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Abstract.    In this study, dynamic modulus of elasticity of self-consolidating rubberized concrete is 
evaluated by using results of ultrasonic pulse velocity and resonance frequency tests. Additionally, 
correlation between dynamic modulus of elasticity and compressive strength results is compared. For 
evaluating the dynamic modulus of elasticity of self-consolidating rubberized concrete, prismatic specimens 
having 100 x 100 x 500 mm dimensions are prepared. Dynamic modulus of elasticity values obtained by 
non-destructive measurements techniques are well agreed with those given in the literature. 
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1. Introduction 
 

The main problem of rubberized concrete is addressed to poor bond mechanism between tire 
particles and cement paste. Therefore, mechanical properties and elastic modulus of rubberized 
concrete gradually decrease with the addition of rubber particles into the mixture. One of the 
suggestions to improve the mortar phase is to enhance a strong bonding between rubber particles 
and cement paste (Eldin 1993, Topçu 1995, Khatib and Bayomy 1999, Güneyisi et al. 2004, 
Emiroglu et al. 2008, Aiello and Leuzzi 2010, Emiroglu et al. 2012). It is well known that 
self-consolidating concrete has denser mortar phase than that of conventional concrete, and various 
filler materials used to improve rheology, strength and durability of concrete and, reduce cement 
content (Okamura and Ouchi 2003, Bartos 2005, EFNARC 2005). There are several successful 
examples of rubberized concrete applications which have been obtained by using different mixing 
ratios. (Bignozzi and Sandrolini 2006) used CEM II/A-LL R 42.5 R cement and calcium carbonate 
as filler material in their experiments and compared the self-consolidating mixtures with and 
without rubber particles. It is reported that a strong adhesion between tire rubber and cement 
matrix is obtained and it is verified by scanning electron microscopy examination on the 
undisturbed fracture surface resulting from compressive loading. (Turatsinze and Garros 2008) are 
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used binder including CEM I 52.5 R cement and calcareous filler materials to produce 
self-consolidating rubberized concrete. They reported that incorporation of rubber aggregate 
improves the strain capacity of SCC before macro-crack localization. (Najim and Hall 2012) 
evaluated CEM I 52.5 cement and pulverized Fuel Ash as filler materials in their experiments and 
they have reached up to 54 MPa for compressive strength. Additionally, there are numerous 
experimental studies performed about rubberized concrete since 1990s. Up to now, issues on the 
studies about rubberized concrete are still promising subject. It is consensually accepted that 
rubber aggregate can improve concrete ductility and resist to the vibration loads in the structures 
and help to damp it. One of the basic reasons on the investigations of rubberized tire is to maintain 
recycling opportunity of waste tires by using it in a structural application (Topçu 1995, Khatib and 
Bayomy 1999, Emiroglu et al. 2012).  

 Most of the concrete structures such as roads, sidewalks, sport courts, dams, barriers, road 
foundations, and other infrastructural facilities etc. subject to alternating loads such as impact 
loading or dynamic shock of moving vehicles, and it is recommended that rubberized concrete can 
be used in the structures subjected to cyclic loadings (Khatib and Bayomy 1999, Zheng et al. 
2008). Dynamic performance of the concrete structures subjected to cyclic loadings can be 
determined by using one of non-destructive test procedures. Ultrasonic pulse velocity and 
resonance frequency tests are well known methods to evaluate the dynamic modulus of elasticity 
of concrete specimens (Malhotra and Carino 2004). The term of “dynamic properties of concrete” 
contains the dynamic modulus of elasticity, natural resonance and vibration damping ratio. These 
are interacted with each other and they are important in structural applications, particularly 
concerning to vibration control and noise reduction. Dynamic modulus of elasticity can provide a 
reliable guide to understand the dynamic response behavior of the material while damping is a 
material property characteristic of energy dissipation that can be identified in the form of the decay 
of free vibration. Optimization of these properties can significantly increase structural reliability in 
cases of earthquakes, accidental loading and hydrostatic and wind loading, or explosive blasts and 
crashing (Zheng et al. 2008, Najim and Hall 2012).  

Natural frequency of vibration is a well-known dynamic property of any elastic system. The 
natural frequency of vibration for a vibrating beam is mainly related to the dynamic modulus of 
elasticity and density of the material. Thus, the dynamic modulus of elasticity of a material can be 
determined from the measurement of the natural frequency of vibration of prismatic bars and the 
mathematical relationships available between the two. These relationships are derived for the solid 
media considered to be homogeneous, isotropic, and perfectly elastic, but they may be applied to 
heterogeneous systems, such as concrete, when the dimensions of the specimens are large in 
relation to the size of the constituents of the material (Malhotra and Carino 2004). The relationship 
between pulse velocity and dynamic elastic modulus of the composite material measured by 
resonance tests on prisms is fairly reliable (Bungey and Millard 2010). The behavior of concrete 
under dynamic actions is determined by its dynamic properties (such as dynamic modulus of 
elasticity, modulus of rigidity, Poisson’s ratio, compressive strength or strain limits), which present 
different values compared to their static counterparts. The dynamic performance of a structure is 
also highly conditioned by its damping ability. In a vibrating structure, damping is understood as 
the dissipation of the mechanical energy, generally by converting it into thermal energy (Giner et 
al. 2011). Ultrasonic pulse velocity (UPV) testing is a preferred nondestructive method that can be 
used to determine the elastic properties of concrete (Hassan and Jones 2012). And the other test 
method is resonance frequency to determine dynamic modulus of elasticity. Resonance frequency 
testing is an alternative to the UPV method. This method has been used to determine the elastic 
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2.2 Method 
 

Table 1 RSCC mix design (1 m3) 

Constituents 
SCC Codes - TF Content 

R0 R15 R30 R45 R60 

0 15 30 45 60 

Cem I (kg/m3) 300 300 300 300 300 

Cem IV/B (P) (kg/m3) 165 165 165 165 165 

Slag (kg/m3) 135 135 135 135 135 

Total Filler (kg/m3) 600 600 600 600 600 

Water (kg/m3) 170 170 170 170 170 

Water/Filler (kg/m3) 0.28 0.28 0.28 0.28 0.28 

Superplasticizer (% 1.5) (kg/m3) 9,00 9.00 9.00 9.00 9.00 

Air entraining (% 0.5) (kg/m3) 3.00 3.00 3.00 3.00 3.00 

Limestone Sand (0-5 mm) (kg/m3) 1192 1192 1192 1192 1192 

Limestone Gravel (5-12 mm) (kg/m3) 521 443 364 286 208 

TF ( ≥ 5 mm) (kg/m3) - 26.6 53.2 79.9 106.5 

Slump-flow (mm) 840 775 725 643 615 

Slump-flow T500 (sec) 1.69 5.54 2.55 5.66 8.01 

L-Box (h1/h2 ratio) 1 1 1 0.38 0.5 

V-Funnel (sec) 11 17 23 41 N 

Fresh Concrete Unit Weight (kg/ m3) 2418 2319 2274 2205 1952 

N: Test could not be performed because of blocking of tire fibers on the gate 

 
 
Substitution of waste rubber with the natural aggregate by volume rate is a common method to 

produce the rubberized concrete and it is used in the earlier studies (Topçu 1995, Khatib and 
Bayomy 1999, Güneyisi, Gesoğlu et al. 2004, Emiroglu, Yildiz et al. 2008) as well as in this study. 
A plain (without TRA) SCC and four different R-SCC mixtures having 15%, 30%, 45% and 60% 
TRA replacement by volume of coarse aggregate are produced. Constituents of SCC with and 
without TRA are listed in Table 1. 

Slump-flow, L-box, V-funnel, fresh concrete unit weight and hardened concrete compressive 
strength tests are performed on the concrete specimens. After the fresh concrete tests concrete 
samples were poured into the molds which are demoulded in a day following casting and then 
placed in a water tank for curing purpose and leaved there until the tests are done. 100 x 100 x 500 
mm prismatic and 100x100x100 mm cubic specimens are used for dynamic properties and 
compressive strength tests of RSCC. Six prismatic and four cubic samples were prepared for each 
concrete batch and all data are the mean values of these specimens. Prismatic specimens are tested 
for resonance frequency and ultrasonic pulse velocity (non-destructively) to evaluate the dynamic 
properties following 28 days of curing period. 

Dynamic modulus of elasticity (Ed) of the materials can be calculated using Eq. (1) based on 
the UPV measurements (Malhotra and Carino 2004, Malhotra 2006 and ASTM C597-09). 
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(Table 1). This is because of lighter density of rubber aggregates than the limestone aggregate. In 
the series of R0 and R15 h1/h2 ratio is observed as 1.00. This is evidence of non-blocking is 
observed from the L-funnel test of the fresh mix. But the blocking is observed from the values of 
R30, R45 and R60 specimens (Table 1).  

Table 2 shows descriptive statistics of the resonance frequency and ultrasonic pulse velocity 
values of RSCC specimens. Both resonance frequency and ultrasonic pulse velocity values slightly 
decrease with increasing rate of TF content in the RSCC. 

The minimum compressive strength value is obtained from R60 specimens, while the 
maximum compressive strength is obtained from R0 (reference) specimens. Compressive strength 
values decrease from 71.61 MPa (reference specimen) to 25.20 MPa (R60 specimen). 

 
Table 2 Descriptive statistics of test results 

Test R N Mean Std. Deviation Std. Error Minimum Maximum 

Compressive 

Strength (MPa) 

0 4 71.61 4.74 2.37 67.52 78.45 

15 4 63.69 3.05 1.52 60.45 67.81 

30 4 47.16 8.39 4.19 41.81 59.67 

45 4 32.88 4.82 2.41 29.68 40.06 

60 4 25.24 2.46 1.23 21.83 27.53 

Resonance 

Frequency (Hz) 

0 6 3824.17 267.69 109.28 3555 4099 

15 6 3662.00 296.88 121.20 3363 3950 

30 6 3653.17 257.20 105.00 3395 3915 

45 6 3363.00 212.57 86.78 3161 3650 

60 6 3327.83 218.73 89.30 3054 3561 

Ultrasonic Pulse 

Velocity 

(Cubic 

Specimens) 

(km/sec) 

0 4 5.07 0.02 0.01 5.04 5.09 

15 4 4.90 0.04 0.02 4.85 4.93 

30 4 4.77 0.05 0.02 4.71 4.81 

45 4 4.52 0.06 0.03 4.45 4.57 

60 4 4.35 0.05 0.03 4.27 4.40 

Ultrasonic Pulse 

Velocity 

(Prismatic 

Specimens) 

(km/sec) 

0 6 5.08 0.02 0.01 5.04 5.10 

15 6 4.89 0.03 0.01 4.85 4.93 

30 6 4.77 0.04 0.02 4.71 4.81 

45 6 4.50 0.06 0.02 4.45 4.57 

60 6 4.35 0.04 0.02 4.27 4.40 
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                          (4) 

Where, X is compressive strength of reference specimen (R0), Y is compressive strength of 
rubberized concretes (R15, R30, R45 and R60) and a, b are function parameters obtained by 
regression analysis.  

After the regression analysis, function parameters (a, b) of quadratic equation in Eq. (4) is 
calculated as 0.783 and 0.0003 respectively. The coefficient of determination denoted R2 is 0.908. 
Plot of observed versus predicted values based on the Eq.4 is drawn in Fig. 6.   

The effect of compressive strength value of the RSCC specimens on dynamic modulus of 
elasticity is represented in Fig. 7. Highly correlated (R2=0.98633, R2=0.9196) relationships are 
achieved between dynamic properties and compressive strength test results in the RSCC 
specimens. 

 
 

4. Conclusions 
 

Experiments have been performed to investigate the dynamic modulus of elasticity of 
rubberized self-compacting concrete based on non-destructive measurements. The following 
conclusions based on the results obtained in this investigation can be drawn; 

It is possible to calculate modulus of elasticity of RSCC specimens via non-destructive test 
results. However, ignorable errors arising from the use of empirical formula can be met.  

RSCC mixes have lower dynamic modulus of elasticity values than that of plain SCC and they 
are well consistent with the literature; (Zheng et al. 2008, Najim and Hall 2012, Rahman et al. 
2013). 

A very well defined relationship is observed at the values of dynamic modulus of elasticity both 
resonance frequency and ultrasonic pulse velocity measurements. The relationship confirms that 
the ultrasonic pulse velocity measurements can be used also for estimating the dynamic modulus 
of elasticity of rubber including self-consolidating concretes. Correlation coefficient of the 
relationships between two dynamic modulus of elasticity value is 0.9795.  

A relationship with a high correlation coefficient was determined between compressive strength 
and dynamic modulus of elasticity in the self-consolidating rubberized concrete mixes 
(R2=0.98633 for UPV and R2=0.9196 for resonance frequency measurements).  

In order to determine the dynamic modulus of elasticity use of non-destructive tests (ultrasonic 
pulse velocity or resonance frequency) is very useful and simple method. And also they are 
suitable to deduce static modulus of elasticity of concrete. Examination of the effect of different 
curing times, and environmental conditions (such as high/low temperatures etc.) on dynamic 
properties of rubberized concrete is recommended. Besides damping ratio of rubberized concrete 
can have remarkable amount of importance in terms of dynamic characteristics of the structures in 
the future studies.    
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