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Department of Electrical and Electronics Engineering,
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Abstract Recently, the modelling and simulation of switched systems containing new nonlinear
components in electronics and power electronics industry have gained importance. In this paper,
both feed-forward artificial neural networks (ANN) and adaptive network-based fuzzy inference
systems (ANFIS) have been applied to switched circuits and systems. Then their performances
have been compared in this contribution by developed simulation programs. It has been shown that
ANFIS require less training time and offer better performance than those of ANN. In addition,
ANFIS using “clustering algorithm” to generate the rules and the numbers of membership
functions gives a smaller number of parameters, better performance and less training time than
those of ANFIS using “grid partition” to generate the rules. The work not only demonstrates the
advantage of the ANFIS architecture using clustering algorithm but also highlights the advantages
of the architecture for hardware realizations.

1. Introduction
In the last few decades, many types of new nonlinear components have
appeared in electrical circuits and systems. As a result, the analysis of such
circuits and systems has gained more importance and therefore, a lot of
scientists have developed and published quite many analysis methods. One of
these is the piecewise linearization approach and nonlinear components were
modelled by linear time invariant components and ideal switches (Demir et al.,
1996; Koksal, 1984). However, unlike the linear case, the operating conditions
(switching sequence and switching time) of these switches are not preknown in
nonlinear systems. This necessitates the use of the so-called control inequalities
additionally. Nevertheless in this paper, the switching sequence and switching
time of the switches are assumed to be preknown.

Electrical circuit models can be broadly divided into two classes: first
principles models and empirical models. First principles models are based on
circuit knowledge, and hence, they are reliable. Whenever feasible, these should
be developed and utilised. However, the development of principles models is
sometimes time consuming and effort demanding, especially for nonlinear
circuits.
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Artificial neural networks (ANN) have been successfully applied to a wide
variety of system modelling and control applications by many researchers
(Borchers, 1998; Cannas et al., 1998; Choi and Farrell, 2000). Indeed, they offer
massive parallel distributed processing, generalising properties and especially
the learning property. An overwhelming majority of these applications have
used the backpropagation algorithm for optimising the networks. Although the
backpropagation algorithm has unquestionably been a major factor for the
success of past neural network applications, it is plagued with disadvantages,
e.g. convergence to the global optimum is not guaranteed and convergence
tends to be extremely slow. Therefore, several algorithms based on Newton’s
method have been developed, but these show several limitations, e.g. they can
be difficult to interpret and can lack robustness when applied to data outside
the training interval (Efe et al., 1999a, b; Nørgaard, 1997).

One approach to improve the model robustness is based upon the
combined use of both circuit knowledge and circuit input output data.
Circuit knowledge can, for example, be used to decompose the circuit
operation into a number of local operating regions such that, within each
region, a reduced order linear model can be used to approximate the local
behaviour of the circuit. In fact, a nonlinear circuit can always be locally
linearized around a particular operating point. The locally linearized model
is valid within a region around that operating point. Fuzzy sets provide an
approximate means for defining operating regions since the definition of
local operating regions is often vague in nature and there usually exists
overlapping among different regions. This leads to the fuzzy modelling
approach (Efe et al., 1999a, b; Gomez-Skarmeta et al., 1999; Park et al.,
1999; Zawirski et al., 1999). The major difficulty in fuzzy modelling is how
to decide on the parameters for the fuzzy membership functions (MFs). The
parameters are often specified by users, either from their own experience or
from trial and error. However, introducing some automation might relieve
this difficulty, as shown in recent researches.

In the last decade, the similarity of nonlinear systems modelling using ANNs
and fuzzy logic systems (FLS) has been researched and the advantages of fuzzy
reasoning and neural networks by neuro-fuzzy networks have been combined.
These advantages include fast and accurate learning, good generalisation
capabilities, excellent explanation facilities in the form of semantically
meaningful fuzzy rules, and the ability to accommodate both data and existing
expert knowledge about the problem given below. Different fuzzy-neural
networks architectures have been used for the solution of many engineering
problems (Jantzen, 1998; Rashid et al., 2000). One of these is the adaptive
network-based fuzzy inference systems (ANFIS) architecture to represent fuzzy
models (Jang and Chuen-Tsai, 1993). The ANFIS architecture cannot only use
linguistic information but also adapt itself using numerical data to achieve
better performance. In any case, the determination of the number and locations
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of fuzzy rules is necessary for its success. For this, several techniques proposed
in the literature include techniques like min-max, clustering and grid partition
techniques (Djukanovic et al., 1997; Ellithy and Al-Naamany, 2000; Jang and
Chuen-Tsai, 1995).

In this paper, the switched circuits have been modelled by both ANN and
ANFIS architectures for the first time, and the behaviour for different inputs
has been simulated. To train ANN and to generate the rules and the numbers of
MFs of ANFIS, two different algorithms are used. For this purpose, all
simulation programs have been developed in the contribution by The
Mathworks’s MATLAB. Simulation results for the example circuit are given.
Furthermore, the simulation results of the developed ANN and ANFIS models
have been comparatively evaluated in terms of error, parameter number, and
training time.

2. Theoretical background
The aim of this section is to provide a theoretical background.

2.1 ANN for modelling
ANN is a network architecture which gives very good performance for the
modelling of nonlinear systems. In Figure 1, the architecture of the feedforward
ANN with n input neurons, one hidden layer with m hidden neurons and one
output neuron is shown.

In this paper, the ANN has been trained with the backpropagation algorithm
using an adaptive learning rate and the Levenberg-Marquardt algorithm.
ANN-1 and ANN-2 indicate the ANNs trained with the backpropagation
algorithm and the Levenberg-Marquardt, respectively. The Levenberg-
Marquardt benefits from additional information coming from the second
derivatives of the cost function for iteratively solving for the weights. Hence, it
is faster than the backpropagation algorithm but has a larger computational
complexity and too much hardware requirements (Efe et al., 1999a, b; Jang et al.,
1997; Nørgaard, 1997).

Figure 1.
ANN architecture
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2.2 ANFIS for modelling
ANFIS is one of the proposed methods to combine fuzzy and neural systems. It
contains rule base and database (knowledge base), fuzzification and
defuzzification unit as well as a decision-making unit. The system makes use
of a hybrid learning rule to optimise the fuzzy system parameters of a first
order Sugeno system ( Jang and Chuen-Tsai, 1993).

The ANFIS architecture with two inputs, two rules and one output is
graphically represented in Figure 2 for a typical fuzzy rule set:

IF x is A1 and z is B1 THEN y1 ¼ p1x þ q1z þ r1

IF x is A2 and z is B2 THEN y2 ¼ p2x þ q2z þ r2

The layers for ANFIS in this architecture are defined as follows:
Layer 1: Every node “i” in this layer is an adaptive node with a node output
defined by

O1;i ¼ mAi
ðxÞ; for i ¼ 1; 2 or

O1;i ¼ mBi22
ðzÞ; for i ¼ 3; 4

ð1Þ

where x (or z) is the input relating to the node, Ai (or Bi-z ) is a fuzzy set
associated with this node, mAi

ðxÞ is the MF of x in A. In this study, the Gaussian
and the trapezoidal MFs characterised by equations (2) and (3) are used. {aj, bj,
cj, dj, sj} is the nonlinear premise parameter set in this layer.

mAj
ðxÞ ¼ e

2
x 2 cj

sj

� �2

ð2Þ

mAj
ðxÞ ¼ max min

x 2 aj

bj 2 aj

; 1;
dj 2 x

dj 2 cj

� �
; 0

� �
ð3Þ

Figure 2.
ANFIS architecture for
the two-input two-rule
Sugeno fuzzy model
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Layer 2: Every node “i” in this layer is a two-fixed node, which multiplies the
incoming signals and outputs the product, as defined in equation (4).

O2;i ¼ wi ¼ mAj
ðxÞ*mBj

ðzÞ; i ¼ 1; 2; j ¼ 1; 2 ð4Þ

Each node output represents the firing strength of the rule.
Layer 3: Every node “i” in this layer is a fixed node. The ith node calculates the
normalized firing strength:

O3;i ¼ �wi ¼
wi

w1 þ w2
; i ¼ 1; 2 ð5Þ

Layer 4: Every node “i” in this layer is an adaptive node with a node function

O4;i ¼ �wiyi ¼ �wiðpix þ qiz þ riÞ ð6Þ

where {pi, qi, ri} is the linear consequent parameter set in this layer.
Layer 5: The single node in this layer is a fixed node, which computes the
overall output as the summation of all incoming signals:

O5;l ¼ overall output ¼
i

X
�wiyi ¼

i

P
wiyi

i

P
wi

ð7Þ

The hybrid learning algorithm of ANFIS adjusts the consequent parameters in
a forward pass and the premise parameters in a backward pass. In the forward
pass, the consequent parameters are identified by the least-squares method. In
the backward pass, the error signals propagate backward and the premise
parameters are updated by gradient descent.

Here, the rules and the numbers of MFs are obtained by two methods. In the
first method, after the numbers of MFs for the inputs are determined, it
generates rules by enumerating all possible combinations of MFs of all inputs.
This way to generate the rules is called grid partition ( Jang and Chuen-Tsai,
1995). It leads to an exponential explosion even when the numbers of inputs are
moderately large. For a fuzzy inference system with 10 inputs, each with two
MFs, the grid partitioning leads to 210 ¼ 1;024 rules, which is inhibitively large
for any practical learning method. In the second method, the rules and the MFs
are generated by a subtractive clustering algorithm. The subtractive clustering
is based on a measure of the density of data points. The aim is to find regions
with high densities of data points. The data point with the highest potential is
selected as the centre for a cluster. The data points within a prespecified fuzzy
radius are removed (subtracted), and the algorithm looks for a new point with
the highest number of neighbours. This process continues until all data points
have been tested. An election of K data points is specified by m-dimensional
vectors and normalised. Since each data point is a candidate for a cluster centre,
a density measure at data point uk is defined as
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Dk ¼
XK

j¼1

exp 2
kuk 2 ujk

2

ðra=2Þ2

 !
; ð8Þ

where k ¼ 1; 2; 3; . . .;K and ra is a positive constant. After calculating the
density measure for each data point, the point with the highest density is
selected as the first cluster centre. Let uc1 be the selected point and Dc1 its
density measure. Next, the density measure for each data point uk is revised by;

D1
k ¼ Dk 2 Dc1 exp 2

kuk 2 uc1k
2

ðrb=2Þ2

 !
; ð9Þ

where rb is larger than ra to prevent closely spaced cluster centres. Therefore,
the data points near the first cluster centre Uc1 will have significantly reduced
density measures, thereby making the points unlikely to be selected as the next
cluster centre. After the density measure for each point is revised, the next
cluster centre Uc2 is selected and all density measures are revised again.

The process is repeated until a sufficient number of cluster centres are
generated. When applying subtractive clustering to a set of input-output data,
each of the cluster centres represents a rule. To generate rules, the cluster
centres are used as the centres for Gaussian MFs in clustering algorithm (Jang
et al., 1997; Jantzen, 1998). In this paper, ANFIS-1 and ANFIS-2 indicate the
ANFIS’s used grid and clustering methods, respectively.

3. Formulation and modelling of switched circuits
The following steps outline the development of the neural and fuzzy-neural
models.

(1) Collect ample training and checking data as produced by the target
model.

(2) Use ANN and ANFIS to create the neural and the fuzzy-neural models
that relates capacitor voltage signal to the source voltage of the switched
circuits.

(3) Validate the new model through comparison of its output to the output of
the target model, given identical inputs.

3.1 Data collection
By using piecewise linearization, nonlinear components are replaced by their
equivalent linear models containing ideal switches so that depending on their
position, each piecewise linear region (system state) in the nonlinear
characteristics is realized. In each system state, the state and output
equations of switched circuits are written in the form (10).
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_XkðtÞ

YðtÞ

2
4

3
5 ¼

Ak

Bk

" #
½XkðtÞ� þ

Xjk

i¼0

Bk;i

Dk;i

" #
di

dt
UðtÞ ð10Þ

In this equation, Xk(t) is the vector of state variables, Y(t) is the vector of output
(response) variables, and U(t) is the source vector; Ak, Bk, Bk,i, Dk,i are constant
coefficient matrices of proper dimensions. Note that for each system state,
k (k ¼ 1; 2; . . .; ns; where ns is the total number of the states) different state
vectors and different coefficient matrices may occur. In this example, in order
to clearly observe the performance of ANN and ANFIS models, the switched
circuit shown in Figure 3 is considered. For this circuit, four system states are
assumed and the remaining period in each system state is 1 s. The output to be
modelled with respect to the input is the capacitor voltage, Vc. The program has
produced the following state and output equations.

The first system state (S1 and S2 are off):

d

dt

V c

I L

" #
¼

0 10

22 22

" #
V c

IL

" #
þ

0

2

" #
½V i�; ð11aÞ

The second system state (S1 is off, S2 is on):

d

dt

V c

IL

" #
¼

21:666 8:333

21:666 21:666

" #
V c

IL

" #
þ

1:666

1:666

" #
½Vi�; ð11bÞ

The third system state (S1 is on, S2 is off):

d

dt

V c

IL

" #
¼

0 10

22 0

" #
V c

IL

" #
þ

0

0

" #
½V i�; ð11cÞ

The fourth system state (S1 and S2 are on):

Figure 3.
Switched circuit relating

to example
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d

dt

V c

IL

" #
¼

22 10

22 0

" #
V c

IL

" #
þ

0

0

" #
½V i�; ð11dÞ

The output equations for all system states are produced to be

½V c� ¼ ½1 0�
V c

IL

" #
þ ½0�½Vi�: ð12Þ

In this study, data for training and checking are obtained from the
mathematical models of the switched circuits proposed. One of the important
features of nonlinear circuits is to vary nonlinearly depending upon the
initial conditions. Herein, initial values relating to each system state are
computed by the program. Firstly, the combinations are formed for all
different positions of the switches, secondly this is combined with models
relating to each linear state and lastly training and checking are performed
on this single model by using simulation programs. Operation ranges of the
input and the output signals in the circuit are ^2 and ^1 V, respectively.
Limits of these quantities are dependent upon the specific application of the
switched circuits. To insure creation of a valid model, data used for training
must thoroughly cover the range of operation in which the circuit will
function. For this reason, the training data contains the samples of response
(output) of circuits to it and the input signal randomly distributed with 1,197
samples in the range [22:2] as shown in Figure 4. The circuit equations are
used for a simulation time of 4 s. The time steps of 0.003304 and 0.0104 s are
used to produce a total of 1,197 sets and 397 sets of data for both training
and checking.

3.2 Training of the models
With training and checking data established, ANN and ANFIS are used to
create a neural system and a fuzzy-neural system that emulates the behaviour
of the switched circuits. Both the ANN and the ANFIS are designed with five
inputs. Generally, the input number for the neural and the fuzzy neural models
is the order of the transfer functions, and it is chosen based on system
dynamics and delays. In this study, three of these inputs are from the input of
the switched circuit through the tapped-delay line (TDL) block, the others are
from the output of the switched circuit through another TDL block, as shown in
Figure 5.

One of the most important problems in the modelling with ANN is what
architecture should be used for a given problem. Architecture selection requires
choosing both the appropriate number of hidden units and the connections.
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Figure 4.
In order to train ANN

and ANFIS models
(a) the input signal

randomly distributed in
the range [22:2] while
data size is 1,197, and

(b) the response of circuit
in Figure 3 to the input

signal randomly
distributed

Figure 5.
Modelling structure for

switched circuits
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In order to obtain a good model in this study, we used ANN models with
5,6,7,8,9. . .34 hidden neurons and a feedforward ANN with three layer having a
logistic activation function in the hidden layer and a linear activation function
in the output layer for this architecture. However, the ANFIS-1 used here
contains two trapezoidal MFs assigned to each input variable. We also tried
ANFIS-1 models with two and/or three MFs for each input, but these models
are too complex and reduce the model performance. In addition, to reduce the
number of parameters in the MFs in this study, different MFs can be used, but
they are not too effective the model performance. The MFs before and after
training for the ANFIS-1 and ANFIS-2 models are shown in Figure 6.

4. Numerical results and discussion
The aim of this section is to discuss the performances of all model
architectures.

4.1 Assessment of model performance
In order to assess the accuracy of methods considered, the root mean square
error (RMSE) criterion has been applied. Figure 7 shows the RMSE curves
which indicate the learning of networks architectures according to epoch
number. Table I also summarizes the training RMSE and checking RMSE
values for some ANN and the ANFIS architectures by two different sized
training and checking data sets. Each value is the result of averaged values
obtained from ten runs. For the ANN-1 and ANN-2, these 10 runs were started
from different sets of initial random weights for 75,000 epochs and 150 epochs,
respectively. For ANFIS, these ten runs correspond to ten step size values
ranging from 0.01 to 0.1 for 4 epochs. As seen from these numerical results,
even using 397 training data, the ANFIS-2 architecture results in a good
modelling performance in terms of the training and checking error. But
compared to the ANFIS-2 architecture, the ANN-2 architecture achieves a good
modelling performance with 1,197 data requiring more training data. In this
study, for all comparisons we used the ANN 5-6-1 architecture since it has
small number of parameters and a good modelling performance and trained
both the ANN and ANFIS architectures using 1,197 data.

The overall assessment of the approaches is given in Table II. The
approaches are evaluated for three different comparison measurements. The
first column accounts for the need for training time. In this sense, ANFIS-2 is
the best approach. The second column considers the training epoch number.
Note that the ANN-2 and ANFIS structures are comparatively evaluated in 150,
4 epochs, respectively. Because even we increased the training epochs for the
ANN-2 and ANFIS-1 and 2, their performances did not vary very much (see
their curve levels off after 100 epochs, as shown in Figure 7). Unfortunately, the
best result for ANN-1 is obtained in 75,000 epochs. The last column includes
the number of parameters of models. The total number of modifiable
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Figure 6.
ANFIS MFs (a) before
training, and (b) after

training
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Figure 7.
Training RMSE curves
for modelling while
training data size is 1,197
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parameters in the ANN is (5 input nodes £ 6 hidden nodes) + (1 input bias £
6 hidden nodes) + (1 hidden node bias £ 1 output node) + (6 hidden nodes £
1 output node) ¼ 43 modifiable parameters. On the other hand, the total
number of parameters available for tuning in the ANFIS-1 which equals the
number of modifiable linear parameters is (number of rules) £ (number of
inputs+1) ¼ 25 £ ð5 þ 1Þ ¼ 192 and number of modifiable nonlinear
parameters is (number of MF parameters) £ (number of MFs £ number of
inputs) ¼ 4 £ 2 £ 5 ¼ 40 and total number of modifiable parameters is 192 þ
40 ¼ 232 modifiable parameters. The total number of modifiable parameters
available for tuning in the ANFIS-2 is 32 modifiable parameters by adopting
the rules and two Gaussian MFs for each input itself with 5 input number.

From all numerical results, it is revealed that ANFIS-2 architecture has a
better performance than other architectures in terms of low training and
checking error and smaller number of parameters and smaller learning speed.

4.2 Model validation
To validate accuracy of the neural and fuzzy-neural models, it is necessary to
compare graphically and numerically the behaviour of the mathematical
models when subjected to identical inputs. To this end, the arithmetic model is
used to generate four new sets of data. Attributes of these sets, including the
unit step and sin(0.1*t) input signals with 1,197 and 397 samples, are presented
in Table III. This table clearly shows that the nonlinear dynamic behaviour of

Training data size: 1,197 Training data size: 397
Checking data size: 397 Checking data size: 1,197

Network Train RMSE Check RMSE Train RMSE Check RMSE

5-6-1 ANN-1 0.00817 0.00978 0.00945 0.04911
5-12-1 ANN-1 0.00791 0.00896 0.00835 0.04852
5-24-1 ANN-1 0.00762 0.00863 0.00812 0.04003
5-6-1 ANN-2 0.00098 0.00937 0.00381 0.02233
5-12-1 ANN-2 0.00091 0.00855 0.00304 0.02229
5-24-1 ANN-2 0.00087 0.00823 0.00291 0.02013
ANFIS-1 0.00024 0.00110 0.00201 0.00989
ANFIS-2 0.00011 0.00101 0.00101 0.00557

Table I.
Comparison of

tracking and
checking errors for
different data size

Network Training time Epoch number Parameter number

ANN-1 16 min 75,000 43
ANN-2 15 s 150 43
ANFIS-1 1.3 min 4 232
ANFIS-2 13 s 4 32

Table II.
Comparison of the

various
performance

measures for ANN
and ANFIS
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the switched circuit have been accurately captured essentially by the proposed
ANN-2 and ANFIS-2 architectures.

Figures 8 and 9 depict a graphical comparison for two of validation sets 1, 2.
These figures compare the output of the networks and mathematical models.
The simulation results of the proposed models are shown in Figure 8 for unit
step input and in Figure 9 for sin (0.1*t) input, respectively. It is worth
pointing out that it is difficult to discern a difference between the responses of
the mathematical model and neural and fuzzy neural networks confirming the
capability of the proposed models to emulate behaviour of the switched
circuits. These figures show that the use of an ANFIS or an ANN for
modelling produces reasonable results for switched circuits of a type similar
to the considered circuit. The highlight side of ANFIS system is that it is
able to precisely model the uncertainty and imprecision within the data as
well as to incorporate the learning ability of ANNs. Compared to ANNs, an
important advantage of ANFIS is its reasoning ability (if-then rules) of any
particular state. A simple example of a learned for ANFIS architecture is
presented below.

Rule 1: if input1 is in1mf1 and input2 is in2mf1 and input3 is in3mf1 and
input4 is in4mf1 and input5 is in5mf1, then;

Vc¼2.0061.input1 2 1.0063.input2 2 0.0004.input3 + 0.0011.input4 +
0.0001.input5 + 0.0008

. . .. . .. . .. . .. . .. . .. . .. . .. . .
Rule 32: if input1 is in1mf2 and input2 is in2mf2 and input3 is in3mf2 and

input4 is in4mf2 and input5 is in5mf2, then;
Vc¼1.9412.input1 2 0.9402.input2 2 0.0002.input3 + 0.0002.input4 +

0.0001.input5 2 0.0009
where: {in1mf1, in1mf2};{ in2mf1, in2mf2}; {in3mf1,in3mf2};{in4mf1,

in4mf2}; {in5mf1 in5mf2} characterised by:
{21.5785, 21.0069, 20.1270, 0.4746}, {20.1224, 0.4448, 1.2795,

1.8511};
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
{ 2 4.8000, 23.2000, 20.7982, 0.8042}, { 2 0.8034, 0.8018, 3.2000,

4.8000}, respectively.

Network
1.sin(0.1*t) input

with 1,197 samples
2.Unit step input

with 1,197 samples
3.sin(0.1*t) input
with 397 samples

4.Unit step input
with 397 samples

ANN-1 0.009251 0.00912 0.00965 0.01014
ANN-2 0.00062 0.000791 0.00900 0.009501
ANFIS-1 0.0000381 0.000476 0.001176 0.003570
ANFIS-2 0.000226 0.000317 0.001170 0.002576

Table III.
Comparison of the
modelling
performances for
ANN and ANFIS in
the validation data
sets
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Figure 8.
The output of models
relation to Vc and the
circuit output for unit

step input of circuit in
Figure 3, (a) the ANN-1
model, (b) the ANFIS-1

model, (c) the ANN-2
model, and (d) the

ANFIS-2 model
(Continued )
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(Continued )

Figure 9.
The output of models
relation to Vc and the

circuit output for
Vi¼sin(0.1*t) input of

circuit in Figure 3,
(a) the ANN-1 model,

(b) the ANFIS-1 model,
(c) the ANN-2 model, and

(d) the ANFIS-2 model
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Figure 9.
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5. Conclusions
In this paper, the modelling of switched circuits by ANN and ANFIS is
discussed. It was found that both ANN and ANFIS produced reasonable results
for modelling of switched circuits. The best performances, both in training and
in validation modes, were also obtained with the ANFIS models that use grid
partition and clustering algorithm to generate the rules and membership
functions. It was seen that the ANFIS-2 gives better results than the other
models in that the number of parameter, the training time, and the arrived
errors are smaller.

In addition, the architectural simplicity of the ANFIS-2 as compared to
others approaches is highlighted in tables. This illustrates that the ANFIS-2
significantly reduces the number of parameters required in the architecture
with respect to comparable other network architectures (which can be
interpreted as the increase in transparency removing the inherent redundant
information in other network architectures). This has obvious benefits for the
hardware realization of the architecture. The possibility that this architecture
could be implemented in hardware would have considerable advantage as it
would reduce the long times associated with this application.

An important practical benefit of neural and fuzzy neural models is that
their speed of execution is faster than that of the mathematical model obtained
by MATLAB. The price for this impressive speed is a relatively small amount
of error. Decreasing of computational time increases the feasibility of
essentially switched circuit design through the use of personal computers.

When nonlinear components in a nonlinear circuit are modelled by linear
components and ideal switches, the most important problem is the
determination of the unknown switching sequence and switching time. Our
study has been progressing to obtain the switching sequence and to compute
unknown switching time by using the control inequalities in which a nonlinear
circuit contains the internally controlled switches (such as conducting of a
diode) and the externally controlled switches (such as the triggering of a
thyristor).
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