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Abstract
Cities experience UHIs due to the thermal properties (albedo, thermal emittance, radiative flux, and heat
capacity) of human-made substances and urban geometry. This study investigated the existence of an urban
heat island (UHI) in Gettysburg, Pennsylvania. The goal of this project was to assess whether a small-scale
city like Gettysburg demonstrates an UHI effect and, if present, the extent and magnitude of the UHI. We
hypothesized that (1) temperatures within the city are significantly higher than the surrounding area, (2) the
magnitude of the UHI will diminish as distance from the city center increases, and (3) the UHI will not
extend further than 0.5 miles outside the city center. Air temperatures were collected using digital
thermometers over four weeks along two different transects that each extended one mile from the center
square of Gettysburg. Our results show that Gettysburg, despite its small size, has an UHI. A linear regression
model shows that there is a strong correlation between temperature and distance from the center square. The
magnitude of the UHI lessens with increasing distance from the center of town. The first two hypotheses were
supported while the hypothesis that the UHI will be localized was not. Statistically analyses show that the
temperature change remains significant past 0.5 miles. The results of this study demonstrate that even a small-
scale city like Gettysburg create a UHI.

Keywords
Urban Heat Island, UHI, Climate Change

Disciplines
Climate | Environmental Studies | Oceanography and Atmospheric Sciences and Meteorology

Comments
Written as an Environmental Studies Senior Capstone.

Creative Commons License
Creative
Commons
License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

This student research paper is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/
student_scholarship/530

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://cupola.gettysburg.edu/student_scholarship/530?utm_source=cupola.gettysburg.edu%2Fstudent_scholarship%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/student_scholarship/530?utm_source=cupola.gettysburg.edu%2Fstudent_scholarship%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 
 
 
 
 
 
 
 
 
 
 
 
 

Investigating the Magnitude and Range of the Urban Heat Island within 
Gettysburg, Pennsylvania 

 
Sam Thompson and Rach Wilkins 

ES 400 Global Climate Change 
Environmental Studies | Gettysburg College 

May 10, 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I affirm I have upheld the highest principles of honesty and integrity in my academic work and 
have not witnessed a violation to the Gettysburg College Honor Code. 



 
Thompson & Wilkins 1 

Abstract 
 Cities experience UHIs due to the thermal properties (albedo, thermal emittance, 

radiative flux, and heat capacity) of human-made substances and urban geometry. This study 

investigated the existence of an urban heat island (UHI) in Gettysburg, Pennsylvania. The goal of 

this project was to assess whether a small-scale city like Gettysburg demonstrates an UHI effect 

and, if present, the extent and magnitude of the UHI. We hypothesized that (1) temperatures 

within the city are significantly higher than the surrounding area, (2) the magnitude of the UHI 

will diminish as distance from the city center increases, and (3) the UHI will not extend further 

than 0.5 miles outside the city center. Air temperatures were collected using digital thermometers 

over four weeks along two different transects that each extended one mile from the center square 

of Gettysburg. Our results show that Gettysburg, despite its small size, has an UHI. A linear 

regression model shows that there is a strong correlation between temperature and distance from 

the center square.  The magnitude of the UHI lessens with increasing distance from the center of 

town.   The first two hypotheses were supported while the hypothesis that the UHI will be 

localized was not. Statistically analyses show that the temperature change remains significant 

past 0.5 miles. The results of this study demonstrate that even a small-scale city like Gettysburg 

create a UHI.  
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Introduction 
With the surmounting scientific evidence that humanity has an impact on global climate, 

scientists have begun to highlight a specific recurring phenomena that exemplifies our influence 

on local climate (Arnfield 2003). These recurring phenomena are referred to as urban heat 

islands. An urban heat island (UHI) refers to the significantly higher temperatures measured 

within urban cities compared to surrounding rural areas (Arnfield 2003; Souch 2006). With the 

increasing interest in investigating the impact human structures have on local climate, UHI 

studies have been conducted in many of the world’s largest city centers. UHIs have been 

identified within various Asian cities such as Nanjing, China or Seoul, South Korea (Kim and 

Baik 2004, 2005; Chung et al. 2004; Shi, B. et al. 2012). European countries have also been 

shown to experience UHIs within cities like Lisbon, Portugal (Alcoforado and Andrade 2006), 

Prague, Czech Republic (Beranova and Huth 2005), Debrecen, Hungary (Bottyán et al. 2005). 

Several cities within the Americas such as Buenos Aires, Argentina (Bejarán and Camilloni 

2003) and New York City, USA (Gedzelman et al. 2003) have also been studied to compare 

different urban geometry impacts on the magnitude of the UHI effect.  

While each individual UHI is unique there are defining characteristics responsible for the 

initial formation of UHIs. One particular set of defining characteristics are the thermodynamic 

properties of human-made surfaces (USEPA 2008). Radiative flux, solar reflectance, or albedo 

are examples of such properties (Souch 2006). Radiative flux refers to the amount of power in 

photons radiated from a given surface (Souch 2006). Human-made surfaces used in architecture 

possess inherently more reflective properties than natural surfaces thus aid in creating UHIs. 

Solar reflectance, or albedo, is a specific type of radiative flux that refers to the percentage of 

solar energy reflected by a surface (USEPA 2008; Souch 2006). Because a large portion of the 

sun’s energy is emitted in visible light the coloration of surface materials directly influences the 
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amount of albedo (USEPA 2008; Souch 2006). Thermal emittance is another thermodynamic 

characteristic responsible for the formation of UHIs. Thermal emittance is the ability of a surface 

to shed energy in the form of long-wave, infrared radiation (heat) to its surroundings (USEPA 

2008). Surfaces with high thermal emittance values will shed heat more readily thus heating the 

surrounding area to a larger degree (USEPA 2008). A material’s heat capacity, or its ability to 

store thermal energy, also influences the physical qualities of an UHI (USEPA 2008). Human-

made materials often have higher heat capacities than natural materials thus increasing the 

ambient heat stored within the physical environment within an urban setting than a rural one.  

Thermodynamics of surface materials play an important role in the existence of UHIs but 

are not the only physical influences on UHIs. Urban geometry, or the physical dimensions of and 

between human-made structures, often compounds and exacerbates the creation of UHIs (Souch 

2006; USEPA 2008). Urban geometry is important in understanding UHI characteristics due to 

the influence urban geometry has on wind flow, energy absorption, and dispersal of radiation 

into space (USEPA 2008). Within urban geometry, scientists have scrutinized a particular 

physical characteristic, known as urban canyons, that have large impacts on UHI intensity 

(Barring and Mattsson 1985; Oke 1981). Urban canyons refer to large open spaces, often along 

streets, that are entirely or mostly enclosed by reflective human made surfaces (Souch 2006; 

Barring and Mattsson 1985). These canyons serve as a type of oven where air is trapped within 

and constantly heated by the reflected light from the surrounding buildings (Barring and 

Mattsson 1985). The negative influences of urban canyons are particularly drastic at night due to 

the obstruction of ambient heat from dispersing (USEPA 2008). One recent innovation within 

studying the characteristics of urban canyons and their effect on UHIs have been quantifying sky 

view factors. The sky-view factor (SVF) is the measure of the degree of sky visibility within a 
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study site (Chapman and Thornes 2004). It is critical to effectively and systematically quantify 

the relationship between the SVF and ambient heat dissipation to quantitatively understand how 

to mitigate UHIs (Chapman and Thornes 2004; Souch 2006).  

Notable environmental influences on UHIs include wind intensity and cloud cover, both 

of which reduce the intensity of UHIs (Souch 2006; Rencz 2012). This reduction is likely due to 

the ability of wind to dissipate heat through convection, which increases as wind speed increases 

and increased cloud cover prevents heat absorption by limiting the interaction between the sun’s 

radiation and the urban surface (Souch 2006). Seasonal climate also plays a large role on the 

intensity of UHIs (Souch 2006). During winter months all communities intrinsically consume 

more fuel and energy to heat buildings and cars. This increased fuel consumption generates a 

localized greenhouse effect creating a greater temperature difference between the urban 

environment and the surrounding rural environments. Additionally, UHI affects the temperature 

of the soil, which shows more intense temperature effects with increasing soil depths (Shi et. al, 

2012; Stewart 2011). UHIs are often separated into two distinct groups based on how they are 

quantified (USEPA 2008). These two generic groups are surface and atmospheric UHIs (USEPA 

2008). Because the thermodynamics of solids and gases differ significantly, the properties of 

surface and atmospheric UHIs also differ.  

Surface UHIs are strongest during the day while the sun is constantly heating the 

thermally absorbent human-made environments and weakest at night (USEPA 2008). While both 

surface and atmospheric UHIs are influenced by seasons, surface UHIs are strongest during 

summer when the sun’s intensity is at its highest (USEPA 2008). On average, surface UHIs 

experience a temperature difference of 18-27°F during the day and a difference of 9-18°F during 

night (USEPA 2008: Roth, Oke and Emery 1989). Atmospheric UHIs often vary at a lower 
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intensity than surface UHIs usually experiencing a temperature difference of 1.8-5.4°F (USEPA 

2008; Oke 1997). Atmospheric UHIs also experience a more drastic difference between rural 

areas during winter months likely due to the larger thermal absorbance and emittance of human-

made surfaces heating the surrounding air (Souch 2006; Hinkel et al. 2003). These same factors 

that trap heat within the urban area, usually urban canyons, are also responsible for atmospheric 

UHIs being more prominent at night (Oke 1973; Taha 1997). Atmospheric UHIs are also further 

subdivided into two separate categories of canopy and boundary layer UHIs (USEPA 2008). The 

canopy layer UHI is the a UHI existing within the ambient atmosphere in which humans live, 

from ground floor to below the tree and roofline (USEPA 2008). The boundary layer UHI exists 

from the tree and roof tops and extends to the point at which the urban environment no longer 

influences the atmosphere (USEPA 2008).  

The goals of this study were to determine the existence of and quantify the magnitude, 

and define the thermal characteristics of an atmospheric UHI within Gettysburg, Pennsylvania. 

We investigated the following questions: “Does the Borough of Gettysburg have an urban heat 

island, despite its small size?”, “How drastic is the heat differential?”, and “What is the scope of 

the UHI?” We had three hypotheses: (1) there is a significant difference between air 

temperatures within the city canopy layer and surrounding rural canopy layer, (2) the magnitude 

of the UHI will diminish as the distance from the city center increases, and (3) the UHI will be 

localized and not extend further than 0.5 mile outside the city center.   

Study Site 

 The borough of Gettysburg measures 1.66 square miles and is located in Cumberland 

Township of Adams County within south-central Pennsylvania (Figure 1). This town is where 

the Battle of Gettysburg took place during the Civil War in 1863 and is known for where 
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Abraham Lincoln gave the Gettysburg Address. Today, the town is home to the Gettysburg 

National Military Park that attracts many forms of tourist urban development within town and 

the surrounding area. The borough has a population of 7,608 people (US Census Bureau 2015).  

The area of our study has a humid temperate climate and is approximately 500 feet above sea 

level (NatGeo 2016, Brown 2006).  The majority of the borough of Gettysburg is moderately 

developed, and the surrounding areas are predominantly residential suburbs and agricultural 

fields (Figure 2; U.S. Geological Survey).  

Methods 
Data Collection 

To measure ambient air temperature, HYELEC MS6501 instant-read air temperature 

thermometers with sensor probes were used. Two transects across the city were used to collect 

data. These transects extended from the center square of Gettysburg, Pennsylvania to a mile from 

the square along Hanover Road going east and northwest along US-30 (Figure 3). Google Earth 

was used to measure increments of one tenth of a mile along the two main roads of our transects. 

Transect 1, north west of town along US-30, had 11 points. Transect 2, east of town along 

Hanover Rd, had 10 points due to safety concerns at the 0.8 mile location.  

 Air temperatures were collected approximately one and a half hours after the sun set to 

control for sun exposure on the test environment. Data at each increment of each transect was 

collected three days per week. These measurements were repeated for four weeks resulting in 12 

separate temperatures for each point along each transect. On days where we started from city 

center and measured outwards, the city center temperature was re-measured immediately after 

the final point. This measurement allowed for correction to the natural environmental 

temperature dropping as the night progressed. 
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Laboratory Analysis 

Microsoft Excel, Vassarstats, and IBM SPSS were all used to analyze our data. We used 

the temperatures for each transect interval to calculate the average temperature, standard 

deviation, and standard errors for each transect point. Vassarstats was used to perform a t-test on 

the average temperatures of each transect to determine if there was a significant difference 

between each transect. The differences between initial and re-measured air temperature of the 

city center were averaged for each transect to determine an environmental correction factor. This 

correction factor was used to  accurately estimate total temperature change between start and end 

points.  

A linear regression was used to investigate if there was a linear relationship between 

temperature and distance from the city center for both transects. An ANOVA with repeated 

measures was used to determine if distance from the city center significantly influenced the 

corresponding air temperature. A Mauchly’s test for sphericity was conducted on each set of 

transect data to determine if the data met the assumption of sphericity required for this test. The 

Greenhouse-Geisser results of the ANOVA test were used to compensate for any lack of 

sphericity. 

 Differences between each transect interval were calculated for each transect to determine 

how the intensity of the UHI changed as distance from the city center increased. The total 

temperature change from the beginning and end of each transect were calculated to compare 

which transect changed the most. The environmental correction factor was used here to increase 

accuracy. For further analysis, we combined the temperature differences for each transect 

interval to analyze total UHI intensity. The intervals ‘0.7-0.8 mi’ and ‘0.8-0.9 mi’ for transect 1 

were combined into one interval 0.7-0.9 mi since transect two was missing the 0.8 mi location. 
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Linear regression was used to compare the average temperature change between each interval 

against the corresponding distance from the city center to determine if there was a linear 

relationship. The resulting linear relationship was used to establish a linear model to describe the 

UHI intensity as the distance from the city center increases. This linear model was mapped 

spatially in ArcGIS to visually show relationship between UHI intensity and distance from 

Gettysburg, Pennsylvania. 

Results 
 Over the four week collection period a total of 132 and 120 temperature measurements 

were taken for transect 1 and transect 2 respectively (Table 1a and 1b). The average  

temperatures for transect 1 were 49.3, 48.7, 48.0, 47.4, 46.6, 46.3, 46.1, 45.5, 44.9, 43.7, and 

44.0°F in order of increasing distance from the city center (Table 2). The average temperatures 

for transect 2 were 50.3, 48.8, 48.3, 47.7, 46.8, 46.1, 45.3, 44.4, 45.6, and 45.7°F in order of 

increasing distance from the city center (Table 2). The t-test comparing the set of average 

temperatures of each transect showed there was no significant difference between the two 

transects (p = 0.34, α = 0.05).  

The linear regression model for the average temperatures of transect 1 showed a strong 

negative linear relationship between temperature and distance from the city center (y = -5.5356x 

+ 49.169, R² = 0.98, p < 0.0001). Similar to transect 1, the linear regression model of transect 2 

also showed a strong negative linear relationship between temperature and distance from the city 

center (y = -4.8264x + 49.164, R² = 0.76, p = 0.0005). Based on these models the total 

temperature change per mile for transect 1 is -5.5°F without accounting for environmental 

influence (Figure 1). The total temperature change per mile for transect 2 is -4.8°F without 

accounting for environmental influence (Figure 2).  The starting points for each transect were re-

measured for both transects to account for ambient temperature decrease over time (Table 1a and 
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1b). These observed differences were averaged to yield an ambient environmental difference of -

1.7 and -1.8°F for transect 1 and 2 respectively (Table 3a and b). These environmental correction 

values indicate the temperature change per mile for transect 1 and 2 are -3.8 and -3.0°F 

respectively, accounting for the natural temperature change over time.  

 An ANOVA with repeated measures was used to determine if distance from the city 

center significantly influences temperature. The data met every statistical assumption needed for 

this particular statistical test except one, the assumption of sphericity. A Mauchly’s test for 

sphericity was conducted on each set of transect data and showed that for transect 1: chi-square = 

169.176, p < 0.001, df = 54, and for transect 2: chi-square = 111.764, p < 0.001, df = 44 (Table 4 

and 5). Because of this violation the results of the more conservative Greenhouse-Geisser test 

were used to compensate for the lack of sphericity. The test showed that distances further from 

the city center had significantly lower temperatures, for transect 1: df = 2.152, F = 48.725, p < 

0.001, and for transect 2: df = 1.689, F = 14.679, p < 0.001 (Table 6 and 7).  

 The observed temperature difference between transect intervals were analyzed to 

compare how different intervals along each transect vary in temperature. The average interval 

differences for transect 1 were -0.6, -0.8, -0.6, -0.8, -0.3, -0.2, -0.6, -0.6, -1.2, and 0.3°F in order 

of increasing distance from the city center (Table 8a). The average interval differences for 

transect 2 were -1.5, -0.5, -0.6, -0.9, -0.8, -0.8, -0.9, 1.2, and 0.0°F in order of increasing distance 

from the city center (Table 8b). Interval differences of transect 1 began at a moderate intensity 

and increased until 0.4-0.5 mi interval, at which it decreased drastically and then increased 

exponentially until the maximum difference at the 0.8-0.9 mi interval (Figure 6). Transect 2 

differs slightly, the first interval of 0.0-0.1 mi has the largest temperature difference while the 

smallest difference is along the 0.1-0.2 mi interval, which then steadily increases until the 0.7-0.9 
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mi interval (Figure 7). Both transects experience positive increases in temperature from 0.9-1 mi 

in transect 1 and even earlier at the 0.7-0.9 mi interval for transect 2 (Figure 6 and 7).  

Transect 1 had a slightly lower temperature difference, -5.4°F vs. -4.6°F, when 

comparing the total changes in temperature between the starting point and 1 mi point (Figure 

8).With environmental corrections, transect 1 still had a larger temperature difference with a total 

temperature difference of 3.6°F while transect 2 had a total change of 2.8°F (Figure 9).When the 

temperature differences along each transect intervals were aggregated the means shifted. The 

aggregated temperature differences resemble the averages of transect 2 in the sense that the 

largest temperature difference is experienced from the 0.0-0.1 mi interval. The intensity of the 

temperature difference along the transect intervals decreases as the distance from the city center 

increases (Table 10). The only exceptions to this pattern are the 0.3-0.4 mi and 0.6-0.7 mi 

intervals that have larger temperature decreases than the preceding intervals (Table 10). When 

the temperature differences were compared to distance from the city center there was a positive 

linear relationship between the two variables: y = 0.91x - 1.0317, R² = 0.66, p = 0.004 (Figure 

10). This model was mapped using ArcGIS to display the spatial relationship between UHI 

intensity and distance from the city center into an isotherm map of Gettysburg, PA (Figure 11). 

Discussion 
Our hypothesis that a UHI was present in Gettysburg was supported. The linear 

regression models showed a strong negative linear relationship between temperature and the 

distance from the city center for both transects. The ANOVA with repeated measures indicated 

that the temperatures at the city center are significantly higher than the temperatures on the 

outskirts of the city. Based on these results, we concluded that the high traffic activity and urban 

development in the center of the circle attributes to higher temperatures. There was, however, an 

unusual temperature increase along both transects’ 0.9-1 mi interval and along the 0.7-0.9 mi 
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interval for transect 2. These locations were all located at the bottom of hills. Lower altitudes 

tend to concentrate cooler air than those altitudes above (Largeron and Staquet 2016). It is likely 

that the higher elevations at these locations trapped the air in a small valley thus being 

responsible for the positive temperature increases at the end of both transects. 

Large cities are known to produce intense heat islands (Maria et al. 2013). Despite size, 

small cities still have a large impact on local climate. Another small city, Shippensburg, 

Pennsylvania, has recently discovered a UHI. This city is located about twenty five miles west of 

Gettysburg and represents similar geographical area: a small urban area surrounded by 

agricultural fields (Doyle and Hawkins 2008). In a study by Doyle and Hawkins (2008), 

temperature sensors were set up at seven sites and the hourly temperature measurements were 

taken for about five months. The UHI was greater in May and September compared with June, 

July, and August. During 1900 to 0600 hours, these seven different weather stations displayed an 

average UHI effect to be 0.8°C or 0.44°F (Doyle and Hawkins 2008).  Unfortunately we did not 

have enough time or resources to compare several different transects to calculate an average 

similar to Doyle and Hawkins (2008). However, we were able to compare average observed 

temperature difference between most urban and rural areas. The largest observed difference 

between most developed and most rural temperatures by Doyle and Hawkins (2008) was 1.9°C 

or 1.06°F compared to our corrected temperature differences of  3.6 and 2.8°F for each transect 1 

and 2 respectively. It is interesting that such a similar city to Gettysburg has such a drastically 

lower average UHI effect. This stark difference could be due to several different factors. The 

most likely being the differences in seasonality of the two experiments.  

Doyle and Hawkins (2008) conducted their analysis in the summer months of May 

through September while our analysis focused on late winter to spring. Previous studies have 
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shown that winter and spring months tend to have more pronounced UHI effects than summer 

months (Souch 2006). Another interesting point is that while the average temperature difference 

over five months was around 1.06°F in the months of May and September, the two coldest of the 

months sampled, there was a nighttime average temperature difference of 5.4°F (Doyle and 

Hawkins 2008). These results were comparable to our observe temperature change without 

environmental correction of 5.4°F for transect 1. In summation, the total average differences 

were different due to the difference in seasonality between the two experiments but when 

analyzed on a monthly scale the results between our two studies are comparable to one another. 

It would be interesting in future studies to increase the timespan of our experiment to see if it 

aligns more with the Doyle and Hawkins (2008) experiment. Compared to larger cities, 

Gettysburg has a relatively large UHI relative to its size. Two comparisons can be made between 

Gettysburg and larger cities: Gettysburg compared to an large international city in a drastically 

different location and Gettysburg compared to a large city within a national region.  

An example of an international city UHI can be seen within Seoul, South Korea. We felt 

this would be a good proxy for international cities due to its significantly different region and 

climate compared to Gettysburg. Seoul has a total population over 10 million people and 

expands 11,704 km2 compared to Gettysburg with a total population of 7,608 people and area of 

4.3 km2 (Kim and Baik 2005; US Census Bureau 2015). Seoul is considerably more densely 

populated and a much more expansive urban city so the observed UHI would be predicted to be 

much higher than Gettysburg. However, over a yearly period the average largest UHI effect 

observed was 2.5°C or 4.5°F, which is proportionally larger than our observed Gettysburg UHI 

of 3.6°F (Kim and Baik 2005). One caveat to this comparison is that while Kim and Baik (2005) 
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calculated UHI magnitude at a similar time of day (2100 hours), they also collected over a larger 

timespan with larger seasonal variation while we focused solely on the winter spring months.  

However, even when seasonality and time of day were accounted for, such as within the 

Gedzelman et al. study (2003) in New York, USA, the UHI intensity was still similar to our own 

findings. Within the winter months of the Gedzelman et al. (2003) study the average temperature 

difference between rural and urban environments were 3°C or 5.4°F. While this is larger than the 

maximum corrected temperature difference of 3.6°F it is unlikely proportionally larger compared 

to how much larger NY City is to Gettysburg. Interestingly, without our environmental 

corrections the maximum average UHI magnitude was also 5.4°F. While this is likely not the 

most conservative of estimates the fact that a UHI magnitude of this degree was seen at all raises 

questions about the influence of urban development on UHI magnitude.  

One of the limitations of our study was time. Because we did not have weather station 

data, time restrained us to only four weeks of three days of data collection since we had to 

manually collect the data temperature. In the future, this study could be completed over one year 

to discover possible seasonal variation of the magnitude of the UHI. Although we observed an 

UHI effect, increasing the number of collection locations could provide more accurate results 

yielding a better representation of the magnitude and thermal characteristics of the UHI. Another 

limitation to our experiment was that the time that passed between the initial collecting site to the 

last collecting site along the transects. This limitation was proved valid as we saw a difference in 

temperature when we re-measured the square. The re-measurements of the square allowed us to 

correct the temperatures for a more accurate representation of the magnitude of the UHI by 

limiting environmental influences on our results.  
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Interestingly, nearly all of the studies physically describing UHIs preferred utilizing static 

weather stations to record temperatures over our method of recording measurements in the field 

(Alcoforado, M., & Andrade, H. 2006; Bӓrring, L. & Mattsson, J.O. 1985;  Beranova, R. & 

Huth, R. 2005;  Bottyán, Z. et al. 2005; Doyle, D. & Hawkins, T.W. 2008; Gedzelman, S.D., et 

al. 2003; Kim, Y.H., & Baik, J.J. 2005; Shi, B. et al. 2012). Because this method gives 

instantaneous temperature measurements, no other studies needed to perform environmental 

corrections to account for ambient temperature change over time. These limitations could be 

corrected in future experiments by placing a temperature sensor at each interval that could record 

the temperature of all locations at the exact same time. Also, temperature sensors could reveal 

how the UHI changes throughout the day and in response to different meteorological conditions. 

This project can also be improved by taking more measurements within the one mile range in 

order to explore which parts of Gettysburg are more heavily affected than others. 

UHIs burden people living within urban areas. Not only can warmer temperatures be 

uncomfortable, but they also raise the amount of energy consumption due to cooling purposes. 

As human populations continue to rise, it is expected that 95% of urban expansion will occur in 

economically developing nations (Akbari et al. 2015). Action must be taken to reduce power 

demands and consumption of fuel. For example, implementing cool roofs, a surface reflecting 

higher solar amounts, is beneficial not only because homes do not need to use as much air 

condition, but this also reduces contribution to the UHI (Akbari et al. 2015).  A green roof, a roof 

covered with vegetation, similarly prevents contribution to the UHI. Simulations also show that 

increasing amounts of vegetation deflects the sun’s rays. This deflection prevents buildings from 

absorbing heat and causing UHIs. Green roof systems allow the combination of both ideas 
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(Akbari et al. 2015). While these technologies will not eliminate UHI completely, they are 

sustainable ways to counter climate change. 

Not only do UHIs have negative impacts on public health, local climate and energy 

consumption but they have recently become important due to their controversial role in the 

climate change debate. Because of this it has become paramount in understanding how and to 

what degree have UHIs influenced recent climate models and predictions (Parker 2010).  By 

understanding the influence that UHIs have on climate change we can gain important insight into 

how to combat climate change on a local level. In recent years it has been shown that while there 

is a significant warming effect within urban areas, these temperatures compared to those 

previously are not significantly different (Parker 2010). This indicates that while UHIs do exist 

that they haven’t changed significantly in previous years, while rural areas have (Parker 2010). 

This provides evidence that climate change is resulting within the natural environment rather 

than simply being a result of humans local influence on the environment (Parker 2010).  

In terms of longer climate projections, such as those created by the IPCC, UHIs have 

been shown to minimally influence projections and are now able to be corrected for, further 

diminishing their influence on the accuracy of climate models (Parker 2010). However, there 

influence, no matter how minor, indicates that they are one small piece of the climate change 

puzzle needed to solve the issue in its entirety.  

Conclusions 
 This study investigated and confirmed the existence of an UHI in Gettysburg, 

Pennsylvania. Transect 1 revealed a total 5.5°F (3.8°F with environmental corrections) decrease 

in temperature from the center square and one mile outwards. Transect 2 experienced a 4.8°F 

(3.0°F with environmental corrections) decrease when comparing the center square the one mile 

transect point. There was also a significant difference between the average temperature 
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differences within transect intervals along both transects. Our results indicate that while overall 

there is a significant difference between the start and end of the transects that temperature 

decrease varies along each transect.   

Despite Gettysburg's small size it has a significant UHI effect that can influence the local 

climate. Previous studies have shown that city size directly relates to the UHI effect but 

Gettysburg might prove to be an exception due to the large UHI effect observed (Oke 1973; Kim 

and Baik 2005; Gedzelman et al. 2003). If small cities such as Gettysburg have a 

disproportionately large UHI effect moderately sized cities might also be underestimated in 

terms of their influence on their surrounding environment. With human development being the 

main contribution to the UHI, building designs can and should be altered to counter small scale 

climate change and maintain the public health. 
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Appendix 
Table 1a. Recorded temperatures for transect number one at each location over the twelve days 
of measurement. 

  
Week 1 Week 2 Week 3 Week 4 

Transect 1 Distance (mi) 2/27 3/1 3/21 3/23 3/25 3/27 3/29 3/31 3/3 3/6 3/8 3/10 
Square 0 45.9 63.3 54.1 39.6 64.3 62.1 49.5 44.9 31.5 46.9 57.9 32 
7/11 0.1 45.3 62.3 54 38.3 64.1 61.9 48.8 43.8 31.3 46.4 57.4 31.3 
Franklin 0.2 44.4 62.1 53.5 37.3 62.4 61.3 48.6 43.2 29.1 46.4 56.8 30.5 
Dollar General 0.3 43.5 62.4 52.1 36.5 61.9 60.8 49 43.4 27.1 46.6 56.3 29.4 
Post Office 0.4 41.2 62.4 49.7 36.3 60.9 60.3 49.3 43.1 27 46.2 55.7 27.2 
Elm St. 0.5 41.7 61.7 48.8 36.1 59.2 60.5 48.7 42.6 27.9 46 54.6 27.7 
N. Hay St. 0.6 42.1 62.1 48.4 35.4 58.9 59.9 48.4 42.4 27.1 46.4 53.9 28.1 
~Seminary 
Ridge 0.7 41 62.6 47.8 35.9 58.4 58.1 47.8 41.7 26.2 45.3 53.3 27.4 
Top of hill 0.8 41.2 62.2 47.3 35.3 57.6 57.9 46.9 41.3 25 43.7 52.8 27.3 
Battle field 0.9 38.3 61 46.4 34.1 57.3 56.4 45.7 39.6 24.1 42.4 51.8 27 
Reynolds Ave 1 37.8 60.8 46.9 34.8 57.4 56.7 46 39.8 24.9 43.1 52.1 27.1 
Re-measure  0 40.3 - 53.2 - - - 47.9 - 31.2 - 57.6 - 

 
Table 1b. Recorded temperatures for transect number two at each location over the twelve days 
of measurement. 
 

 
 
 
 
 
 
 
 

  
Week 1 Week 2 Week 3 Week 4 

Transect 2 Distance (mi) 2/27 3/1 3/3 3/6 3/8 3/10 3/21 3/23 3/25 3/27 3/29 3/31 
Square 0 48.2 62.4 30 48.9 58.8 33.3 55.8 41.7 64.8 62.3 52.3 45.1 
Hanover x 
Stratton 0.1 47.1 63.1 30.2 47.8 57.2 32 52.9 37 63.1 61.2 50.7 43.7 
Hanover x 
Liberty 0.2 46.4 63 28.6 47.5 57.2 32 50.9 36.5 63.3 59.6 51.1 43.5 
Hanover x 3rd 0.3 45.7 63.3 29.7 45.9 57.6 31.5 46.8 36.1 61.9 60.4 50.5 42.8 
Hanover x 4th 0.4 43.5 63 29.1 46.2 56.3 29.3 45.9 34.3 61.4 59.9 50.4 42.6 
Hanover x 5th 0.5 41.5 63.1 27.7 47.3 55.9 29.1 44.6 30.7 59.2 60 50.2 43.3 
Hanover x 6th 0.6 39 63.1 28.8 46 54.9 29.3 43 30.2 58.9 58.8 49.6 41.7 
Hanover x 
Municipal 0.7 36.5 62.8 28.7 45.9 55.2 29.5 42.1 28 56.4 58.2 47.3 42.1 
Hanover x 
Latimer 0.9 40.3 63.3 27.7 45.3 54.5 29.3 48.4 32.4 57.6 58.1 48.6 42.1 
Battlefield 1 42.6 63.1 27.5 45.1 53.4 28.4 47.8 35.4 57.1 57.9 47.8 41.9 
Re-measure 0 - - - 48 57 32.7 51.8 36.7 - - 52.2 44.8 
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Table 2. The average temperature and the corresponding standard deviation and standard error 
for each interval for both transects. 
 

 
Transect 1 Transect 2 

Distance 
(mi) 

Average 
Temp 

Stnd 
Deviation 

Stnd 
Error 

Average 
Temp 

Stnd 
Deviation 

Stnd 
Error 

0 49.3 11.40 3.29 50.3 11.34 3.27 
0.1 48.7 11.50 3.32 48.8 11.49 3.32 
0.2 48.0 11.71 3.38 48.3 11.61 3.35 
0.3 47.4 12.08 3.49 47.7 11.54 3.33 
0.4 46.6 12.25 3.54 46.8 11.89 3.43 
0.5 46.3 11.71 3.38 46.1 12.30 3.55 
0.6 46.1 11.72 3.38 45.3 12.10 3.49 
0.7 45.5 11.74 3.39 44.4 12.10 3.49 
0.8 44.9 11.79 3.40 - - - 
0.9 43.7 11.78 3.40 45.6 11.72 3.38 
1 44.0 11.65 3.36 45.7 11.32 3.27 

 
Table 3a. This table shows the measured temperatures for the square for Transect 1, the re-
measurements, and the differences between the two. The average difference was a decrease in 
1.7 ℉. 

Transect 1 2/27 3/1 3/3 3/6 3/8 3/10 3/21 3/23 3/25 3/27 3/29 3/31 Average 
Square 45.9 63.3 31.5 46.9 57.9 32 54.1 39.6 64.3 62.1 49.5 44.9 49.3 
Re-measure  40.3 - 31.2 - 57.6 - 53.2 - - - 47.9 - 46.0 
Difference -5.6 - -0.3 - -0.3 - -0.9 - - - -1.6 - -1.7 

 
Table 3b. This table shows the measured temperatures for the square for Transect 2, the re-
measurements, and the differences between the two. The average difference was a decrease in 
1.8 ℉. 

Transect 2 2/27 3/1 3/3 3/6 3/8 3/10 3/21 3/23 3/25 3/27 3/29 3/31 Average 
Square 48.2 62.4 30 48.9 58.8 33.3 55.8 41.7 64.8 62.3 52.3 45.1 50.3 
Re-measure - - - 48 57 32.7 51.8 36.7 - - 52.2 44.8 46.2 
Difference - - - -0.9 -1.8 -0.6 -4 -5 - - -0.1 -0.3 -1.8 
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Table 4. Displays the results from the Mauchly’s test of shericity for transect 1 average 
temperatures. 

 
 
Table 5. Displays the results from the Mauchly’s test of shericity for transect 2 average 
temperatures. 

 
 
Table 6. Displays the results of the ANOVA with repeated measures test performed on the 
average transect temperatures for transect 1. 

 
 
Table 7. Displays the results of the ANOVA with repeated measures test performed on the 
average transect temperatures for transect 2. 
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Table 8. Temperature change between each interval along Transect 1. 

 
Transect 1 Interval 

  0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 0-1 
Week 

1 
-0.6 -0.9 -0.9 -2.3 0.5 0.4 -1.1 0.2 -2.9 -0.5 -8.1 
-1 -0.2 0.3 0 -0.7 0.4 0.5 -0.4 -1.2 -0.2 -2.5 

-0.2 -2.2 -2 -0.1 0.9 -0.8 -0.9 -1.2 -0.9 0.8 -6.6 
Week 

2 
-0.5 0 0.2 -0.4 -0.2 0.4 -1.1 -1.6 -1.3 0.7 -3.8 
-0.5 -0.6 -0.5 -0.6 -1.1 -0.7 -0.6 -0.5 -1 0.3 -5.8 
-0.7 -0.8 -1.1 -2.2 0.5 0.4 -0.7 -0.1 -0.3 0.1 -4.9 

Week 
3 

-0.1 -0.5 -1.4 -2.4 -0.9 -0.4 -0.6 -0.5 -0.9 0.5 -7.2 
-1.3 -1 -0.8 -0.2 -0.2 -0.7 0.5 -0.6 -1.2 0.7 -4.8 
-0.2 -1.7 -0.5 -1 -1.7 -0.3 -0.5 -0.8 -0.3 0.1 -6.9 

Week 
4 

-0.2 -0.6 -0.5 -0.5 0.2 -0.6 -1.8 -0.2 -1.5 0.3 -5.4 
-0.7 -0.2 0.4 0.3 -0.6 -0.3 -0.6 -0.9 -1.2 0.3 -3.5 
-1.1 -0.6 0.2 -0.3 -0.5 -0.2 -0.7 -0.4 -1.7 0.2 -5.1 

Mean -0.6 -0.8 -0.6 -0.8 -0.3 -0.2 -0.6 -0.6 -1.2 0.3 -5.4 
 
Table 9. Temperature change between each interval along Transect 2. 

 
Transect 2 Interval 

  0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.9 0.9-1 0-1 
Week 

1 
-1.1 -0.7 -0.7 -2.2 -2 -2.5 -2.5 3.8 2.3 -5.6 
0.7 -0.1 0.3 -0.3 0.1 0 -0.3 0.5 -0.2 0.7 
0.2 -1.6 1.1 -0.6 -1.4 1.1 -0.1 -1 -0.2 -2.5 

Week 
2 

-1.1 -0.3 -1.6 0.3 1.1 -1.3 -0.1 -0.6 -0.2 -3.8 
-1.6 0 0.4 -1.3 -0.4 -1 0.3 -0.7 -1.1 -5.4 
-1.3 0 -0.5 -2.2 -0.2 0.2 0.2 -0.2 -0.9 -4.9 

Week 
3 

-2.9 -2 -4.1 -0.9 -1.3 -1.6 -0.9 6.3 -0.6 -8 
-4.7 -0.5 -0.4 -1.8 -3.6 -0.5 -2.2 4.4 3 -6.3 
-1.7 0.2 -1.4 -0.5 -2.2 -0.3 -2.5 1.2 -0.5 -7.7 

Week 
4 

-1.1 -1.6 0.8 -0.5 0.1 -1.2 -0.6 -0.1 -0.2 -4.4 
-1.6 0.4 -0.6 -0.1 -0.2 -0.6 -2.3 1.3 -0.8 -4.5 
-1.4 -0.2 -0.7 -0.2 0.7 -1.6 0.4 0 -0.2 -3.2 

Mean -1.5 -0.5 -0.6 -0.9 -0.8 -0.8 -0.9 1.2 0.0 -4.6 
 
 
 
 
 
 
 
 
 



 
Thompson & Wilkins 23 

Table 10. Aggregation of the differences in temperature between each interval along both 
transects. 

Transect Interval 
0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.9 0.9-1 0-1 
-0.6 -0.9 -0.9 -2.3 0.5 0.4 -1.1 -2.7 -0.5 -8.1 
-1 -0.2 0.3 0 -0.7 0.4 0.5 -1.6 -0.2 -2.5 

-0.2 -2.2 -2 -0.1 0.9 -0.8 -0.9 -2.1 0.8 -6.6 
-0.5 0 0.2 -0.4 -0.2 0.4 -1.1 -2.9 0.7 -3.8 
-0.5 -0.6 -0.5 -0.6 -1.1 -0.7 -0.6 -1.5 0.3 -5.8 
-0.7 -0.8 -1.1 -2.2 0.5 0.4 -0.7 -0.4 0.1 -4.9 
-0.1 -0.5 -1.4 -2.4 -0.9 -0.4 -0.6 -1.4 0.5 -7.2 
-1.3 -1 -0.8 -0.2 -0.2 -0.7 0.5 -1.8 0.7 -4.8 
-0.2 -1.7 -0.5 -1 -1.7 -0.3 -0.5 -1.1 0.1 -6.9 
-0.2 -0.6 -0.5 -0.5 0.2 -0.6 -1.8 -1.7 0.3 -5.4 
-0.7 -0.2 0.4 0.3 -0.6 -0.3 -0.6 -2.1 0.3 -3.5 
-1.1 -0.6 0.2 -0.3 -0.5 -0.2 -0.7 -2.1 0.2 -5.1 
-1.1 -0.7 -0.7 -2.2 -2 -2.5 -2.5 3.8 2.3 -5.6 
0.7 -0.1 0.3 -0.3 0.1 0 -0.3 0.5 -0.2 0.7 
0.2 -1.6 1.1 -0.6 -1.4 1.1 -0.1 -1 -0.2 -2.5 
-1.1 -0.3 -1.6 0.3 1.1 -1.3 -0.1 -0.6 -0.2 -3.8 
-1.6 0 0.4 -1.3 -0.4 -1 0.3 -0.7 -1.1 -5.4 
-1.3 0 -0.5 -2.2 -0.2 0.2 0.2 -0.2 -0.9 -4.9 
-2.9 -2 -4.1 -0.9 -1.3 -1.6 -0.9 6.3 -0.6 -8 
-4.7 -0.5 -0.4 -1.8 -3.6 -0.5 -2.2 4.4 3 -6.3 
-1.7 0.2 -1.4 -0.5 -2.2 -0.3 -2.5 1.2 -0.5 -7.7 
-1.1 -1.6 0.8 -0.5 0.1 -1.2 -0.6 -0.1 -0.2 -4.4 
-1.6 0.4 -0.6 -0.1 -0.2 -0.6 -2.3 1.3 -0.8 -4.5 
-1.4 -0.2 -0.7 -0.2 0.7 -1.6 0.4 0 -0.2 -3.2 

-1.029 -0.654 -0.583 -0.833 -0.546 -0.488 -0.758 -0.271 0.154 -5.008 
 



 
Thompson & Wilkins 24 

 
Figure 1. Location of Gettysburg within South-Central Pennsylvania 
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Figure 2. Map showing the intensity of development of the Borough of Gettysburg. 
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Figure 3. Map showing the two transects and locations where temperatures were taken in this 
study. Each transect reached one mile outwards from the center of Gettysburg, PA. 
 
 



 
Thompson & Wilkins 27 

 
Figure 4. Linear regression analysis for the average temperatures for each interval of transect 1. 
 

 
Figure 5. Linear regression analysis for the average temperatures for each interval of transect 2. 
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Figure 6. The average temperature difference between each interval for transect 1. 
 

 
Figure 7. The average temperature difference between each interval for transect 2. 
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Figure 8. Chart showing the average total temperature decrease between the start and end of each 
transect.  
 
 

 
Figure 9. Chart showing the average total temperature decrease between the start and end of each 
transect when accounting for environmental corrections. 
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Figure 10. Displays the linear regression analysis of the temperature difference experienced 
between the transect intervals compared to their respective distance from the city center (y = 
0.91x - 1.0317, R² = 0.6638, p = 0.004).  
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 Figure 11. A

n isotherm
 m

ap displaying the m
odeled tem

perature change as distance from
 city center increases. 
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