﬁaxCosaﬁaanﬁoﬁaKJ’_CoseﬁaKsmgﬁ”&xBeﬁw
SN 454k meaﬁ‘yK_ sineﬁaysinﬁﬁw

(COS0,4—COSHg,, COSOp,,)(COSOHg,, SIN Hﬁakaxﬁ05a7+ Sinfg,, cosGBaKaxﬁaﬁaK)

- : : (86)
SIM? 034 SIN? g
follows, and hence
COST 43y COSO gy SIN O g — COSO g SIN Oy | [ U, COSOpay=Ur
07X m‘aﬁwz . " " "
B S|nma'B,},KS|n GBaYSInQBaK ra'BS|n Hﬁay
. COSW 45, SIN By, COSOp,,—SINBg,, COSOp,,, | [ YU,y COSOpy—Ur @
Sinm’aﬂw S|n aﬁa,),s'n algak ralg S|n ﬁﬁak
|
Similarly, V. CONCLUSION
% apyi The geometric algebra approach offers some advantages
i over other methods presented in the literature. First of all, in
SiNG,0 Ur, COSOy 0= Ur the geometric algebra approgch, the atom_ic position vectors
= S 1y SN Oy SN Oprs foy SN0 themselves are manipulated instead of their components, and

N COS 45y« COSO g, SIN B4, —COSHg,, SNG4,
SIND 45y, SINO g4, SINOg,

X

(89)

Ur, COSOpgqy— u,aﬁ)

laySINOg,,

The gradientd, = is obtained from Eq(88) by ex-

aByk

changing the indiceyy and x. As usual, the central atom

gradient is given by

axwmaﬁyf(: - (axﬁmaﬁ"yk—’_ axyma/}yk—i_ aXKmaByK) .
(89

hence the expressions are simple at each stage of the deriva-
tion. This is not the case when Cartesian components and
back substitution are used to obtain the vibrational kinetic
energy operato?® Furthermore, while the geometric algebra
approach is generdthat is, independent of any particular
molecular part in questionthe use of Cartesian components
forces one to select an external coordinate frame separately
for each molecular part.

The geometric algebra method is also purely algebraic,
unlike the conventional “Wilson’ss-vector method, %22
where the gradient¥ ,q; are deduced geometricallf some
point by displacing the nucleug infinitesimally (not by a
unit displacement, as is often erroneously stpsatl keep-
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ing the others fixed. This gives only the value imperfections of the Gibbs—Heaviside vectorial systém.

v.ai(a?,q5?, .. .) of thegradient in terms of a reference For example, since the vectorial divisi¢or a genuine vec-
conflguratlonq(e) q(e) ... used(see Appendix B and one torial product for that matteris not defined in the Gibbs—
simply assumes that the gradient is obtained from this bydeaviside system, one is forced to use the components of the
replacing qi(e) by g;. While in some cases this works, in vectors instead of the vectors themselves in the actual ma-
other cases, where some coordinates are zero at the referengpulations.
configuration, it may miss some part of the gradient. For
example, this would happen if one calculated gradients fonCKNOWLEDGMENTS
out-of-plane bending using a planar reference configuration
(this is shown at the end of Appendix B

Incidentally, by using geometric algebra, Wilson's

method could be generalized?48"
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for financial support. | am also grateful to Professor L. Ha-
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manuscript.
axaqi(xa)EaaQQi(Xa ;aa)v (90)
where APPENDIX A: SOME USEFUL VECTOR DERIVATIVES
AND EXPANSION RULES
Letr,z=Xz—X, andr,,=X,—X,. Furthermore, leta
i(X,t+ da,)—qi(X, ap= B a
0i(X,:;a,) = lim all 5) 8i(*a) (91)  be a vector and\,= al/\az/\ /\ap a p-blade independent
- 50 of X, , Xz, andx,,. Then?
is the differential ofg; at the arbitrary positiona, andx,, of
nucleusa. This is an exact result.e., the vectol, need be f ‘?ng axaf
neither infinitesimal nor collinear witlV ,q;|, ). However, [ p 3 -3
since one can directly take the gradients of any coordinate, ra 3a —3a
there is no point in calculating them via differentials. In my h
opinion, “Wilson’s s-vector method” is not a practical way Alap -a a
to obtain the gradients of the internal coordinates except in alyp a —a
the simplest cases, like bond stretchings and valence angle « Krk—2 Krk=2
. . apB Tap Tap  “Klag Tap
bends, where the correct gradient can be determined geo- ) . '
metrically without the need to use E0). Fagfap  (K+3)rag —(K+3)rg,

In the case of ring coord'inates,' t.he _g.t)eometric algebra rag/\Ay (3—P)A;  —(3—p)A,
approach offers an ideal tool in obtainigi%) as a sum of _ N
the inner product of gradients of the coordinates. On the FapTay Tay (FapTTay),
other hand, the covariant approach of the Ref. 25 is restrictedtherek=0,+1,-2,+3, ... .
to numerical work. In that approach, one forms the covariant Laplace’s expansion rule for the inner product of two
metric tensor 9q,0,= =X,m,(dx,/dq)-(dx,/dq;), which  p-blades is given by
must be inverted to obtain the reciprocal metric terggd8i)) (3y/\-Aay)- (b Aby)
that appears in the kinetic energy operator. In practice, this

cannot be done analytically, since the elementgél),jj are P 1
functions of the internal coordinates. ,Z‘l 1 @y bo(@p/\-+-Aay)
It must be added thall the computational complica-
tions of the conventional methods are actually due to the -(bl/\-—-/\Bk/\---/\bp), (A1)

FIG. 7. Ring puckeringZ,413. FIG. 8. Diagonal book angles,413.
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whereb, means that the vectds, is omitted from the prod- Agi(ag,ay, ...)=q(X;+a;,X,+ay, ...)
uct. Analogously, the expansion rule for the inner product of B B7
a vectora and ap-bladeb,/\---/\b, is given by Gi(X1, Xz, - - -) (B7)
p are definedin Ref. 1 by the many variable version of Eg.
a(bl/\/\bp):E (_1)k+1a (BZ) as
k=1 N
(/A= ABA- - AAbp). (A2) Agi=2 8, V, ai(Xy.Xp, .. .). (B8)

Equation (B8) is a linear approximation of EqB7), and
they are equal only for the infinitesimal displacemeatds; .
For example, the coordinate called the “bond length dis-
placementAr ;" in Ref. 1, does not equal to the change in
The Taylor expansion of the internal coordinateat the  the bond lengthr 5, except in the case that nucleiand 8
point x,,+a, is'®?! are displaced by an infinitesimal amount. By expressing the
(a,-V,)2 displacement vectoa, of 3Eq. (B8) in some orthonorma_ll
0i(Xa+a,) = 0i(Xa) + 84 V4 0i(Xe) + TQi(XQ)JF"' basis{u;,uy,uz} asa,=Zja, Uy, these linearly approxi-
' (B1) mated displacement coordinates can be written Aap

i f th P fth | This i id § =E§EEBi,akaak, where theB-matrix elements are given as
in terms of the positiox,, of the nucleusy. This is valid for
p o Bi'ak:uk'vaqi(X11X21 . )

any pointx,+a,. In the infinitesimal limit[i.e., when @,
-u)?—0 for any unit vectou], Eq. (B1) simplifies to 1. Simple example: Valence angle bending

APPENDIX B: TAYLOR SERIES, WILSON'S METHOD,
AND GRADIENTS AT THE REFERENCE
CONFIGURATION

q;(x,+da,)=0q;(x,)+da, -V ,qi(X,)- (B2) The most efficient way to increase the valence angle
054, by displacing the nucleug is (by intuition) to the
direction perpendicular to,z outwards. This is the direction
of the gradientudsgﬁm: (Vg0sa, !V 50s,,0), and in the

The infinitesimal displacement is implied by the notation
da,. Furthermore, ifda, is collinear with V ,q;(x,), the
inner product in Eq(B2) can be replaced with the geometric

product, and terms of bond vectors it reads as
A (X +ds) = () + AV @i (x,), (83) Ur 5 COS0pay— Ur,,
“ “ Ugs(¥par) = ; (B9)
ST T

where dsfyq” is an infinitesimal displacement vector to the
direction of the gradien¥ ,q;(x,). Hence, in the infinitesi- which fortunately is true for any configuration<®,,, <.

mal limit, and at the direction of the gradient, The displacememisf;ﬁw) of the nucleusB to the direction
ds¥y 0i(Xq) =i(X +ds(q‘))—q(x ) (B4) uds(;ﬁ”) produces a chang®fs N Opay, where
o al a | a o ! al*
S . (08ay)
By multiplying both sides of Eq.(B4) by ugd@® ds, 7
y n p(y_) g q.(B4) by ug SiN(d0,,) = ~dbg,,. (B10)
= ds "/|ds 7|, the result Vap
d The latter equality is exact in the case of an infinitesimal
V.,0i(X,)= iuds(qi) (85)  displacement, but it would not hold in the case of a unit
dsffi) a displacement. Hence, using E@6), or in this case, Eq.
(a0 @  (BS),
follows, where dg;=q;(x,+ds,")—0qi(x,) and ds '
=g Ur C0stg, —Ur
jds, - . . o Vg (B11)
Equation(B5) is the mathematical content of Wilson’s 4 lopSiNOg,,

method. However, it is better to write the result given in Eq.

(B5) as which agrees with the result in E454) derived by using

geometric algebra.

dq;
Vaqi |q(e): Ti)uds(qi) (B6)

ds, “ 2. Not so simple example: Out-of-plane bending
because in practice the direction of the gradient is deduced In this subsection, | try to derive the gradiige,z,.
geometricallyat some configuratiom®={q{®,q{”, ...}, by using Wilson’s method at th@ianar configuration. At the
and the nucleusy is displaced by an infinitesimal amount planar configuration, the most efficient way to increase vol-
dsfyqi) to this directionug@= (V ,q;/|V ,qi|) [q@. Thedg; ume of the parallelepiped spanned by the bond vectors by
is the infinitesimal change in the coordinateresulting from ~ displacing the nucleug is (by intuition) to the direction
the infinitesimal displacement of the nucleusThese results Perpendicular to the original plang,,/Ar,,.. This is the di-

are highlighted in the following subsections. rection of the gradiemdsifﬂﬁw): (V@apy! |V p@apyd) at
It should also be mentioned that the internal displacethe planar configuration, and in the terms of bond vectors it
ment coordinates reads as
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ayxrak _ ra'yxral(
a‘yxrak| ra‘yrak Sinayak

(B12)

(‘P,,[gy,() |

The infinitesimal displacememts(“’“ﬁw) of the nucleus3 to
the directionugygd «aa,m) produces a change

sind,,,d sﬁf‘*ﬁw)

d(pa,B'yK: raﬁ (813)
iN ¢,p, Hence, using EQ.B6),
r, ., Xr
_ lay akK
Vﬁ(Pa,ByKLPa,B,/K:O_ raﬁrayr aK- (814)

However, this isonly a part of the true gradientthe
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