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Although uranium (U) and thorium (Th) occur naturally in 
different geologic environments, drinking water, and food 
(WHO 2001; ATSDR 2013), they have consequences to 
human health due to the carcinogenic character and high 
chemical/radiological toxicities (USEPA 2002; Craft et al. 
2004; Bhalara et al. 2014). U ores and their operation are 
a common anthropogenic source of U. Studies on Th have 
revealed that Th dust can cause an increase in lung disease, 
pancreatic cancer, and lung cancer (USEPA 2002). These 
serious health effects show the need for the decontamination 
of such areas, which can be achieved through phytoreme-
diation (Lottermoser 2003; Pratas et al. 2014).

Phytoremediation is a method of decontamination that 
uses plants to substantially or partially remediate the met-
als or contaminants in sediment, sludge, soil, mining water, 
waste water, or ground and surface water. This method is 
also called agro-remediation, green remediation, vegeta-
tive remediation and botano-remediation (USEPA 2001). 
Aquatic macrophytes play a significant role in the protection 
of aquatic ecosystems, in particular their ability to remove 
heavy metals makes these plants an attractive candidate for 
the treatment of sewage, waste water, and industrial efflu-
ents (Mkandawire et al. 2004; Sood et al. 2012). The phy-
toremediation potential of aquatic macrophytes for heavy 
metals has been studied by Srivastava et al. (2008), Marques 
et al. (2009), Sasmaz and Obek (2009, 2012), Khan et al. 
(2009), Goswami et al. (2014), and Tatar and Obek (2014). 
Some differences in the accumulation potential of heavy 
metals have been observed.

Aquatic macrophytes have the fastest reproduction and 
growth rates as compared to terrestrial plants under dif-
ferent climatic conditions (Materazzi et al. 2012). Metal 
accumulation or uptake by plants has been extensively 
investigated in the literature, and L. gibba and L. minor, 
from the duckweed family, have been used as model 

Abstract  This study focused on the ability of Lemna 
minor and Lemna gibba to remove U and Th in the tailing 
water of Keban, Turkey. These plants were placed in tail-
ing water and individually fed to the reactors designed for 
these plants. Water and plant samples were collected daily 
from the mining area. The plants were ashed at 300°C 
for 1 day and analyzed by ICP-MS for U and Th. U was 
accumulated as a function of time by these plants, and 
performances between 110 % and 483 % for L. gibba, and 
between 218 % and 1194 % for L. minor, were shown. The 
highest Th accumulations in L. minor and L. gibba were 
observed at 300 % and 600 % performances, respectively, 
on the second day of the experiment. This study indicated 
that both L. gibba and L. minor demonstrated a high ability 
to remove U and Th from tailing water polluted by trace 
elements.
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Materials and Methods

The Keban mining area (Fig. 1) has been chosen because 
it is one of the biggest and abandoned Pb-Zn-Ag deposits 
in Turkey. The syenomonzonite and syenitic rocks around 
Keban also have high Pb, Ag, Zn, Cu, and As concentra-
tions, and poly-metallic mineralizations such as F–Mo, Fe–
Cu, Zn–Pb, and Ag-Mn have been observed there. Among 
the different types of mineralizations in Keban, Pb–Zn ores 
with high silver concentration are the largest economic 
deposits, mined for 6000 years according to Seeliger et al. 
(1985). Pb-Zn-Ag ores have been produced by these min-
ing galleries (Akgul 2015), which were closed because of 
security reasons, but the galleries have common effluents. 
The chemical composition of this water can vary, depend-
ing on the type of mineralization and the composition of 
wall rocks.

In this location, the water samples, together with 
plant samples, were sampled daily. When these samples 

plants. L. minor and L. gibba commonly occur in wetlands. 
They adapt easily to varying conditions, grow quickly, and 
have great potential to remove contaminants from water 
(Dirilgen 2011; Rahman and Hasegawa 2011; Obek and 
Sasmaz 2011; Materazzi et al. 2012; Bocuk et al. 2013; 
Rofkar et al. 2014; Tatar and Obek 2014; Pratas et al. 
2014; Favas et al. 2014; Goswami et al. 2014; Iqbal and 
Khera 2015; Babarinde and Onyiaocha 2016; Sasmaz et al. 
2016; Babarinde et al. 2016). The contaminant-removing 
ability of these plants has been studied to investigate the 
removal of U from the contaminated water of U mining 
areas (Pratas et al. 2012, 2014; Favas et al. 2014; Wang et 
al. 2015; Qureshi et al. 2015; Matveyeva et al. 2016; Iqbal 
2016; Jha et al. 2016). The aim of this study was firstly to 
investigate U and Th levels in environmental contaminants 
in the Keban tailing water, which flows into the Karakaya 
Dam Lake, secondly to remove these metals from the tail-
ing water by using L. minor and L. gibba, and finally to 
detect accumulation abilities of these plants for U and Th.

Fig. 1  Geological and location map of the study area (simplified from Akgul 2015)
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Results and Discussion

The physicochemical parameters, anions, and cations of 
tailing water have been given by Sasmaz et al. (2015), 
except for U and Th concentrations. The mean U and Th 
concentrations in the tailing water were detected to be 42 
and 0.22 μg L−1, respectively, in this study (p < 0.5). The 
mean pH, temperature, and EC values were 7.36, 19.7°C, 
and 2.29  mS  cm−1, respectively; these values remained 
fairly consistent/regular throughout the experiment. The 
mean U concentration in the study area was higher than the 
limit value (15 μg L−1) of drinking water established by the 
WHO (2005). While Palmer and Edmond (1993) reported 
that the average U value in river water is ~0.3  μg  L−1, 
Favas et al. (2014) indicated that it has high concentrations 
(139 μg L−1) such as two mining areas in central Portugal. 
At these points, U concentrations could be directly linked 
to mining activities since these streams were directly fed 
by mine drainage (Favas et al. 2014). U (VI) predominately 
occurs in an acidic environment (pH < 4.0) as UO2

2+; at 
higher pH ranges (4.0 < pH < 7.0), composite hydrolyzed 
ionic species occur, such as (UO2)3(OH)5

+, (UO2)2(OH)2
2+, 

and UO2OH+. The average pH (7.36) of the tailing water in 
the study area is higher than 7.0 and, therefore, Wang et al. 
(2010) indicated that U (VI) easily precipitated in the water 
when the pH of tailing water was above 7.0.

Based on common cations (Mg2+, Ca2+, K+, and Na+) 
and anion (Cl−, HCO3, NO3

−, and SO4
2) contents, Mg, Na, 

and Ca are the dominant metals and represent greater than 
90 % of the composition of total cations. Sulfate and bicar-
bonate are the most dominant anions in the studied tailing 
water and represent 88–95 % of the total anion composition 
in the tailing water. In this study, the water in the selected 
area has been classified as calcium-magnesium-sulfate-
bicarbonate water, based on total ion content.

The U levels before the experimental study of L. gibba 
(LG-0) and L. minor (LM-0) are 0.42 and 0.33  mg  kg−1, 
respectively (p < 0.5). These U levels for both species are 
defined as the control group values of this study. From the 
first day, L. gibba and L. minor accumulated, respectively, 
0.88 and 1.05 mg U kg−1 on a daily basis. In the study, the 
values of U that L. gibba removed from low U concentra-
tion tailing water increased to 110 % the first day, to 131 % 
the second day, and to 200 %, 252 %, 293 %, 326 %, 381 %, 
and 483 % the following days (p < 0.5). The amounts of U 
absorbed by L. minor were 218 % the first day, 282 % the 
second day, and 406 %, 530 %, 497 %, 797 %, 945 %, and 
1194 % the following days (p < 0.5). As presented in Fig. 3, 
the accumulation of U by L. gibba and L. minor increased 
linearly throughout the experiment. Although the tailing 
water had very low U concentrations (mean U concen-
tration: 42  μg  L−1), L. gibba and L. minor accumulated, 
respectively, 58 and 102 times more U than was originally 

collected from the study area during an eight-day period, 
in the same time, the electric conductivity (EC), T oC, and 
pH of the tailing water were also measured. The T oC, EC, 
and pH were determined using a digital thermometer, an 
Orion conductivity electrode, and an Oaktan pH tester 30, 
respectively. The plants were systematically identified as 
L. minor and L. gibba, according to Davis’s recommenda-
tion (1984).

The L. minor and L. gibba plants were brought to Firat 
University’s laboratory from Istanbul University with 
separate containers, after that, adapted in separate reac-
tors, and placed in each reactor (Fig. 2) as described in the 
details provided by Sasmaz et al. (2015). These reactors 
were operated under a sustained regime of flow volume 
(2.85 L s−1) of tailing water. Both L. minor and L. gibba 
samples were collected from the reactors daily throughout 
the experiment. The plant samples were washed with dis-
tilled water and then dried in an oven for 1 day. The dried 
plants were heated at 300°C to be ashed; then they were 
digested in HNO3 (Merck, Darmstadt, Germany), mixed 
with HNO3 and HCl at 95°C for 1 h, and analyzed with 
ICP-MS for U and Th. The operation conditions of A Per-
kine Elmer Elan 9000 ICP-MS to determine U and Th are 
given in Sasmaz and Yaman (2008). Minumum detection 
limits of ICP-MS are 0.01 mg kg−1 for U and Th in the 
plants and 0.02 and 0.05 μg L−1 for U and Th in the water, 
respectively.

The U and Th accumulation potentials for L. gibba and L. 
minor were calculated by the following formula. The accu-
mulation potential of Th for the second day in L. gibba = 
(LG2–LG0)/LG0; The accumulation potential of U for the 
eighth day in L. minor = (LM8–LM0)/LM0. The analysis of 
variance (ANOVA) from SPSS 15.0 software was used. The 
U and Th values belonging to L. minor and L. gibba were 
correlated with Na, Mn, Al, Fe, P, Mg, S, and K, using Spear-
man’s correlation.

Fig. 2  L. gibba L. and L. minor L. were separately placed in each 
reactor

 

Bull Environ Contam Toxicol (2016) 97:832–837834

123

Author's personal copy



contained in the tailing water. L. minor demonstrated a 
higher ability to remove U compared to control group con-
centrations (Fig.  3). U had a strong positive correlation 
(p < 0.5) with the S, P, Mn and Al in L. gibba (Table 1) and 
S, Mn and Al in L. minor (Table 2). U showed strong nega-
tive correlations with K, Ca and Fe in L. gibba (Table 1) and 
K in L. minor (Table 2).

For both L. gibba (LG-0) and L. minor (LM-0), Th values 
before the experimental study were 0.01  mg kg−1, which 
was also defined as a control group value in this study 
(Fig.  4). From the first day, L. gibba and L. minor accu-
mulated, respectively, 0.02 and 0.02 mg Th kg−1 on a daily 
basis (p < 0.5). Th concentrations in L. gibba increased to 
100 % the first day, to 600 % the second day, and to 400 %, 
200 %, 500 %, 600 %, 500 %, and 800 % the following days 

Table 1  Spearman’s correlation coefficients between some metals 
with U and Th in Lemna gibba

Mn Fe Ca Mg Na Al K P S

U 0.87 −0.56 −0.61 0.47 0.35 0.86 −0.81 0.88 0.93
Th 0.96 −0.53 −0.28 0.33 0.13 0.78 −0.64 0.65 0.68

Table 2  Spearman’s correlation coefficients between some metals 
with U and Th in Lemna minor

Mn Fe Ca Mg Na Al K P S

U 0.66 −0.11 0.15 −0.26 0.14 0.64 −0.58 0.26 0.95
Th 0.89 −0.13 0.14 −0.17 −0.48 0.36 −0.13 0.19 0.69
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Fig. 4  Thorium accumula-
tions by Lemna gibba (LG) and 
Lemna minor (LM) under a sus-
tained regime of flow volume 
(2.85 L s−1) of tailing water
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had high bioproductivity, biomass and uranium accumula-
tion (Jha et al. 2016).

The aquatic plants L. gibba and L. minor were used for 
the accumulation of U and Th in tailing water belonging to 
a Pb–Zn mining area as an alternative method for clean-
ing and rehabilitating water contaminated with U and Th. 
The results demonstrate that U was absorbed by L. gibba 
and L. minor with a linear increase during the eight-day 
period. Th was absorbed effectively by both L. gibba and 
L. minor on the first 2 days of the experimental study. On 
the following days, increases and decreases in the accu-
mulation performances of Th were seen, likely due to the 
saturation levels of the plants being reached. As a result, 
this study was revealed to be a feasible and cost effective 
method for the removal of U and Th by the phytoremedia-
tion from radioactively contaminated water. Therefore, it is 
recommended that these plants should be harvested at the 
right time for the protection of human health and the envi-
ronment because they contained more concentrations of U 
and Th in stated days. Future studies should be focused on 
cleaning and rehabilitating waters contaminated with U and 
Th in mining areas and municipality wastewater treatment 
plant.
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