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This study aims to model the complex modulus of base and styrene–butadiene–styrene (SBS) modified
bitumens by using artificial neural networks (ANNs). The complex modulus of base and SBS polymer
modified bitumen samples (PMB) were determined by using dynamic shear rheometer (DSRs). PMB sam-
ples have been produced by mixing a 50/70 penetration grade base bitumen with SBS Kraton D1101
copolymer at five different polymer contents. In ANN model, the bitumen temperature, frequency and
SBS contents are the parameters for the input layer where as the complex modulus is the parameter
for the output layer. The variants of the algorithm used in the study are the Levenberg–Marquardt
(LM), scaled conjugate gradient (SCG) and Pola-Ribiere conjugate gradient (CGP) algorithms. A tangent
sigmoid transfer function was used for both hidden layer and the output layer. The statistical indicators,
such as the root-mean squared (RMS), the coefficient of multiple determination (R2) and the coefficient of
variation (cov) was utilized to compare the predicted and measured values for model validation. The
analysis indicated that the LM algorithm appeared to be the most optimal topology which gained
0.0039 mean RMS value, 20.24 mean cov value and 0.9970 mean R2 value.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Bitumen is a natural derivative of distillation of crude oil, which
is particularly suitable as a binder for road construction due to
their good adhesion to mineral aggregates and viscoelastic proper-
ties. Unfortunately, bitumen is a form of liquid at high temperature
and becomes brittle at low temperatures, which can cause high
temperature rutting, low temperature cracking of pavement and
these functions limit its application (Yu, Zeng, Wu, Wang, & Liu,
2007). These deficiencies of bitumen can be decreased by the addi-
tion of polymers, which is closely connected with bitumen im-
proved viscoelastic behavior (Yousefi, 2003). The rheological
behavior of bitumen is very complex phenomenon, varying from
purely viscous to elastic, depending on loading time and tempera-
ture. A considerable increase in complex modulus at high temper-
ature (low frequency) is obtained by the addition of several
contents of polymer, and further increasing the polymer content
results in increased complex modulus (Lu & Isacsson, 1999; Ruan,
Davison, & Glover, 2003). Besides the increased stiffness at high
temperatures, polymer also causes a decreased complex modulus
(G*) in bitumen at low service temperatures (high frequency).
010 Published by Elsevier Ltd. All r
Currently, the most commonly used polymer for bitumen mod-
ification is the styrene–butadiene–styrene (SBS) followed by other
polymers such as ethylene vinyl acetate (EVA), styrene butadiene
rubber (SBR) and polyethylene (Sengoz & Isikyakar, 2008). SBS
block copolymers are classified as elastomers that increase the
elasticity of bitumen and they are probably the most appropriate
polymers for bitumen modification. The polystyrene end-blocks
impart the strength to the polymer while the polybutadiene, rub-
bery matrix mid-blocks give the material its exceptional elasticity
(Airey, 2003; Gonzales, Munoz, & Santamaria, 2004).

In recent years, limited number of studies has been concen-
trated on artificial neural networks and bitumen. Ozsahin and Oruc
(2008) developed a neural network model for predicting the resil-
ient modulus of emulsified asphalt. Results indicated that neural
networks predict the resilient modulus with high accuracy. Far, Sa-
dat, Shane, and Richard (2009), presented a research effort to de-
velop estimates of the dynamic modulus of hot mix asphalt
layers, and their research showed that the predicted and measured
dynamic modulus values are in close agreement using the ANN
models. Specht, Khatchatourian, Brito, and Ceratti (2007) utilized
the statistical analysis and artificial neural networks to create
mathematical models for the prediction of the bitumen viscosity.
The comparison between experimental data and simulated results
with the generated models exhibited best performance of the neu-
ral networks analysis in contrast to the statistic models.
ights reserved.
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Table 1
Properties of the base bitumen.

Test Specification Results Specification
limits

Penetration (25 �C; 0.1 mm) ASTM D5 63 50–70
EN 1426

Softening point (�C) ASTM D36 49 46–54
EN 1427

Viscosity at (135 �C), Pa s ASTM
D4402

0.51 –

Thin film oven test (TFOT);
(163 �C, 5 h)

ASTM
D1754
EN 12607-1

Change of mass (%) 0.07 0.5 (max)
Retained penetration (%) ASTM D5 51 50 (min)

EN 1426
Softening point after TFOT (�C) ASTM D36 51 48 (min)

EN 1427
Ductility (25 �C), cm ASTM D113 100 –
Specific gravity, gr/cm3 ASTM D70 1.030 –
Flash point (�C) ASTM D92 +260 230 (min)

EN 22592
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In order to evaluate the efficiency of additives such as polymers
the dynamic (oscillatory) mechanical analysis is used. These oscil-
latory tests are undertaken using dynamic shear rheometers
(DSRs). The principal viscoelastic parameter obtained from the
DSR is complex modulus which is strongly affected by the fre-
quency, temperature, additive type and additive content. The test
requires very accurate measurements and takes long times. In or-
der to eliminate these drawbacks this paper represents an artificial
neural networks (ANNs) approach which will provide an estima-
tion of the complex modulus of SBS polymer modified bitumen.

2. Dynamic mechanical analysis

At present the most commonly used method of fundamental
rheological testing of bitumen is by means of dynamic mechanical
methods using oscillatory-type testing, generally conducted within
the region of linear viscoelastic (LVE) response. These oscillatory
tests are undertaken using dynamic shear rheometers (DSRs).
The DSR function is based on sandwiching the bitumen between
two plates, in which the lower plate is fixed and the top plate oscil-
lates at a frequency shown in Fig. 1 (Roberts, Kandhal, Brown, Lee,
& Kennedy, 1996). The principal viscoelastic parameters that are
obtained from the DSR are the magnitude of the complex shear
modulus (G*) and the phase angle (d). G* is defined as the ratio
of maximum (shear) stress to maximum strain. It contains elastic
and viscous components, which are designated as the (shear) stor-
age modulus (G0) and (shear) loss modulus (G00), respectively. These
two components are related to the complex (shear) modulus and
to each other through the phase (or loss) angle (d) which is the
phase, or time, lag between the applied shear stress and shear
strain responses during a test (Airey, 2003).

3. Sample preparation and experiment

The base bitumen with a 50/70 penetration grade was procured
from Aliaga/Izmir Oil Terminal of the Turkish Petroleum Refinery
Corporation. In order to characterize the properties of the base
bitumen, conventional test methods such as; penetration test, soft-
ening point test, ductility test, etc. were performed. These tests
were conducted in conformity with the relevant test methods that
are presented in Table 1.

The SBS polymer used was Kraton D-1101 supplied by the Shell
Chemicals Company. SBS modified bitumen samples were pre-
pared by means of a high shear laboratory type mixer rotating at
1100 rpm. In preparation, the base bitumen was heated to fluid
condition (180–185 �C), and has been poured into a 2000 ml spher-
ical flask. The SBS polymer was then added slowly to the base bitu-
men. The concentrations of SBS Kraton D-1101 in the base bitumen
were chosen as 2–6% by an increase of 1% by weight. The temper-
ature was kept constant at 185 �C, and the mixing process contin-
ued for 2 h.

The DSR test was performed on SBS PMB by using a Bohlin DSRII
rheometer. The test was performed under controlled-stress loading
Fig. 1. Schematic representation of DSR.
conditions using frequency sweeps between 0.01 and 10 Hz and at
temperatures between 10 and 80 �C. The test was carried out with
8 mm diameter, 2 mm gap parallel plate testing geometry between
10 and 30 �C, and with 25 mm diameter, 1 mm gap geometry be-
tween 30 and 80 �C. The stress amplitude for all the tests was con-
fined within the linear viscoelastic response of the bitumen. The
DSR test machine is seen in Fig. 2.
4. Artificial neural networks (ANNs)

An ANN is an information processing idea that is inspired by the
way of biological systems such as the brain. The key element of this
idea is the novel structure of the information processing system. It
is composed of large number of highly interconnected processing
elements (neurons) working in unison to solve specific problems.
A schematic diagram for an artificial neuron model is presented
in Fig. 3.

The neurons are connected with connection link. Each link has a
weight that is multiplied with transmitted signal in network. Each
neuron has an activation function to determine the output. There
are many kinds of activation functions. Usually nonlinear activa-
tion functions such as sigmoid, step are used. Neural Networks
are trained by experience. When an unknown input is applied to
the network, a new result is produced based on past experiences
(Hanbay, Turkoglu, & Demir, 2008; Haykin, 1994). The output of
the neuron net is given by Eq. (1).

yðt þ 1Þ ¼ a
Xn

j¼1

wijxjðtÞ � hi

 !
and f iDneti ¼

Xm

j¼1

wijxj � hi ð1Þ

where, X = (X1, X2, . . .Xm) represent the m input applied to the neu-
ron, Wi represent the weights for input Xi, hi is a bias value, a(.) is
activation function.

There are numerous algorithms available for training neural
network models; most of them can be viewed as a straightforward
application of optimization theory and statistical estimation. Most
of the algorithms used in training artificial neural networks are
employing some form of gradient descent. This is done by simply
taking the derivative of the cost function with respect to the net-
work parameters and then changing those parameters in a gradi-
ent-related direction. The most popular of them is the back
propagation algorithm, which has different variants. Standard back
propagation is a gradient descent algorithm. It is very difficult
to know which training algorithm will be the fastest for a given



Fig. 2. DSR test machine.

f(.) a(.)

x1

x2

xm

wi2

wi1

wim

weights

θi

outputs

yi

bias

inputs

Fig. 3. Artificial neuron model.

ANN
model

Compare

Target

G*

Adjust
ANN parameters

T

F

SBS%

Fig. 4. Proposed model block diagram.

B.V. Kok et al. / Expert Systems with Applications 37 (2010) 7775–7780 7777
problem, and the best one is usually chosen by trial and error. An
ANN with a back propagation algorithm learns by changing the
connection weights, and these changes are stored as knowledge.
4.1. Modeling of base and SBS modified bitumen using ANN

There are many types of ANN architectures in the literature;
however, multi-layer feed-forward neural network is the most
widely used for prediction (Esen, Inalli, Sengur, & Esen, 2008a). A
multi-layer feed-forward neural network typically has an input
layer, an output layer, and one or more hidden layers (Esen, Inalli,
Sengur, & Esen, 2008b). In these networks, neurons are arranged in
layers and there is a connection among the neurons of other layers.
The input signals are applied to the input layer, the output layer di-
rectly contributes to the output signal. The layers between input
and output layers are defined as hidden layers. Input signals are
propagated in gradually modified form in the forward direction, fi-
nally reaching the output layer (Palau, Velo, & Puigjaner, 1999).

In this study, the temperature of the bitumen (T), frequency (F)
and SBS content are the parameters chosen as the input layer and
complex modulus of bitumen (G*) as the output layer. The related
illustration is given in Fig. 4. The back propagation learning algo-
rithm has been performed in a feed forward, single hidden layer
neural network. The variants of the algorithm used in the study
are the Levenberg–Marquardt (LM), scaled conjugate gradient
(SCG) and Pola-Ribiere conjugate gradient (CGP) algorithms. A tan-
gent sigmoid transfer function has been utilized for both the hid-
den layer and the output layer.

In training, several number of neurons (2, 3, 4, and 5) were ap-
plied in the hidden layer to define the output accurately. The data
set for the G* of system consisted of 192 data patterns.
The efficiency of the proposed method was demonstrated by
using the 5-fold cross validation test. In 5-fold cross validation test,
the data set is randomly split into five exclusive subsets (Xi,. . .X5) of
approximately equal size and the holdout method is repeated 5
times. Four folds contain 38 samples and the last fold contains
40 samples. At each time, one of the five subsets is used as the test
set and the other four subsets are put together to form a training
set. The advantage of this method is that it is not important how
the data is divided. Every data point appears in a test set only once,
and appears in a training set two times. Therefore, the verification
of the efficiency of the proposed method against to the over-learn-
ing problem should be demonstrated.

Model validation is the utilization of the test data in trained net-
work to see the prediction capability by comparing the output and
target pairs. The statistical parameters, such as the root-mean
squared (RMS), the coefficient of multiple determinations (R2)
and the coefficient of variation (cov) may be used to compare pre-
dicted and measured (target) values for model validation.

The error estimated by the RMS is defined by the following
equation:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

m¼1

ðypre;m � tmea;mÞ2
" #,

n

vuut ð2Þ

In addition, the coefficient of multiple determinations (R2) and
the coefficient of variation (cov) in percent are defined as follows:

R2 ¼ 1�
Xn

m¼1

ðypre;m � tmea;mÞ2
" #, Xn

m¼1

ðtmea;mÞ2
" #

ð3Þ

cov ¼ ðRMS=j�tmea;mjÞ � 100 ð4Þ
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where n is the number of data patterns in the independent data set,
ypre,m indicates the predicted values, tmea,m is the target value of one
data point m, and �tmea;m is the mean value of all target data points.

5. Results and discussions

5.1. Dynamic mechanical analysis test results

The variations on complex modulus versus temperature and
SBS content at 0.1 Hz is presented in Fig. 5. It is seen that the com-
plex modulus decreases significantly with the increase in temper-
ature. The complex modulus of the PMB samples is greater than
the complex modulus of base bitumen as depicted in Fig. 5. Be-
sides, for the same level of temperature, the complex modulus in-
creases with increase in SBS content.

The variation of complex modulus of the base and 6% SBS poly-
mer modified bitumens with frequency and temperature are pre-
sented in Fig. 6.

As depicted in Fig. 6, which are drawn in log–log scale, for base
and SBS PMB samples as the frequency increases, the complex
modulus increases as well. This is due to the rheologic behavior
of the bitumens since bitumens under shorter loading time exhibit
elastic behavior. Besides, for the same frequency level, the increase
in temperature decreases the complex modulus as presented in
Fig. 6. This also indicates that, the temperature has a significant ef-
fect on the level of complex modulus.
5.2. Artificial neural networks model results

The computer program was performed on MATLAB (version 5.3.
The MathWorks Inc., USA) environment by using the neural net-
work toolbox. At first the data set is normalized within the range
[0, 1] through the following transformation formula:

unar ¼
u

1
!

Nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðuT uÞÞT

q ð5Þ

where u are the input or output data set. 1
!

N ¼ ½111 . . . 1�T is an N-
dimensional vector. N represents number of patterns in the input
or output set. diag is diagonal values of the square matrix (uTu).

ANN topologies with various number of hidden layer neurons
are then trained. An example of the training performance of the
ANN for LM-2 topology (ANN type with LM algorithm including
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two hidden neurons) is given in Fig. 7 where the variation of mean-
square error with training epochs is illustrated.

Fig. 8 presents the comparison of calculated and ANN predicted
G* values of modelling system for LM-2.

The ANN topologies with various number of hidden layer neurons
are trained with the statistical weighting pre-processed inputs. The
related test results (RMS, cov and R2) are represented in Table 2.

As seen in Table 2, the training accuracy is improved by
decreasing the number of hidden neurons as indicated by the smal-
ler RMS and cov values and R2-values approaching 1. On the other
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Based on the statistical data presented in Table 2, the LM algo-
rithm gained promising results compared to SCG and CGP
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6. Conclusion

The estimation of damage accumulation over the service life of
the new pavement is based on empirical rutting and cracking per-
formance equations, which require the complex modulus as an in-
put parameter. The complex modulus is dependent upon
temperature and loading frequency, and thus allows for a more
accurate representation of traffic load effects on pavements. In
the light of the findings from laboratory experiments, it is possible
to consider that SBS polymer modification increases the complex
modulus of the base bitumen. Besides, the complex modulus de-
creases significantly with the increase in temperature and decrease
in frequency.

The Levenberg–Marquardt (LM), scaled conjugate gradient
(SCG) and Pola-Ribiere conjugate gradient (CGP) are the algorithms
used to model the G* of the base and SBS PMB. Among them LM
algorithm appeared to be most optimal topology.

Based on the results of the study, it can be concluded that both
artificial neural networks method and statistical methods can be
used for modelling and predicting the complex modulus of bitu-
men under varying temperature and frequency with high accuracy.
Results also indicate that ANN is an excellent method that can re-
duce the time consumed and can be used as an important tool in
evaluating the factors affecting complex modulus of asphalt mix-
ture at the design stage.
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