
 
 
 
 
 

 
 

DEPARTAMENTO DE MATEMÁTICA 
DOCUMENTO DE TRABAJO 

 
 
 

 

“Banach subspaces of spaces of holomorphic  
functions and related topics” 

Verónica Dimant y Seán Dineen 

   D.T.: N° 7         Noviembre 1995 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vito Dumas 284, (B1644BID) Victoria, Pcia. de Buenos Aires, Argentina 
     Tel: 4725-7053  Fax: 4725-7010 

Email: matematica@udesa.edu.ar 
 



BANACH SUBSPACES OF SPACES

OF HOLOMORPHIC FUNCTIONS

AND RELATED TOPICS

Verónica DIMANT and Seán DINEEN

§1. Introduction

Our initial interest in the topics discussed in this article was motivated by a
desire to extend to homogeneous polynomials the following result of Dimant and
Zalduendo [13];

(1.1) if the Banach space E has a shrinking unconditional Schauder basis then
c0 6↪→ L(nE) if and only if the monomials, with the square ordering, form a basis
for L(nE) (L(nE) is the space of continuous n-linear forms on E).

This is one of many results (see the references quoted in §4 and §5) which have
appeared in recent years dealing with the linear and geometric properties of the
space of n-linear forms and homogeneous polynomials on a Banach space. The
approach in many of these papers has followed the classical methods of functional
analysis. Indeed, following this approach and using results in [9] and [10] yields,
fairly rapidly, a generalization of (1.1) to polynomials on stable Banach spaces
(a Banach space is stable if E ∼= E × E). However, a recent result of Dı́az [11]
indicates that the same approach is not suitable for non-stable Banach spaces. Our
approach was more function theoretic, in that we treated polynomials as functions
on a set rather than as points in a Banach space. This broadened the scope of
our investigation, led to a closer examination of each of the concepts involved in
(1.1), yielded results which unified those of previous authors and, at the same time,
revealed the natural setting for certain constructions.

We extended our investigation of the condition “c0 6↪→ P(nE)” to “c0 6↪→ H(U)”.
This prompted a look at the general question of lifting results from spaces of homo-
geneous polynomials to spaces of holomorphic functions. Since this topic has only
been briefly touched upon in the literature we discuss it in §2. In §3 we return and
solve the lifting problem associated with “c0 6↪→ H(U)”. To illustrate the results in
§3 we looked at the monomial basis with the square order. Our function theoretic
approach uncovered finite dimensional decompositions as a more natural object of

Typeset by AMS-TEX
1



2 V. DIMANT AND S. DINEEN

study and we discuss these in §4. In this section we also considered the following
result of Alencar [1] which may be readily compared with (1.1);

(1.2) if E is a reflexive Banach space with a Schauder basis then P(nE) is
reflexive if and only if the monomials, with the square order, are a Schauder basis
for P(nE) (P(nE) is the space of continuous n-homogeneous polynomials on E).

We generalise and obtain an independent proof of this result. Finally, on com-
paring once more (1.1) and (1.2) we found that we can bridge the gap between the
conditions of non-containment of c0 and reflexivity, by means of an unconditionality
hypothesis on the Schauder basis. This is discussed in §5. We refer to [12, 24] for
Banach space theory and to [14, 16] for infinite dimensional holomorphy.

§2. Lifting results from homogeneous polynomials to holomorphic
functions

In this section we discuss the general problem of lifting results from spaces of
homogeneous polynomials to spaces of holomorphic functions on balanced domains.
Spaces of homogeneous polynomials normally lie within a more manageable collec-
tion than the corresponding space of holomorphic functions. For instance, the space
of C-valued continuous n-homogeneous polynomials on a Banach space E, P(nE),
endowed with the strong topology, is a Banach space, while the space of C-valued
holomorphic functions on E, H(E), endowed with any of its natural topologies is
never a Banach space and, indeed, only a Fréchet space when E is finite dimen-
sional (and in this case it is even a Fréchet-nuclear space). Results for H(E) which
only require the result for some subspace of H(E) are often immediate from the
polynomial results but results which depend on all subspaces of H(E) generally
require further analysis.

For example, if `∞ ↪→ P(nE) for some positive integer n then we see immediately
that `∞ ↪→ (H(E), τω), while P(nE) reflexive for all n implies (H(E), τω) is reflexive
if E is separable and has the approximation property but this latter result on
reflexivity is not at all immediate ([14]). Another non- trivial example is given in
[3] where it is shown, for E Fréchet-Montel, that τ0 = τω on H(E) if and only if
τ0 = τω on P(nE) for all n.

In this article we consider collections of holomorphic functions on a balanced
domain in a Banach space. In this case the space of holomorphic functions has
a Schauder decomposition into a sequence of Banach spaces, e.g. (H(E), τω) has
{(P(nE), ‖ · ‖)}∞n=0 as a Schauder decomposition. This decomposition identifies a
sequence of “priviliged” Banach subspaces of (H(E), τω). Finite sums, quotients,
subspaces and the range by linear isomorphisms (of (H(E), τω)) of P(nE) yield
further Banach subspaces of (H(E), τω). Are these “essentially” all the Banach
subspaces of (H(E), τω)? A slightly less general and more precise way of looking
at this is as follows:

Let (T ) denote a certain property of Banach spaces (e.g. reflexivity, weak se-
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quential compactness, the Dunford-Pettis property). If (P(nE), ‖ · ‖) has (T ) for
all n, does every Banach subspace of (H(E), τω) have property (T )?

Another variation of this question can be posed in the following way: if F is a
Banach subspace of (H(E), τω) and (xj)j is a basic sequence in F , does there exists
a subsequence (yj)j of (xj)j , and a positive integer n such that (yj)j is equivalent
to a basic sequence in (P(nE), ‖ · ‖)?

The same problems can clearly be posed for different topologies and other spaces
of holomorphic functions and it is also obvious how the same questions may be
phrased for S-absolute decompositions. We now give two examples which show
that the general problems outlined above are reasonable.

Example 1. Let E denote a Banach space and let (nj)j denote a strictly
increasing sequence of positive integers. For each j let Pj denote a non-zero element
of P(njE). Let F denote the closed subspace of (H(E), τω) generated by (Pj)j .
Taylor series expansions at the origin show easily that (Pj)j is a basis for F . Hence

if f ∈ F then f =
∞∑
j=0

βjPj for some sequence of scalars (βj)j .

Now the τω topology on H(E) is generated by the seminorms

p(f) =
∞∑
n=0

‖ d̂
nf(0)
n!

‖K+αnB

for f =
∞∑
n=0

d̂nf(0)
n!

∈ H(E), where B is the open unit ball of E, K is a compact

subset of E and (αn)n ∈ c0.

Hence

p(
∞∑
j=0

βjPj) =
∞∑
j=0

|βj | ‖Pj‖K+αnjB

and (Pj)j is an absolute basis for F with weights (‖Pnj‖K+αnjB)j where K is
compact in E and (αnj )j ∈ c0. In particular, we see that (‖Pnj‖2K+2αnjB)j =
(2nj‖Pnj‖K+αnjB)j is also a weight and, since

∑
j

1
2nj < ∞, the Grothendieck-

Pietsch criterion implies that F is a nuclear subspace of (H(E), τω). The nuclear
space F , which is generated by homogeneous polynomials all of different degrees,
may be regarded as the extreme example of a space not contained in P(nE) for any
n.

Example 2. Let (Pm)∞m=n+1 denote a basic sequence of unit vectors in P(nE), n
a positive integer and let (Qm)∞m=n+1 denote a sequence of continuous polynomials,
Qm being m-homogeneous. We suppose ‖Qm‖1/mB −−−−→

m→∞
0, where B is the unit

ball of E. Let F denote the (Banach) subspace of P(nE) generated by (Pm)∞m=n+1
and let G denote the closed subspace of (H(E), τω) generated by (Pm+Qm)∞m=n+1.
We claim that F and G are isomorphic as locally convex spaces and hence G is also
a Banach subspace of (H(E), τω).
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If f =
∞∑
j=0

d̂jf(0)
j!

∈ G then it is easily seen that

d̂jf(0)
j!

=


0 if j < n
∞∑

m=n+1

βmPm if j = n

βjQj if j > n

Since the mapping f ∈ (H(E), τω) 7→ d̂nf(0)
n!

∈ (P(nE), ‖ · ‖) is continuous it
follows that the mapping

J :=
∞∑

m=n+1

βm(Pm +Qm) ∈ G 7−→
∞∑

m=n+1

βmPm ∈ F

is continuous. It is also immediate that J is a bijection.

Let

Rj :=
∞∑

m=n+1

βjmPm ∈ F −→ 0 as j →∞.

Since (Pm)m is a basic sequence of unit vectors in a Banach space it follows that

sup
m,j
|βjm| <∞ (2.1)

and
βjm −−−→

j→∞
0 ∀m > n. (2.2)

Hence supj,m ‖βjmQm‖rB <∞ for all r > 0 and, by (2.1),

{J−1(Rj) =
∞∑

m=n+1

βjmPm +
∞∑

m=n+1

βjmQm}j

is a bounded sequence in (H(E), τω).

Since a bounded sequence (fj)j in (H(E), τω) is a null sequence if and only if
d̂kfj(0)
k!

is a null sequence in P(kE) for all k [14, lemma 3.28], it follows, by (2.2),

that (J−1(Rj))j is a null sequence in (H(E), τω). Hence J−1 is continuous and J
is a linear isomorphism from G onto F and G is a Banach subspace of (H(E), τω).

The Banach space G is not one of the “essential” Banach spaces we mentioned
earlier but was obtained by perturbing an essential Banach space. In this case what
might be deemed the nuclear perturbation was absorbed into the more dominant
Banach space structure to produce a Banach space. More refined examples of
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this type may suggest ways of constructing Banach spaces which are not essential
or at least point to the middle zone between nuclear and Banach spaces where
counterexamples might lie.

§3. Function Spaces containing c0

In this section we give a positive solution to the lifting problem for the property
“containment of c0”. In order to obtain the same result for different spaces and
topologies, e.g. holomorphic germs and holomorphic functions of bounded type, we
prove an abstract result using S-absolute decompositions. Let S = {(αn)n : αn ∈
C and lim sup

n→∞
|αn|1/n ≤ 1}.

Definition 3. A decomposition {En}n of a locally convex space E is an S-
absolute decomposition if

(a) for each (αn)n ∈ S and each x =
∑∞
n=1 xn ∈ E, xn ∈ En ∀n, we have that∑∞

n=1 αnxn ∈ E.

(b) if p is a continuous semi-norm on E and (αn)n ∈ S, then the semi-norm

q(
∞∑
n=1

xn) :=
∞∑
n=1

|αn|p(xn), for x =
∞∑
n=1

xn ∈ E, xn ∈ En ∀n

is continuous.

Theorem 4. Let {En}n denote an S-absolute decomposition of the locally
convex space E and suppose each En is a Banach space. If the sequence {xm =
∞∑
n=1

xn,m}∞m=1, where xn,m ∈ En ∀n,m, is equivalent to the unit vector basis of c0,

then for each integer n either

(a) (xn,m)∞m=1 is a null sequence in En, or

(b) there exists a strictly increasing sequence of positive integers (mj)j such that
the sequence (xn,m2j+1 − xn,m2j )j is equivalent to the unit vector basis of c0.

Moreover, (b) occurs for some positive integer n and hence c0 ↪→ E if and only
if there exists a positive integer n such that c0 ↪→ En.

Proof. Fix a positive integer n and let ‖ · ‖n denote the norm on the Banach

space En. Let ‖
∞∑
m=1

λmxm‖0 = sup
m
|λm|.

By our hypothesis there exists C := C(n) such that for any sequence of scalars
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(αm)m and any positive integer k

‖
k∑

m=1

αmxn,m‖n ≤ C‖
k∑

m=1

αmxm‖0 = C sup
m≤k
|αm|. (3.1)

This implies in particular that (xn,m)∞m=1 is a bounded sequence in (En, ‖ · ‖n).

We first claim that (xn,m)∞m=1 does not contain a subsequence (xn,mj )
∞
j=1 equiv-

alent to the unit vector basis of `1. Otherwise, there would exist C1 > 0 such
that

C1

k∑
j=1

|αj | ≤ ‖
k∑
j=1

αjxn,mj‖n

for any sequence of scalars (αj)j and any positive integer k. This contradicts (3.1)
for large k and establishes our claim.

By Rosenthal’s `1 theorem [12, p.201] or [24, p.99] it follows that every subse-
quence of (xn,m)∞m=1 contains a weak Cauchy subsequence. Let (xn,mi)

∞
i=1 denote

a weak Cauchy subsequence of (xn,m)∞m=1. We suppose that (xn,mi)
∞
i=1 is not a

norm Cauchy sequence. By taking a subsequence, if necessary, we may suppose
that there exists δ > 0 such that

‖xn,m2i+1 − xn,m2i‖n ≥ δ for all i.

Since (xn,mi)
∞
i=1 is a weak Cauchy sequence it follows that (xn,m2i+1 − xn,m2i)i

is a weakly null sequence and by the Bessaga-Pelczynski selection principle [12,
p.42] or [24, p.7] we may suppose, again by taking a subsequence, that it is a basic
sequence in En. For any sequence of scalars, (βi)i, and any positive integer k we
have by (3.1)

‖
k∑
i=1

βi(xn,m2i+1 − xn,m2i)‖n ≤ C sup
i≤k
|βi|.

Hence (xn,m2i+1 − xn,m2i)i is equivalent to the unit vector basis of c0 and (b) is
satisfied by the sequence (xn,mi)

∞
i=1.

The remaining case is when every subsequence of (xn,m)∞m=1 contains a norm
Cauchy subsequence. By choosing a subsequence if necessary we may suppose that
there exists x ∈ En such that

‖xn,m − x‖n ≤ 1/2m for all m

By (3.1),

C ≥ ‖
k∑

m=1

xn,m‖n ≥ k‖x‖n −
k∑

m=1

1
2m
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for all k. This implies x = 0. Hence every subsequence of (xn,m)∞m=1 contains
a norm null subsequence and we conclude that (xn,m)∞m=1 is a null sequence in
En. This shows that the sequence (xn,m)∞m=1 satisfies (a) and we conclude that
(xn,m)∞m=1 always satisfies either (a) or (b).

We now suppose that (a) is satisfied by (xn,m)∞m=1 for all n. Since (xm)∞m=1 is a
bounded sequence in E, lemma 3.28 of [14] implies that (xm)∞m=1 is a null sequence
in E. However, (xm)∞m=1 is equivalent to the unit vector basis of c0 and this is
imposible. Hence condition (b) is satisfied by some n. This completes the proof.

Corollary 5. If E is a Banach space then (P(nE), ‖ · ‖) contains c0 for some
positive integer n if and only if the locally convex space (H, τ) contains c0, where
(H, τ) is any one of the following:

(1) H = H(U), U balanced open in E, τ = τω or τδ,

(2) H = H(K), K compact balanced in E and H(K) the space of holomorphic
germs on K, τ = τω,

(3) H = Hb(U), U balanced open in E, and Hb(U) the subspace of H(U) consist-
ing of functions which are bounded on the bounded subsets of U which lie strictly
inside U and τ the topology of uniform convergence on such sets.

Proof. For each of the spaces (H, τ) the sequence {(P(nE), ‖ · ‖)}∞n=0 is an
S-absolute decomposition [14, chapter 3] and it suffices to apply theorem 4.

Further examples of a similar kind can also be found by considering compact
polynomials, weakly sequentially continuous polynomials, etc. It suffices to verify
that lemma 3.28 of [14] applies in each particular case.

Since (H(U), τω) is not known to be a dual space the following corollary is also
of interest.

Corollary 6. If U is a balanced open subset of a Banach space then c0 ↪→
(H(U), τω) if and only if `∞ ↪→ (H(U), τω).

Proof. If c0 ↪→ (H(U), τω) then corollary 5 implies that there exists a positive
integer n such that c0 ↪→ (P(nE), ‖ · ‖). Since (P(nE), ‖ · ‖) is a dual Banach space
it follows that `∞ ↪→ (P(nE), ‖ · ‖) ↪→ (H(U), τω). Since c0 ↪→ `∞ the converse is
obvious and this completes the proof.

Example 7. (a) ([2]) If T is Tsirelson’s space ([24, p.95]) then (P(nT ′), ‖ · ‖) is
reflexive for all n hence c0 6↪→ (H(U), τω) for any balanced open subset U of T ′.

(b) By [4] (see also [5, example 7]), (P(nc0), ‖ · ‖) is a separable dual space for
any positive integer n and hence does not contain c0. By theorem 4, (H(U), τω)
does not contain c0 for any balanced open subset U of c0.

(c) Let T ′J denote the James space modeled on the space T ′ of (a). By [5,
proposition 15], (P(nT ′J), ‖ · ‖) has RNP for any positive integer n. Hence c0 6↪→
(H(U), τω) for any balanced open subset U of T ′J .
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§4. Finite Dimensional Decompositions

We now examine the basis condition mentioned in (1.1) and (1.2). The follow-
ing simple algebraic example motivated our move from Schauder basis to finite
dimensional decompositions. We need the following notation.

If m = (m1, . . . ,mk, 0, . . . ) ∈ IN (IN), we let |m| =
∑
imi denote the degree of m

and `(m) = sup{i : mi 6= 0}, the length of m. We let m! = m1! . . .mk!.

Example 8. Let P denote an n-homogeneous polynomial on the space of all
finite sequences of complex numbers. Then

P ((zi)∞i=1) =
∑

m∈IN (IN)

|m|=n

amz
m; zm = zm1

1 . . . zmkk , `(m) = k

=
∞∑
k=1

{
∑
|m|=n
`(m)=k

amz
m}

=
∞∑
k=1

{P ((zi)ki=1)− P ((zi)k−1
i=1 )}

= a(n,0,... )z
n
1 +

∑
n1+n2=n
n2>0

a(n1,n2,0,... )z
n1
1 zn2

2 + · · ·

Note that since all the sequences are eventually zero, all the sums are finite and
there is no difficulty with convergence.

We now develop this example topologically. We suppose that E is a Banach
space with Schauder decomposition {Ej}∞j=1. An element P ∈ P(nE) is called a

monomial if there exists m = (mi)i ∈ IN (IN) such that for all
∞∑
i=1

xi ∈ E, xi ∈ Ei

for all i, and any sequence of scalars (λi)∞i=1 we have

P (
∞∑
i=1

λixi) = λm1
1 . . . λmkk P (

∞∑
i=1

xi)

where k = `(m). Cleary we must have n = |m|.

We denote by Pk(nE) the space generated by

{P ∈ P(nE); P is a monomial of degree m, `(m) = k}.

If P ∈ P(nE) and m = (mi)i ∈ IN (IN), `(m) = k, we let

Pm(
∞∑
i=1

xi) =
|m|!
m!

1
(2πi)k

∫
|λ1|=1

· · ·
∫
|λk|=1

P (
∑k
i=1 λixi)

λm1+1
1 . . . λmk+1

k

dλ1 . . . dλk.
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We have Pm ∈ P`(m)(nE) and

P (x) =
∑

m∈IN (IN)

|m|=n

Pm(x)

for all x in the algebraic span of {Ej}∞j=1.

If P ∈ P(nE) we let

P(k) =
∑

m∈IN (IN)

`(m)=k

Pm.

Alternatively

P(k)(
∞∑
i=1

xi) = P (
k∑
i=1

xi)− P (
k−1∑
i=1

xi)

for all k and all
∑∞
i=1 xi ∈ E.

We let Pω(nE) denote the subspace of P(nE) consisting of all polynomials which
are weakly continuous on bounded subsets of E. By [7] this coincides with the
space of all n-homogeneous polynomials which are uniformly weakly continuous on
bounded subsets of E and if E′ has the approximation property, and in particular
if E′ has a finite dimensional Schauder decomposition, then Pω(nE) is the closed
subspace of P(nE) generated by {ϕn : ϕ ∈ E′}.

If {Ej}j is a finite dimensional Schauder decomposition for the Banach space E
then Pk(nE) is a finite dimensional space for all k and n and if, in addition, {Ej}j
is shrinking then {E′j}j is a finite dimensional Schauder decomposition for E′.

In our next proposition we shall consider a Banach space with finite dimensional

decomposition {Ej}j . If x ∈ E we will write x =
∞∑
j=1

xj where xj ∈ Ej for all j

and we let Πk(
∞∑
j=1

xj) =
k∑
j=1

xj for any positive integer j. The sequence (Πk)∞k=1 is

an equicontinuous (or bounded) sequence of linear mappings and by renorming E
(if necessary) we can suppose that supk ‖Πk‖ = 1. In such a case we say that the
decomposition is monotone. We may assume without loss of generality that our
decompositions are always monotone.

Proposition 9. If {Ej}j is a shrinking finite dimensional decomposition for the
Banach space E then, for any positive integer n, {Pk(nE)}∞k=1 is a monotone finite
dimensional decomposition for Pω(nE).
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Proof. Let (Pk)∞k=1 ⊂ P(nE) with Pk ∈ Pk(nE) for all k. Since

‖
k∑
i=1

Pi‖ = sup
‖
∑∞
j=1 xj‖ ≤ 1

|
k∑
i=1

Pi(
∞∑
j=1

xj)|

= sup
‖
∑k
j=1 xj‖ ≤ 1

|
k∑
i=1

Pi(
k∑
j=1

xj)|

= sup
‖
∑k
j=1 xj‖ ≤ 1

|
k+1∑
i=1

Pi(
k∑
j=1

xj)|

≤ sup
‖
∑∞
j=1 xj‖ ≤ 1

|
k+1∑
i=1

Pi(
∞∑
j=1

xj)|

= ‖
k+1∑
i=1

Pi‖

it follows that {Pk(nE)}∞k=1 is a (monotone) finite dimensional decomposition for
its closed linear span F in P(nE). Since each monomial is a product of continuous
linear mappings it follows that F ⊂ Pω(nE). To complete the proof we must show
that ϕn ∈ F for all ϕ ∈ E′.

Let ϕ ∈ E′ and let ψk = ϕ − ϕ ◦ Πk = ϕ|{Ej}j>k . Since the decomposition
is shrinking it follows that ‖ψk‖ → 0 as k → ∞. We may suppose that the
decomposition {Ej}j is monotone. From the identity

an − bn = (a− b)(
n−1∑
i=0

an−1−i bi)

we see that

‖ϕn − (ϕ ◦Πk)n‖ = sup
‖x‖≤1

|ϕn(x)− ϕn(Πk(x))|

≤ sup
‖x‖≤1

|ϕ(x)− ϕ(Πk(x))|(
n−1∑
i=0

|ϕ(x)|n−1−i|ϕ(Πk(x))|i)

≤ n‖ψk‖ ‖ϕ‖n−1 −−−→
k→∞

0.

Hence ϕn ∈ F for all ϕ ∈ E′ and this completes the proof.

If each Ej in proposition 9 is one dimensional then the Banach space E has a
shrinking Schauder basis. In general, however, Pk(nE) will not be one dimensional
for n > 1 and we cannot immediately deduce that Pω(nE) has a Schauder basis. To
obtain this result we need to order a basis in each of the finite dimensional spaces
Pk(nE) and in the process of defining this, by induction, we arrive at the square
ordering given in [25, 1, 13,26].
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Let (en)∞n=1 denote a shrinking monotone basis for E. The sequence (e′n)∞n=1 is
a basis for E′ ∼= P(1E) = Pω(1E). In monomial terminology this is the sequence
of monomials of degree 1 and we denote it by (zn)∞n=1. This places an order on the
basis for P(nE) when n = 1. Suppose {Pnk,j}

`n(k)
j=1 is the ordered basis for Pk(nE)

then we define the ordered basis for Pk(n+1E) as

{zkPn1,j}
`n(1)
j=1 , {zkPn2,j}

`n(2)
j=1 , . . . , {zkPnk,j}

`n(k)
j=1

i.e. zkPnr,s precedes zkPnr′,s′ in the ordering of the basis if either r < r′ or r = r′

and s < s′. We refer to [16] for further details.

Proposition 10. If E has a shrinking Schauder basis then the monomials of
degree n with the square order form a Schauder basis for (Pω(nE), ‖ · ‖).

Proof. We may suppose that the basis for E is monotone and normalised. Let
Ck,n denote the basis constant for {Pnk,j}

`n(k)
j=1 for all k and n. Since {Pk(nE)}k is

a finite dimensional decomposition it suffices to show that supk Ck,n is finite for all
n. We prove this by induction on n. Since the basis for E is shrinking the result is
true for n = 1. We suppose that the result is true for n and that Cn is the resulting
basis constant for Pω(nE).

Let {Pn+1
k,j }

`n+1(k)
j=1 denote the basis for Pk(n+1E). We note that Pn+1

k,j = Qk,j .zk

where {Qk,j}`n+1(k)
j=1 is the basis for ⊕ks=1Ps(nE). Let 1 ≤ N < M ≤ `n+1(k) and

let (ak,j)
`n+1(k)
j=1 denote an arbitrary sequence of scalars. We have

‖
N∑
j=1

ak,jP
n+1
k,j ‖ = ‖

N∑
j=1

ak,jQk,jzk‖

≤ ‖
N∑
j=1

ak,jQk,j‖ ‖zk‖

≤ 2‖
N∑
j=1

ak,jQk,j‖

≤ 2Cn‖
M∑
j=1

ak,jQk,j‖.

We therefore have to prove that there exists C ′ > 0 (independent of k and M)
such that

‖
M∑
j=1

ak,jQk,j‖ ≤ C ′‖
M∑
j=1

ak,jP
n+1
k,j ‖.
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We have

‖
M∑
j=1

ak,jQk,j‖ = sup
x∈E
‖x‖≤1

|
M∑
j=1

ak,jQk,j(x)|

= sup
x=[e1,... ,ek]
‖x‖≤1

|
M∑
j=1

ak,jQk,j(x)|

= |
M∑
j=1

ak,jQk,j(w)|

for some w of the form w =
∑k
i=1 wiei, ‖w‖ = 1.

If |wk| < 1/2, let g(λ) = (
M∑
j=1

ak,jQk,j)(w+λek). The function g is a polynomial

over C and, by the maximum modulus theorem, we have

sup
|λ|=1

|g(λ)| ≥ |g(0)| = ‖
M∑
j=1

ak,jQk,j‖.

Choose λ, |λ| = 1, where the supremum is achieved, and let w̃ = w+λek. Then

|
M∑
j=1

ak,jQk,j(w̃)| ≥ ‖
M∑
j=1

ak,jQk,j‖ (4.1)

and
‖w̃‖ ≤ ‖w‖+ ‖λek‖ ≤ 2. (4.2)

If w̃ =
∑k
i=1 w̃iei then

|w̃k| = |wk + λ| ≥ |λ| − |wk| ≥ 1/2. (4.3)

If |wk| ≥ 1/2, let w̃ = w. It is easily checked that w̃ also satisfies (4.1), (4.2) and
(4.3) in this case.

Hence

|
M∑
j=1

ak,jP
n+1
k,j (w̃)| = |

M∑
j=1

ak,jQk,j(w̃)| · |w̃k| ≥
1
2
‖
M∑
j=1

ak,jQk,j‖

and

|
M∑
j=1

ak,jP
n+1
k,j (w̃)| ≤ ‖

M∑
j=1

ak,jP
n+1
k,j ‖ · ‖w̃‖

n+1 ≤ 2n+1‖
M∑
j=1

ak,jP
n+1
k,j ‖.
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Hence

‖
M∑
j=1

ak,jQk,j‖ ≤ 2n+2‖
M∑
j=1

ak,jP
n+1
k,j ‖

and this completes the proof.

In proposition 9 we obtained a monotone finite dimensional decomposition for
Pω(nE) but in proposition 10 the estimates obtained suggest it is extremely unlikely
that the basis with the square ordering is monotone. This important difference
allows us to lift the results in proposition 9 to holomorphic functions while the
same extension is not possible for the results of proposition 10.

If E is a Banach space and U is an open subset of E, we let

Hω(U) = {f ∈ H(U) : for all x ∈ U there exists a neighbourhood W of x

such that f |W is weakly continuous},

i.e. Hω(U) is the space of holomorphic functions on U which are locally weakly
continuous.

If {Ej}j is a finite dimensional decomposition for the Banach space E and A is a
subset of E we say that A is solid (with respect to the decomposition) if Πk(A) ⊂ A
for all k. For example, E has a monotone decomposition if and only if the unit
ball is solid. Every open set is contained in a solid open set and the whole space is
solid. If A is a solid open set and K is a compact subset of A then ∪kΠk(K) is a
compact subset of A.

An ordering on the set of all pairs (k, n) ∈ IN2 is said to be natural in the first
index if (k1, n) ≤ (k2, n) whenever k1 ≤ k2.

From proposition 9 we obtain the following result.

Proposition 11. If {Ej}j is a finite dimensional shrinking Schauder decompo-
sition for the Banach space E and U is a balanced convex solid open subset of E,
then {Pk(nE)}∞k=1,n=0 with any ordering which is natural in the first index (k) is
a finite dimensional Schauder decomposition for (Hω(U), τω).

Proof. We suppose the decomposition is monotone and let B denote the unit
ball of E. Since the polynomials are dense in (H(U), τω), proposition 9 shows that
{Pk(nE)}∞k=1,n=0 spans a dense subspace of (Hω(U), τω). Since U is solid it contains
a fundamental system of compact sets K which are convex and balanced such that
Πn(K) ⊂ K for all K and n. Hence E normed with the Minkowski functional of
K + αB, α 6= 0, also has {En}n as a monotone decomposition.

Let

p(
∞∑
n=0

d̂nf(0)
n!

) =
∞∑
n=0

‖ d̂
nf(0)
n!

‖K+αnB

for f ∈ (Hω(U), τω). Let J denote a non-empty subset of IN2 such that (k, n) ∈ J
implies (k′, n) ∈ J for k′ ≤ k. Let (k1, n1) ∈ IN2 \ J be chosen such that either

(k1 − 1, n1) ∈ J (4.4)
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or
(1, n1) /∈ J. (4.5)

Let J ′ = J ∪ {(k1, n1)}. Let (αj)j∈J′ denote an arbitrary set of scalars and let
(Pj)j∈J′ denote a sequence of polynomials with Pj ∈ Pk(nE) if j = (k, n).

If (4.4) holds then

p(
∑
j∈J

αjPj) = p(
∑
j∈J

j 6=(k,n1)

αjPj) + p(
∑

j=(k,n1)
k=1,... ,k1−1

αjPj)

≤ p(
∑
j∈J

j 6=(k,n1)

αjPj) + p(
∑

j=(k,n1)
k=1,... ,k1

αjPj) by proposition 9

= p(
∑
j∈J′

αjPj).

If (4.5) holds then

p(
∑
j∈J

αjPj) ≤ p(
∑
j∈J

αjPj) + p(α(k1,n1)P(k1,n1))

= p(
∑
j∈J′

αjPj).

Hence {Pk(nE)}∞k=1,n=0 is a finite dimensional Schauder decomposition for (Hω(U), τω).

§5. Reflexivity

We now return to the examples which motivated our investigations. In dealing
with reflexivity we shall use the following two results;

(5.1) if E is a reflexive Banach space with the approximation property then
P(nE) = Pω(nE) if and only if (P(nE), ‖ · ‖) is reflexive ([25, 2]),

(5.2) if E is a separable reflexive Banach space with the approximation property
and U is a balanced open subset of E then (H(U), τω) is reflexive if and only if
(P(nE), ‖ · ‖) is reflexive for all n ([14]).

Proposition 12. If E is a reflexive Banach space with a finite dimensional
decomposition {Ej}j then the following are equivalent:

(a) (P(nE), ‖ · ‖) is reflexive for all n,

(b) {Pk(nE)}∞k=1 is a finite dimensional Schauder decomposition for P(nE), for
all n,
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(c) {Pk(nE)}∞k=1,n=0, with the order described in proposition 11, is a finite di-
mensional Schauder decomposition for (H(U), τω) for any solid open subset U of
E,

(d) (H(U), τω) is reflexive for any balanced open subset U of E,

(e) H(U) = Hω(U) for any open subset U of E.

Proof. Since E is reflexive the decomposition {Ej}j is shrinking and E has the
approximation property. Using Taylor series expansions we see thatH(U) = Hω(U)
for arbitrary open subsets of E if, and only if, P(nE) = Pω(nE) for all n. Hence,
by (5.1), (a)⇔(e), and, by (5.2), (a)⇔(d). By proposition 9 and (5.1) we have
(a)⇔(b) and, by proposition 11, (c)⇔(e). This completes the proof.

Proposition 10 and (5.1) recovers the result (1.2) of Alencar.

Finally we return to our original motivation (1.1). We have the following theorem
which leads to an answer to our original problem.

Theorem 13. If {Ej}j is a shrinking finite dimensional unconditional Schauder
decomposition for the Banach space E then the following are equivalent:

(1) Pω(nE) = P(nE) for all n,

(2) {Pk(nE)}∞k=1 is a finite dimensional decomposition for P(nE), for all n,

(3) (P(nE), ‖ · ‖) is separable for all n,

(4) c0 6↪→ P(nE) for any positive integer n,

(5) c0 6↪→ (H(E), τω).

Proof. We may suppose, without loss of generality, that the unconditionality
constant of the decomposition is 1. By corollary 5, (4)⇔(5). By proposition 9,
(1)⇔(2). Clearly (2)⇒(3) and since (P(nE), ‖ · ‖) is a dual space (3)⇒(4). To
complete the proof we show that (4)⇒(1).

We suppose that (1) holds for all l < n but that (1) does not hold for n. Clearly
we must have n ≥ 2. Hence there exists P ∈ P(nE) which is not weakly continuous
on bounded sets. Since E′ has a finite dimensional decomposition it is separable
and hence the weak topology on bounded subsets of E is metrizable. We may
therefore suppose that P is not weakly sequentially continuous and by using the
binomial theorem we see, as in [2], that P is not weakly sequentially continuous at
the origin. Hence there exists a weakly null sequence (xk)k and ε > 0 such that
|P (xk)| ≥ ε for all k. We now fix an arbitrary positive integer l. Let yk = Πl(xk)
and zk = xk −Πl(xk) for all k. We have ‖yk‖ → 0 as k →∞ and (zk)k is a weakly
null sequence in E.

Since
∑l
j=1Ej is finite dimensional it has a Schauder basis e1, . . . , es. If Fi is the

one dimensional subspace of E spanned by ei, 1 ≤ i ≤ s, and Fs+1 denotes the closed
subspace spanned by {Ej : j > l} then {Fi}s+1

i=1 is a Schauder decomposition for E.
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Since it is a decomposition into a finite number of subspaces it is an unconditional
shrinking, not necessarily monotone, Schauder decomposition. If we now take the
monomial expansion of P with respect to this decomposition, we obtain

P (
s∑
i=1

λi ei + x) = P (x) +
∑
m∈INs

0<|m|<n

am λ
mQm(x) +Q0(λ1, . . . , λs)

where λi ∈ C, x ∈ Fs+1, Qm ∈ P(n−|m|Fs+1), am ∈ C and Q0 is P restricted to∑l
j=1Ej .

SinceQm ∈ P(n−|m|Fs+1) with |m| > 0 it follows by hypothesis thatQm(zk)→ 0
as k →∞. Hence |P (zk)| 6→ 0 as k →∞.

Using the Schauder decomposition and a diagonal process we can generate a
disjointly supported bounded sequence of vectors (wk)k, such that |P (wk)| ≥ ε for
all k. Thus, there exists a strictly increasing sequence of positive integers (nk)k

such that wk =
nk+1∑

j=nk+1

vj for all k, where vj ∈ Ej for all j.

For each integer k, we let Pk = P ◦(Πnk+1−Πnk). We have ‖Pk‖ ≤ ‖P‖ ‖Πnk+1−
Πnk‖n ≤ 2n‖P‖. Hence (Pk)k is a bounded sequence in (P(nE), ‖ · ‖). By our
construction we have

|Pk(wk)| = |P (wk)| ≥ ε ∀k.

If x =
∑∞
j=1 xj ∈ E, xj ∈ Ej for all j, then for all positive integers l we have

l∑
k=1

|Pk(x)| =
l∑

k=1

|P (
nk+1∑

j=nk+1

xj)| ≤ sup
|λk|≤1

|P (
l∑

k=1

λk(
nk+1∑

j=nk+1

xj))| ≤ 2n‖P‖ ‖x‖n

(5.3)
by unconditionality.

Since (Pk)k is not a null sequence in P(nE), [18, theorem 2] implies that c0 ↪→
P(nE). Hence (4)⇒ (1) and this completes the proof.

Remark 14. It is rather easy to add extra conditions in theorem 13 and we
briefly mention some possibilities in this direction.

(a) Using S-Schauder decompositions it is easy to see that condition (3) is equiv-
alent to the separability of (H(U), τω), for any balanced open subset U of E (in fact
this equivalence is true for any Banach space).

(b) If E has a shrinking Schauder basis then, by proposition 10, condition (2)
is equivalent to the condition that the monomials, with the square order, are a
Schauder basis for P(nE) for all n. The equivalence of (2) and (4) gives (1.1) for
homogeneous polynomials.

(c) If we assume in addition that E is reflexive in theorem 13, then proposition
12 shows that the conditions in theorem 13 are equivalent to the condition that
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(P(nE), ‖·‖) is reflexive for all n. We note in passing that reflexivity always implies
the property “does not contain c0” but for spaces of polynomials (or holomorphic
functions) the unconditionality hypothesis implies that they are equivalent.

A disjointly supported sequence of vectors (xk)∞k=1 in a Banach space E with a
finite dimensional decomposition {Ej}j has a lower q estimate, 1 < q <∞, if there
exists C > 0 such that for any sequence of scalars (λk)∞k=1 and for any l ∈ IN we
have

‖
l∑

k=1

λkxk‖q ≥ C
l∑

k=1

‖λkxk‖q.

In the proof of the implication (4)⇒ (1) of theorem 13, we see that if Pω(nE) 6=
P(nE) for some n then there exists a disjointly supported sequence of unit vectors
(wk)∞k=1 and P ∈ P(nE) such that |P (wk)| ≥ ε for all k. The proof of this result did
not use unconditionality. We can therefore apply theorem II.4.4 of [21] to obtain
the following.

Proposition 15. If {Ej}j is a shrinking finite dimensional Schauder decompo-
sition for the Banach space E and no disjointly supported sequence of vectors in E
has a lower q estimate, 1 < q <∞, then Pω(nE) = P(nE) for all n.

Proposition 15 applies, for instance, to c0 × T ′ and T ′J .
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