Seed Fatty Acid Amounts of Some Salvia L. Taxa in Elazig

M. KURŞAT^{1,*}, A. SARI², Ş. CİVELEK³, İ. EMRE⁴, Ö. YILMAZ³

¹Bitlis Eren University, Faculty of Science and Arts, Department of Biology, 13000 Bitlis; Turkey;
 ²Firat University, Faculty of Science, Department of Chemistry, 23169 Elazig; Turkey
 ³Firat University, Faculty of Science, Department of Biology, 23169 Elazig; Turkey
 ⁴Firat University, Faculty of Education, Department of Primary Education, 23169 Elazig; Turkey
 ^{*}<u>botanikkursat@hotmail.com</u>

(Received:14.04.2012; Accepted:10.03.2013)

Abstract

Fatty acid amounts in mature seeds of thirteen *Salvia* L. taxa were determined by using gas chromatography in this study. Palmitic acid (C 16:0; 4.2-11.7 %) was major saturated fatty acid among in the studied *Salvia* species. Results of present study indicated that the seed oils of studied *Salvia* L. taxa have oleic acid (C 18:1 n-9), linoleic acid (C18:2 n-6) and linolenic acid (C 18:3 n-3) as unsaturated major fatty acids. The highest oleic acid (C 18:1 n-9) amount is found in *S. tricholoda* Bentham (30.7 %) but it is found at the lowest level in *S. verticillata* L. subsp. *verticillata* (11.3 %). Also, linoleic acid (C 18:2 n-6) amount was highest in *S. euphratica* var. *leicaliyeina* (60.4 %) but it was found at the lowest levels in *S. aethiopis* (12.1 %). However, linolenic acid (C18:3 n-3) amount of the *Salvia* L. seeds studied showed the greatest variation (0.5-57.8 %). As a result, present study determined that *Salvia* L. species had the highest unsaturated fatty acid amounts (81.5-94.4 %) and low saturated fatty acid amounts (5.8-18.3 %).

Key words: Gas chromatography, Salvia L., Saturated fatty acids, Unsaturated fatty acids

Elazığ'daki Bazı Salvia L. Taksonlarının Tohum Yağ Asit Kompozisyonları

Özet

Bu çalışmada, on üç *Salvia* L. taksonu tohumlarındaki yağ asidi miktarları gaz kromatografisi kullanılarak tespit edildi. Çalışılan *Salvia* türleri arasında palmitik asit (C:16 0; % 4.2-11.7) başlıca doymuş yağ asididir. Bu çalışmanın sonuçları çalışılan *Salvia* L. taksonlarının tohumlarında major doymamış yağ asitleri olarak oleik asit (C 18: 1 n-9), linoleik asit (C 18: 2 n-6) ve linolenik asitin (C 18: 3 n-3) olduğunu göstermiştir. En yüksek oleik asit (C 18: 1 n-9) miktarı *S. tricholoda* Bentham'da (% 30.7) iken en düşük oleik asit miktarı *S. verticillata* L. subsp. *verticillata*'da (% 11.3) bulunmuştur. Ayrıca, linoleik asit (C 18: 2 n-6) miktarı en yüksek oranda *S. euphratica* var. *leicaliyeina* (% 60.4)'da bulunurken en düşük oranda ise *S. aethiopis* (12.1 %)'te bulunmuştur. Bununla birlikte çalışılan *Salvia* tohumlarının linolenik asit (C18:3 n-3) miktarları büyük varyasyon göstermiştir (% 0.5-57.8). Sonuç olarak bu çalışma *Salvia* L. türlerinin yüksek oranda doymamış yağ asidi miktarına (% 5.8-18.3) sahip olduklarını belirlemiştir.

Anahtar kelimeler: Gaz kromatografisi, Salvia L., Doymamış yağ asitleri, Doymuş yağ asitleri

1. Introduction

Salvia L. is one of the most important aromatic and medicinal genera of the Lamiaceae (subfamily *Nepetoideae*) and comprises nearly 1000 species organized in five subgenera [1-6]. Turkey is an important country in terms of export and usage of *Salvia* L. species in the world [7]. Hedge (1982) described the 86 species in the first revision of *Salvia* L. in Turkey [8-10]. Since then, six more species have been recorded as new species from Turkey [11-13]. Endemism ratio of *Salvia* L. species in Turkey is 48 % and Anatolia is a major centre for the genus in Asia [3]. The Lamiaceae has been characterized by the occurence of linolenic, linoleic and oleic acids in their seeds [3, 14]. The main fatty acid amounts of species of *Salvia* L. were also

reported as palmitic acid, stearic, oleic, linoleic and linolenic acids [3, 14-15]. Furthermore, more recently, several studies demonstrated that fatty acid amounts of seeds has been frequently used as a tool in biochemical systematics and it has proven to be valuable in studies of some plant [15-19]. The objective of present study was to determine fatty acid amounts of thirteen *Salvia* L. taxa growing in Elazig (Baskil).

2. Material and Methods

In the present study, fatty acid amount in mature seeds of thirteen Salvia L. taxa [S. suffruticosa Montbret & Aucher ex Bentham; S. trichoclada Bentham; S. euphratica Montbret& Aucher ex Bentham var. leiocalycina (Rech. Fil.) Hedge; S. multicaulis Vahl; S. candidissima Vahl subsp. candidissima; S. microstegia Boiss. &Bal.; S. russellii Bentham; S. verticillata L. subsp. verticillata; S. frigida Boiss.; S. virgata Jacq.; S. aethiopis L.; S. ceratophylla L.; S. syriaca L.] were examined. Sample plants were collected from the natural habitats and details about the seed materials are given Table 1.

2.1. Extraction of the seed oils and fatty acid analysis

2 gram seed materials were homogenized, mixed with hexane-isopropanol (3:2, v/v) according to Hara & Radin method [20]. The mixture was filtreted, and most of the solvents were removed by rotary evaporator. The remaining lipid residues were taken by using in hexane-isopropanol and nonlipid contaminants were removed by washing with 0.88 % KC1 solution. Fatty acids in the lipid extracts were converted into methyl esters by means of 2 % sulphuric acid (v/v) in methanol [21]. The fatty acid methyl esters were extracted three times with n-hexane.

2.2. Analysis of mixtures of acid methyl esters

The methyl esters were separated and quantified by gas chromatography and flameionization detection (Shimadzu GC 17 Ver.3) coupled to a Glass GC 10 software computing recorder. Chromatography was performed with a capillary column (25m in length and 0.25 mm in diameter, Permabound 25, Machery-Nagel, Germany) using nitrogen as a carrier gas (flow rate 0.8ml/min). The temperature of the column, detector and injection valve were 150-220, 240, 280°C, respectively. Fatty acids were determined and calculated based on standarts. Standart and sample mixtures analysed under the same conditions.

Table 1. Localities of studied Salvia L.

Таха	Province	Locality
S. suffruticosa Montbret & Aucher ex Bentham	Elazig	Baskil district, marble factory around, railway near, 1330 m
S. trichoclada Bentham	Elazig	Baskil district, 1450m
<i>S. euphratica</i> Montbret& Aucher ex Bentham var. <i>leiocalycina</i> (Rech. Fil.) Hedge	Elazig	Baskil district, marble factory around, railway near, 1330 m
S. multicaulis Vahl	Elazig	Baskil district, Bolucuk village, 1490 m
S. candidissima Vahl subsp. candidissima	Elazig	Baskil district, Hacı Mustafa village, 1750 m
S. microstegia Boiss. &Bal.	Elazig	Baskil district, Hacı Mustafa village, 1900 m
S. rusellii Bentham	Elazig	Baskil district, Quercus forest around, 1400 m
S. verticillata L. subsp. verticillata	Elazig	Baskil district, Bolucuk village, 1490 m
S. frigida Boiss.	Elazig	Baskil district, Hacı Mustafa village, 1850 m
S. virgata Jacq.	Elazig	Baskil district, Bolucuk village, 1500m
S. aethiopis L.	Elazig	Baskil district, Bolucuk village, 1490 m
S. ceratophylla L.	Elazig	Baskil district, Bolucuk village, 1350 m
S. syriaca L.	Elazig	Baskil district, 1450 m

3. Results and Discussion

The results for the *Salvia* L. species studied indicated that the dominant fatty acids were palmitic acid (C 16:0), oleic acid (C 18:1 n-9), linoleic acid (C 18:2 n-6) and α -linolenic acid (C 18:3 n-3). The fatty acid amounts of thirteen species of the *Salvia* L. are given in Table 2.

 Table 2. Fatty acid compositions of studied Salvia species (%)

Fatty acid	1	2	3	4	5
compositions	1				
15:0					
16:0	7.0	6.7	6.2	7.7	5.4
16:1 n9	0.7	0.4	0.5	0.6	0.5
18:0				2.1	2.0
18:1 n9	25.7	30.7	26.5	22.7	15.1
18:2 n6	59.3	56.5	60.4	59.7	28.9
18:3 n3	0.9	0.5	0.5	2.8	41.8
18:3 n6	4.7	3.9	5.0	3.6	2.1
18:4 n3				0.2	3.5
20:0	0.9	0.6	0.6	0.6	0.6
22:1 n9	0.3	0.3	0.2		
22:2	0.2				
22:4		0.3	0.1		
24:0	0.4	0.1			
ΣSatured	8.3	7.4	6.8	10.4	8.0
ΣUnsatured	91.8	92.6	93.0	89.6	91.9
ΣMUFA ^a	26.7	31.4	27.2	23.3	15.7
ΣPUFA ^b	65.1	61.2	65.8	66.3	76.3
Σω3	0.9	0.5	0.5	3.0	45.3
Σω6	64.0	60.4	65.4	63.3	31.0
	1	1	1	1	1
Fatty acid	6	6 7	0	9	10
compositions			δ		
15:0	0.3				
16:0	6.7	4.2	5.0	8.5	6.7
16:1 n9	0.4	0.4	0.2		0.7
18:0	2.5	1.0	1.7	2.6	1.9
18:1 n9	23.7	15.7	11.3	18.6	18.5
18:2 n6	22.5	41.2	25.4	26.4	24.8
18:3 n3	41.2	31.7	51.4	37.0	44.9
18:3 n6		3.9	1.3		1.6
18:4 n3				1	
			2.8		
20:0	0.8	0.3	2.8 0.3	0.6	0.5
20:0 22:1 n9	0.8	0.3 0.2	2.8 0.3 0.3	0.6 5.2	0.5
20:0 22:1 n9 22:2	0.8	0.3 0.2 0.1	2.8 0.3 0.3	0.6 5.2	0.5
20:0 22:1 n9 22:2 22:4	0.8 0.7 	0.3 0.2 0.1 1.2	2.8 0.3 0.3 0.1	0.6 5.2 1.0	0.5 0.3
20:0 22:1 n9 22:2 22:4 24:0	0.8 0.7 1.1	0.3 0.2 0.1 1.2 0.2	2.8 0.3 0.3 0.1	0.6 5.2 1.0	0.5 0.3 0.1
20:0 22:1 n9 22:2 22:4 24:0 ∑Satured	0.8 0.7 1.1 10.3	0.3 0.2 0.1 1.2 0.2 5.8	2.8 0.3 0.3 0.1 7.0	0.6 5.2 1.0 11.7	0.5 0.3 0.1 9.1
20:0 22:1 n9 22:2 22:4 24:0 ∑Satured ∑Unsatured	0.8 0.7 1.1 10.3 89.6	0.3 0.2 0.1 1.2 0.2 5.8 94.4	2.8 0.3 0.3 0.1 7.0 92.8	0.6 5.2 1.0 11.7 88.2	0.5 0.3 0.1 9.1 90.9
20:0 22:1 n9 22:2 22:4 24:0 ESatured EUnsatured EMUFA ^a	0.8 0.7 1.1 10.3 89.6 24.8	0.3 0.2 0.1 1.2 0.2 5.8 94.4 16.3	2.8 0.3 0.3 0.1 7.0 92.8 11.8	0.6 5.2 1.0 11.7 88.2 23.8	0.5 0.3 0.1 9.1 90.9 19.5
20:0 22:1 n9 22:2 22:4 24:0 25atured 2Unsatured 2MUFA ^a 2PUFA ^b	0.8 0.7 1.1 10.3 89.6 24.8 64.8	0.3 0.2 0.1 1.2 0.2 5.8 94.4 16.3 78.1	2.8 0.3 0.3 0.1 7.0 92.8 11.8 81.0	0.6 5.2 1.0 11.7 88.2 23.8 64.4	0.5 0.3 0.1 9.1 90.9 19.5 71.4
20:0 22:1 n9 22:2 22:4 24:0 ΣSatured ΣUnsatured ΣMUFA ^a ΣPUFA ^b Σω3	0.8 0.7 1.1 10.3 89.6 24.8 64.8 41.2	0.3 0.2 0.1 1.2 0.2 5.8 94.4 16.3 78.1 31.7	2.8 0.3 0.3 0.1 7.0 92.8 11.8 81.0 54.2	0.6 5.2 1.0 11.7 88.2 23.8 64.4 37.0	0.5 0.3 0.1 90.9 19.5 71.4 44.9
20:0 22:1 n9 22:2 22:4 24:0 ΣSatured ΣUnsatured ΣMUFA ^a ΣPUFA ^b Σω3 Σω6	0.8 0.7 1.1 10.3 89.6 24.8 64.8 41.2 22.5	0.3 0.2 0.1 1.2 0.2 5.8 94.4 16.3 78.1 31.7 45.1	2.8 0.3 0.3 7.0 92.8 11.8 81.0 54.2 26.7	0.6 5.2 1.0 11.7 88.2 23.8 64.4 37.0 26.4	0.5 0.3 0.1 9.1 90.9 19.5 71.4 44.9 26.4

compositions				
15:0			0.9	
16:0	4.9	6.0	11.7	
16:1 n9	0.5	0.3	2.5	
18:0	1.7	1.7	3.9	
18:1 n9	16.3	15.3	26.7	
18:2 n6	12.1	28.4	31.9	
18:3 n3	57.8	45.8	16.9	
18:3 n6	1.0	1.6		
18:4 n3	4.7			
20:0	0.6	0.4	1.8	
22:1 n9	0.2	0.3	3.0	
22:2	0.1	0.2	0.5	
22:4	0.1			
24:0		0.1		
ΣSatured	7.2	8.2	18.3	
ΣUnsatured	92.8	91.9	81.5	
ΣMUFA ^a	17.0	15.9	32.2	
ΣPUFA ^b	75.8	76.0	49.3	
Σω3	63.5	45.8	16.9	
Σω6	13.1	30.0	31.9	
a-Monounsaturated fatty acids				

D-1 Oly unsatul attu	Tany actus	
1-S. suffruticosa,	2-S. trichoclada,	3- S. euphratica,
4- S. multicaulis,	5- S. candidissima,	6- S. microstegia
7- S. russellii,	8- S. verticillata,	9- S. frigida,
10- S. virgata,	11- S. aethiopis,	12-S. ceratophylla
13-S. syriaca		

Total saturated fatty acid amount of the Salvia L. species studied ranged from 5.8 % (S. russellii) to 18.3 % (S. syriaca). The findings demonstrated that saturated fatty acids such as pentadecanoic acid (C 15:0), lignoceric acid (C 24:0) were absent or present in trace amounts. S. multicaulis (10.4 %), S. frigida (11.7 %) and S. syriaca (18.3 %) have the highest saturated fatty acid amount. Palmitic acid (C 16:0) was the major saturated fatty acid in the Salvia species studied (4.2-11.7 %). Stearic acid (C 18:0), the second major saturated fatty acid, ranged from 1.0 % (S. russellii) to 3.9 % (S. syriaca). But S. suffruticosa, S. trichoclada and S. euphratica didn't have stearic acid (C 18:0). Eicosanoic acid (C 20:0) was present in all studied species (0.3-1.8 %). Several previous studies showed that palmitic acid (C 16:0) and stearic acid (C 18:0) were dominant fatty acids of Salvia species and that eicosanoic acid (C 20:0) and behenic acid (C22:0) were absent or present in trace amounts [3, 14-15, 22]. In contrast, Habibvash et al. found that eicosanoic acid was the major saturated fatty acid of nine Salvia L. species (4.7-26.9 %). Also they determined that palmitic

acid (2.8-6.4 %) and stearic acid (0.4-1.9 %) were the low [23].

The present findings showed that thirteen *Salvia* L. species had higher saturated fatty acid amount than the genera *Nepeta*, *Origanum*, *Stachys* of the Lamiaceae [24-26]. Akpinar et al. identified two individual saturated fatty acid components from five *Nepeta* species as: palmitic acid (4.3-5.8 %), stearic acid (0.9-1.7 %) [24].

Azcan et al. indicated that two Origanum species contained palmitic acid (5.5-6.5 %) and stearic acid (2.1-2.4 %) as their principle fatty acids [25]. A previous study of Stachys species found that palmitic acid (3.0-7.6 %) and stearic acid (0.6-2.5 %) were the predominant saturated fatty acids [26]. However, Goren et al. determined two Satureja species (S. thymbra and S. cunefolia) of the Lamiaceae had the highest palmitic acid (11.4-34.6 %) and stearic acid (1.8-14.1 %) amounts in terms of saturated fatty acid amounts [27]. The present study determined that unsaturated fatty acid amount was greater than that of saturated fatty acids. This is a characteristics of the seed oils of the Lamiaceae [14].

The results of the present study show that linoleic acid (C 18:2 n-6) and α -linolenic acid (C 18:3 n-3) were the predominant polyunsaturated fatty acids. The third polyunsaturated fatty acid is γ -linolenic acid (C 18:3 n-6; 0-5.0 %) in the current study. Furthermore, stearidonic acid (C 18:4 n-3), docosadionic (C 22:2) and docosatetraenoic (C 22:4) acids were absent or present in trace amounts in the current study. Linoleic acid (C 18:2 n-6) amount was highest in S. euphratica var. leicaliyeina (60.4 %), S. multicaulis (59.7 %), S. suffruticosa (59.3 %), S. trichoclada (56.5 %). Salvia russellii (41.2 %). but it was found at the lowest levels (12.1-31.9 %) in other studied species. The α -linolenic acid (C18:3 n-3) amount of the Salvia L. seeds studied showed the greatest variability (0.5-57.8)%). It was found that α -linolenic acid amount of S. suffruticosa, S. trichoclada and S. euphratica was scancty (0.5-2.8%). But other Salvia L. species studied have highest α -linolenic acid amount (16.9-57.8 %). A study by Azcan et al. found that linoleic acid amount varied from 19.2 to 60.8 % and linolenic acid amount varied from 0.4 to 38.6 %. Kilic et al. indicated that the

linoleic acid amounts of studied three *Salvia* L. species were 20.8 %, 64.3 %, 73.4 % and the linolenic acid amounts were 2.9 %, 3.8 % and 18.5 %, respectively [22]. Another study by Kilic et al. determined that the linoleic acid amount of thirteen *Salvia* L. species ranged from 12.8 % to 52.2 % and that linolenic acid amount was between 3.2 % and 45.2 % [28].

Similarly, Goren et al. found that the *Salvia* L. species studied had a linoleic acid amount between 24.3 and 51.2 % [3]. They also found that the linolenic acid amount of the studied species was variable (1.4-37.2 %). Habibvash et al. found that the linoleic acid amount of nine *Salvia* L. species ranged from 0.4 % to 40.2 % and that the linolenic acid amount varied from 0.6 % to 34.3 % [23].

4. Conclusions

The present study showed that palmitic acid (C 16:0) was the major saturated fatty acid was detected in all studied taxa, and that stearic acid (C 18:0) was the second major saturated fatty acid in the Salvia L. taxa. The Salvia L. species had the highest unsaturated fatty acid amount (81.5-94.4 %) and low saturated fatty acid amount (5.8-18.3 %). S. russellii had the highest unsaturated fatty acid amount (94.4 %) while S. syriaca had the highest saturated fatty acid amount (18.3 %) among thirteen Salvia L. species. The main monounsaturated fatty acid was found to be oleic acid (C 18:1 n-9) in Salvia L. species. It was found that studied Salvia L. species were more variable oleic acid and α linolenic acid amounts. Linoleic acid (C 18:2 n-6) and α -linolenic acid (C 18:3 n-3) were the major polyunsaturated fatty acids.

5. References

- 1. Chalchat J.C., A. Micheti & B. Pasquier, (1998). Study of clones of *Salvia officinalis* L. yields and chemical composition of essential oil. *Flavour and Fragrance Journal* 13, 68-70.
- Vallejo M.C.G., L. Moujir, J. Burillo, L. Guerra L., M. González, R. Díaz Peñate, L. San Andrés, J. Gutiérrez Luis, López Blanco F.& Ruiz de Galarreta C.M. (2006).Chemical composition and biological activities of the essential oils of *Salvia canariensis. Flavour and Fragrance Journal* 21, 72-76.

- Goren A.C., Kilic T., Dirmenci T. & Bilsel G. (2006). Chemotaxonomic evalution of Turkish species of *Salvia*: fatty acid compositions of seed oils. *Biochemical Systematics and Ecology* 34, 160-164.
- Carrer R.P., Vanderlinde R., Dutra S., Marcon A., Echeverrigaray S. (2007). Essential oil variation among Brazilian accessions of *Salvia guaranitica* L. *Flavour and Fragrance Journal* 22, 430-434.
- 5. Amiri H. (2007). Quantative and qualative changes of essential oil of *Salvia bracteata* Bank et Sol. in different growth stages. *Daru* 15(2), 79-82.
- Kahraman A., Celep F. & Doğan M. (2009a). Morphology, anatomy and palynology of *Salvia indica* L. (Labiate). *World Appl. Sci. J.* 6 (2), 289-296
- Kupeli-Akkol E., F. Goger, Kosar M. & Baser K.H.C. (2008). Phenolic composition and biological activities of *Salvia halophila* and *Salvia virgata* from Turkey. *Food Chemistry* 108 (3), 942-949.
- Davis P.H., J.R. Edmondson, Mill R.R. & Tan K. (1982). *Flora of Turkey and East Aegean Islands*, vol.7, Edinburgh University Press, Edinburgh.
- Davis P.H., R.R. Mill, Tan K. (1988). Flora of Turkey, and the East Aegean islands, vol. 10, Edinburgh University Press, Edinburgh.
- Hedge I.C. (1982). *Salvia* L. In: Davis, P.H. (ed.). Flora of Turkey and the East Aegean Islands, vol. 7. Edinburgh University Press, 400-461.
- Kahraman A., Celep F. & Doğan M., (2009b). Comparative morphology, anatomy and palynology of two Salvia L. species (Lamiaceae) and their taxonomic implications. Bangladesh Journal of Plant Taxonomy 16 (1), 73-82.
- İlçim, A., Celep F. & Doğan M. (2009). Salvia marashica (Lamiaceae) a new species from Turkey. Annales Botanici Fennici 46, 75-79.
- Celep F. & Doğan M. (2010). Salvia ekimiana (Lamiaceae), a new species from Turkey. Annales Botanici Fennici 47, 63-66.
- Azcan N., Ertan A., Demirci B. & Başer KHC. (2004a). Fatty acid composition of seed oils of twelve *Salvia* species growing in Turkey. *Chemistry of Natural Compounds* 40 (3), 218-221.
- Bagci E., Vural M., Dirmenci T., Bruehl L. & Aitzemuller K. (2004a). Fatty acid and tocochromanol patterns of some *Salvia* L. species. *Zeitschrift für Naturforschung* 59, 305-309.
- Velasco L. & Goffman F.D., (1999). Chemotaxonomic significance of fatty acids and

tocopherols in Boraginaceae. *Phytochemistry* 52, 423-426.

- Lamarque A.L., Fortunato R.H., Maestri D.M. & Guzman C.A. (2000). Seed components and taxonomy of some *Acacia* species. *Biochemical Systematics and Ecology* 28, 53-60.
- Bagci E., L. Bruehl, Aitzetmuller K. & Altan Y. (2003). A chemotaxonomic approach on the fatty acid and tocochromanol content of *Cannabis sativa* L. (*Cannabaceae*). *Turkish Journal of Botany* 27, 141-147.
- Bagci E., L. Bruehl, Aitzetmuller K. & Altan Y. (2004b). Fatty acid and tocochromanol patterns of Some Turkish Boraginaceae, *Nordic Journal of Botany* 22 (6), 719-726.
- Hara A, & Radin N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. *Analytical Biochemistry* 90 (1), 420-426.
- 21. Christie W.W.(1990). *Gas Chromatography and lipids*. The Oily Press: Glasgow:UK.
- 22. Kilic T., Dirmenci T., Satil F., Bilsel G., Kocagoz T., Altun M. & Goren A.C. (2005). Fatty acid compositions of seed oils of three Turkish Salvia species and biological activities. *Chemistry of Natural Compounds* 41 (3), 276-279.
- 23. Habibvash F.N., Rajamand M.A. & Heidari R. (2007). Chemical analysis of some *Salvia* species native to west Azerbaijan (Iran). *Pakistan Journal of Biological Sciences* 10 (20), 3516-3524.
- 24. Akpinar, N., Akpinar M.A., Gorgun S., Dirmenci T & Aktumsek A. (2008).-Fatty acid composition of the seeds of five *Nepeta* species from Turkey. *Chemistry of Natural Compounds* 44 (1), 90-92.
- Azcan N., Kara M., Demirci B. & Başer KHC. (2004b). Fatty acids of the seeds of *Origanum* onites L. and O. vulgare L. Lipids, 39 (5), 487-489.
- Stojanovic G., Ligon A.P., Smelcerovic A., Lazarevic J., Spiteller M. & Palic R. (2007). Fatty acids of *Stachys milanii* seeds. *Chemistry of Natural Compounds* 43 (4), 380-383.
- Goren A.C., Bilsel G., Altun M., Satıl F. & Dirmenci T. (2003). Fatty acid composition of seeds of *Satureja thymbra* and *S. cuneifolia*. *Zeitschrift für Naturforschung* 58c, 502-504.
- Kilic T., Dirmenci T. &. Goren A.C. (2007). Chemotaxonomic Evaluation of species of Turkish *Salvia*: Fatty acid composition of seed oils. II. *Records of Natural Product* K1 (1), 17-23.