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This study aims to model the complex modulus of base and ethylene-vinyl-acetate (EVA) modified bitu-
men by using Adaptive-Network-Based Fuzzy Inference System (ANFIS). The complex modulus of base
and EVA polymer modified bitumen (PMB) samples were determined using dynamic shear rheometer
(DSR). PMB samples have been produced by mixing a 50/70 penetration grade base bitumen with EVA
copolymer at five different polymer contents. In ANFIS modeling, the bitumen temperature, frequency
and EVA content are the parameters for the input layer and the complex modulus is the parameter for
the output layer. The hybrid learning algorithm related to the ANFIS has been used in this study. The vari-
ants of the algorithm used in the study are two input membership functions and three input membership
functions for each of the all inputs. The input membership functions are triangular, gbell, gauss2, and
gauss. The results showed that EVA polymer modified bitumens display reduced temperature suscepti-
bility than base bitumens. In the light of analysis the Adaptive-Network-Based Fuzzy Inference System
and statistical methods can be used for modeling the complex modulus of bitumen under varying tem-
perature and frequency. The analysis indicated that the training accuracy is improved by decreasing the
number of input membership functions and the utilization of the two gauss input membership functions
appeared to be most optimal topology. Besides, it is realized that the predicted complex modulus is clo-
sely related with the measured (actual) complex modulus.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Bitumens are complex mixtures of aliphatic, aromatic and
naphtenic hydrocarbons, with smaller quantities of other organic
and metallorganic compounds generally obtained from the vac-
uum residue of crude oil processing and mainly used as binder in
road and airport pavements (Read & Whiteoak, 2003). Unfortu-
nately, bitumen is a form of liquid at high temperature and
becomes brittle at low temperatures, which can cause high tem-
perature rutting, low temperature cracking of pavement and these
functions limit its application (Yu, Zeng, Wu, Wang, & Liu, 2007).
These deficiencies of bitumen can be decreased by the addition
of polymers, which is closely connected with bitumen improved
viscoelastic behavior (Yousefi, 2003). The rheological behavior of
bitumen is a very complex phenomenon, varying from purely
viscous to elastic, depending on loading time and temperature. A
considerable increase in complex modulus at high temperature
(low frequency) is obtained by the addition of several contents of
polymer, and further increasing the polymer content results in
ll rights reserved.
increased complex modulus (Lu & Isacsson, 1999; Ruan, Davison,
& Glover, 2003). Besides the increased stiffness at high tempera-
tures, polymer also causes a decreased complex modulus (G*) in
bitumen at low service temperatures (high frequency).

EVA is one of the principal plastomers used in road construction
in order to improve both the workability of the asphalt during
construction and its deformation resistance in service (Haddadi,
Ghorbel, & Laradi, 2008). Airey (2002) indicated that EVA provides
the modification of bitumen throughout the crystallization of rigid
three-dimensional networks within the bitumen resulting in con-
siderable changes of the physical, chemical and morphological
properties of the bitumen. The phase morphology of the polymer
modified bitumens is the result of the mutual effects of polymer
and bitumen and is influenced by polymer nature and its content.
Sengoz, Topal, and Isikyakar (2009) concluded that phase inversion
from a continuous bitumen phase to continuous polymer phase
occurs when polymer content is around 5%.

At present fuzzy logic system has been utilized for modeling and
predicting the mechanical properties of hot mix asphalt. Ozgan
(2009) modeled the Marshall stability of asphalt concrete under
varying temperature and exposure times using the fuzzy logic sys-
tem. Kaur and Tekkedil (2000) developed an Expert System based
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on fuzzy logic to predict the rut depth of the asphalt pavements by
the parameters of pavement construction materials such as pave-
ment thickness, age of the road and total traffic count. A fuzzy logic
algorithm has been devised by Tigdemir, Karasahin, and Sen (2002)
for estimating the fatigue life of asphalt concrete through deforma-
tion measurements. Saltan, Saltan, and Sahiner (2007) indicated
that the fuzzy logic approach can be used for modeling the deflec-
tion behavior against dynamic vehicle loading for flexible pave-
ments instead of linear elastic theory and finite element method
which require long times. To date no model has been presented
for the prediction of complex modulus of bitumen with varied tem-
peratures and frequency. This paper proposes an empirical model,
which predicts the complex modulus of the base and EVA, modified
bitumen under various temperature, frequency and EVA content.

2. Dynamic mechanical analysis

At present the most commonly used method of fundamental
rheological testing of bitumen is by means of dynamic mechanical
methods using oscillatory-type testing, generally conducted within
the region of linear viscoelastic (LVE) response. The DSR operates
on the principle that the performance of the bitumen is tempera-
ture and load duration dependent. The DSR function is based on
sandwiching the bitumen between two plates, in which the lower
plate is fixed and the top plate oscillates at a frequency shown in
Fig. 1 (Roberts, Kandhal, Brown, Lee, & Kennedy, 1996). Complex
modulus (G*) contains elastic and viscous components, which are
designated as the (shear) storage modulus (G0) and (shear) loss
modulus (G00). These two components are related to the complex
(shear) modulus and to each other through the phase (or loss) an-
gle (d) which is the phase, or time, lag between the applied shear
stress and shear strain responses during a test (Airey, 2003).

3. Sample preparation and experiment

The base bitumen with a 50/70 penetration grade was procured
from Aliaga/Izmir Oil Terminal of the Turkish Petroleum Refinery
Fig. 1. Schematic representation of DSR.

Table 1
Properties of the base and EVA modified bitumen.

Test Specification Specif.

Penetration (25 �C; 0.1 mm) ASTM D5 EN 1426 50–70
Softening point (�C) ASTM D36 EN 1427 46–54
Viscosity at (135 �C) Pa s ASTM D4402 –
Thin film oven test (TFOT); (163 �C, 5 h) ASTM D1754 EN 12607-1
Change of mass (%) 0.5 (ma
Retained penetration (%) ASTM D5 EN 1426 50 (mi
Softening point after TFOT (�C) ASTM D36 EN 1427 48 (mi
Ductility (25 �C), cm ASTM D113 –
Specific gravity, gr/cm3 ASTM D70 –
Flash point (�C) ASTM D92 EN 22592 230 (m
Corporation. The EVA polymer used was Evatane� 2805 supplied
in pellet form by the Arkema Company. Evatane� 2805, which con-
tains vinyl acetate content of 27–29% is a highly flexible plastomer
designed for bitumen modification and especially for road paving.
In order to characterize the properties of the bitumen, conven-
tional test methods, such as, penetration test, softening point test,
and ductility test were performed. These tests were conducted in
conformity with the relevant test methods that are presented in
Table 1.

The EVA modified bitumen samples were prepared by means of
a high shear laboratory type mixer rotating at 125 rpm. In prepara-
tion, the base bitumen was heated to fluid condition (180–185 �C),
and has been poured into a 2000 ml spherical flask. The EVA poly-
mer was then added slowly to the base bitumen. The concentra-
tions of EVA in the base bitumen were chosen as 3–7% by an
increase of 1% by weight. The temperature was kept constant at
185 �C, and the mixing process continued for 2 h.

The DSR test was performed on EVA PMB by using a Bohlin
DSRII rheometer. The test was performed under controlled-stress
loading conditions using frequency sweeps between 0.01 and
10 Hz and at temperatures between 10 and 80 �C. The test was car-
ried out with 8 mm diameter, 2 mm gap parallel plate testing
geometry between 10 and 30 �C, and with 25 mm diameter,
1 mm gap geometry between 30 and 80 �C. The stress amplitude
for all the tests was confined within the linear viscoelastic re-
sponse of the bitumen. The DSR test machine is seen in Fig. 2.
limits Results

Base EVA modified

3% 4% 5% 6% 7%

63 53 52 49 48 47
49 54 57 59 61 62

0.51 �0.13 0.49 0.79 1.14 1.24
0.04 0.06 0.05 0.07 0.06

x) 0.07 30 31 32 33 34
n) 51 6 6 5 4 5
n) 51 1 1 0 1 2

100 53 52 49 48 47
1.030 54 57 59 61 62

in) +260

Fig. 2. DSR test machine.
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4. Adaptive-Network-Based Fuzzy Inference System

Both artificial neural network and fuzzy logic are used in
ANFIS’s architecture (Avcı & Akpolat, 2006). ANFIS, which is used
learning algorithms of neural network, is consisted of if-then rules
and couples of input–output. In this study the fuzzy inference
involving two inputs (x and y) and one output (z) is taken into con-
sideration. For a first order Sugeno fuzzy model, a typical rule set
with base fuzzy if-then rules can be expressed as:

If x is A1 and y is B1 then f 1 ¼ p1xþ q1yþ r1 ð1Þ

where p, r, and q are linear output parameters. The ANFIS’s architec-
ture which involves two inputs and one output is presented in
Fig. 3.

This architecture is formed by using five layers and nine if-then
rules:

Layer-1: Every node i in this layer is a square node with a node
function

O1;i ¼ lAiðxÞ; for i ¼ 1;2;3; O1;i ¼ lBi�3ðyÞ; for i ¼ 4;5;6 ð2Þ

where x and y are inputs to node i, and Ai, Bi are linguistic label asso-
ciated with this node function. In order words, O1,i is the member-
ship function of Ai and Bi. Usually lAi(x) and lBi(y) are chosen to be
bell-shaped with maximum equal to 1 and minimum equal to 0,
such as

lAiðxÞ; lBi�3ðyÞ ¼ expðð�ðxi � ciÞ=ðaiÞÞ2Þ ð3Þ

where ai, ci are the parameter sets. These parameters in this layer
are referred to as premise parameters.

Layer-2: Every node in this layer is a circle node labelled P
which multiplies the incoming signals and sends the product out.
For instance,

O2;i ¼ wi ¼ lAiðxÞ � lBi�3ðyÞ; i ¼ 1;2;3; . . . ;9 ð4Þ
Fig. 3. ANFIS architecture o
Each node output represents the firing strength of a rule. (In fact,
other T-norm operator that performs generalized AND can be used
as the node function in this layer.)

Layer-3: Every node in this layer is a circle node labelled N. The
ith node calculates the ratio of the ith rules firing strength to the
sum of all rule’s firing strengths:

O3;i ¼ �wi ¼ wi=ðw1 þw2 þ � � � þw9Þ; i ¼ 1;2;3; . . . ;9 ð5Þ

Layer-4: Every node i in this layer is a square node with a node
function

O4;i ¼ �wi � fi ¼ wi � ðpixþ qiyþ riÞ; i ¼ 1;2;3; . . . ;9 ð6Þ

where wi is the output of layer 3, and {pi, qi, ri} is the parameter set.
Parameters in this layer will be referred to as consequent
parameters.

Layer-5: The single node in this layer is a circle node labelled R
that computes the overall output as the summation of all incoming
signals:

O5;i ¼ overall output ¼
X

i

�wifi ¼
P

iwifiP
iwi

ð7Þ
4.1. System modeling by ANFIS

The aim of system modeling is that it can be used in computer
simulations compared to physical systems which are used in real
applications. In this way, practical applications can be realized sim-
ply. Fig. 4a and b presents the forward and reverse modeling of a
system by using ANFIS respectively (Avcı, 2008).

4.2. Modeling of base and EVA modified bitumens using ANFIS

In this study, the temperature of the bitumen (T), frequency (F)
and EVA content are the parameters chosen as the input layer and
f 2-inputs and 9-rules.
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Fig. 4. (a) Forward modeling of system. (b) Reverse modeling of system.
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the complex modulus of the bitumen (G*) as the output layer. The
related illustration is given in Fig. 5.

The hybrid learning algorithm for ANFIS has been used in this
study. The variants of the algorithm used in the study are two in-
put membership functions and three input membership functions
for each of all inputs respectively. These input membership func-
tions are triangular, gbell, gauss2, and gauss.

In the training, two kinds of input membership function were
applied (2) and (3). The dataset for the G* of system available in-
cluded 192 data patterns. The efficiency of the proposed method
was demonstrated by using the 4-fold cross-validation test. In 4-
fold cross-validation dataset is randomly split into four exclusive
subsets (X1, . . . , X4) of approximately equal size and the holdout
method is repeated 4 times. Three folds contain 50 samples and
the last fold contains 42 samples. At each time, two of the four sub-
sets is used as the test set and the other two subsets are put to-
gether to form a training set. The advantage of this method is
that it is not important how the data is divided. Every data point
appears in a test set only once, and appears in a training set two
times. Therefore, the verification of the efficiency of the proposed
method against to the over-learning problem should be
demonstrated.

Model validation is the utilization of the test data in trained net-
work to see the prediction capability by comparing the output and
target pairs. The statistical parameters, such as the root-mean
squared (RMS), the coefficient of multiple determinations (R2)
and the coefficient of variation (cov) may be used to compare pre-
dicted and measured (target) values for model validation.

The error estimated by the RMS is defined by the following
equation,

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
m¼1ðypre;m � tmea;mÞ2

n

s
ð8Þ
ANFIS
model

Compare

Target

G*

Adjust
ANFIS parameters

T

F

EVA%

Fig. 5. Proposed model block diagram.
In addition, the coefficient of multiple determinations (R2) and
the coefficient of variation (cov) in percent are defined as follows:

R2 ¼ 1�
Pn

m¼1ðypre;m � tmea;mÞ2Pn
m¼1ðtmea;mÞ2

ð9Þ

cov ¼ RMS
j�tmea;mj

100 ð10Þ

where n is the number of data patterns in the independent data set,
ypre,m indicates the predicted, tmea,m is the measured value of one
data point m, and �tmea;m is the mean value of all measured data
points.

5. Results and discussions

5.1. Dynamic mechanical analysis test results

In order to evaluate the efficiency of EVA polymer, the modifica-
tion index was determined by the ratio of complex modulus of
modified bitumen to the complex modulus of the base bitumen.
The effect of EVA content and temperature on modification index
at low (0.01 Hz) and high (1 Hz) frequency is presented in Fig. 6
and 7 respectively. As seen in Fig. 6 for all contents of EVA modified
bitumens, the modification index increases with increasing
temperature, the index reaches a peak at 50 �C then decreases
gradually. The complex modulus tends to be similar at low temper-
atures and there is not a significant difference in the increment of
complex modulus on reaching high temperatures (80 �C). Among
the modification index values at 50 �C, as the EVA content in-
creases, modification index increases as well. This indicates that
the PMB containing high proportion (7%) of EVA exhibits decreased
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thermal susceptibility compared to base bitumen at low frequency
and especially at 50 �C.

As seen in Fig. 7, the modification index increases regularly be-
tween 10 and 80 �C. Besides, the improvement effect of EVA at high
frequency is not as high as it is at low frequency when considering
the intermediate temperatures such as 50 �C. Utilization of 6% and
7% EVA, increases the complex modulus approximately 4 and 5
times than those of the base bitumen at 80 �C for both 0.01 and
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Fig. 8. The comparison of actual and ANFIS predicted

Table 2
Statistical values of ANFIS model.

Algorithm- input
membership
functions

RMS cov

1 2 3 4 1 2 3

Two triangular 0.0192 0.0186 0.0171 0.0131 70.56 64.13 59.
Three triangular 0.0909 0.0944 0.0960 0.1023 284.15 305.17 340.
Two gbell 0.0514 0.0519 0.0620 0.0419 181.13 184.24 190.
Three gbell 0.0913 0.0956 0.0941 0.0950 304.63 335.62 306.
Two gauss 0.0120 0.0128 0.0119 0.0125 39.06 47.14 38.
Three gauss 0.0940 0.0962 0.0949 0.0977 320.14 326.76 319.
Two gauss2 0.0249 0.0251 0.0265 0.0275 84.55 85.86 89.
Three gauss2 0.998 0.999 0.1001 0.1010 323.86 327.49 350.
1 Hz. Therefore, it can be concluded that the frequency has not a
profound effect on the complex modulus at high temperatures.

5.2. Adaptive-Network-Based Fuzzy Inference System results

The computer program was performed on MATLAB (version 5.3.
The MathWorks Inc., USA) environment by using the fuzzy toolbox.
At first the dataset is normalized within the range [0, 1] through
the following transformation formula:

unar ¼
u

~1N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðuT uÞ

p� �T ð11Þ

where u are the input or output data set. ~1N ¼ ½111 � � �1�T is an
N-dimensional vector N represents number of patterns in the input
or output set. diag is diagonal values of the square matrix (uTu).

ANFIS topologies with various input membership functions and
number of input membership functions are trained. Fig. 8 presents
the comparison of calculated and ANFIS predicted G* values of
modeling system for two Gauss input membership functions. The
related test results (RMS, cov and R2) are represented in Table 2.

As seen in Table 2, training accuracy improves by decreasing the
number of input membership functions as indicated by the smaller
RMS and cov values and R2-values approaching 1. On the other
hand, beyond a certain point the errors obtained begin to increase
50 60 70 80 90 100
of samples

ctual
redicted

G* for two Gauss input membership functions.

R2 Mean values

4 1 2 3 4 RMS cov R2

33 36.62 0.965 0.975 0.976 0.989 0.0170 57.66 0.9686
56 366.92 0.0075 0.0072 0.0067 0.0046 0.0959 324.20 0.0065
01 145.06 0.6998 0.7287 0.7417 0.6702 0.0518 175.11 0.7102
56 324.23 0.0437 0.0489 0.0444 0.0455 0.0940 317.76 0.0456
07 39.73 0.9866 0.9777 0.9876 0.9813 0.0124 42.00 0.9833
62 328.08 0.0094 0.0105 0.0090 0.0106 0.0957 323.65 0.0099
585 89.96 0.9330 0.9304 0.9224 0.9222 0.0260 87.89 0.9270
24 353.49 0.0912 0.0846 0.0833 0.0801 0.1002 338.77 0.0848
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together with the complexity of the ANFIS as the larger the number
of input membership functions the more complex the network is.
Besides, the convergence to the target error rate takes more itera-
tion. This situation is very time consuming.

Based on the statistical data presented in Tables 2, for G* values
of algorithm by using two gauss input membership functions ap-
peared to be most optimal topology. This topology gained 0.0124
mean RMS value, 42.00 mean cov value and, 0.9833 mean R2 value,
respectively.

6. Conclusion

One of the key material properties of bitumen is the complex
modulus. This property is related to major distress modes such
as traffic induced permanent deformation and rutting, as well as
fatigue and low temperature cracking. The complex modulus is
dependent upon temperature and loading frequency. The study
indicated that the modification index increases with increasing
temperature. EVA polymer modified bitumens display reduced
temperature susceptibility than base bitumens. In the light of the
findings it is concluded that the improvement effect of EVA poly-
mer at high frequency is not as high as it is at low frequency when
considering the intermediate temperatures such as 50 �C.

The hybrid learning algorithm was used related to ANFIS and
triangular, gbell, gauss2, and gauss were used as input member-
ship functions. The efficiency of the proposed method was demon-
strated by using the 4-fold cross-validation test. ANFIS topologies
with various input membership functions and number of input
membership functions are trained. The analysis showed that the
training accuracy improved by decreasing the number of input
membership functions and the utilization of the two gauss input
membership functions appeared to be most optimal topology
among the other algorithms.

Based on the results of the study, it can be concluded that both
the Adaptive-Network-Based Fuzzy Inference System and statisti-
cal methods can be used for modeling and predicting of the com-
plex modulus of bitumen under varying temperature and
frequency. It is also demonstrated that ANFIS is an excellent meth-
od that can reduce the time consumed and can be used as an
important tool in evaluating the factors affecting complex modulus
of asphalt mixture at the design stage.
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