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Abstract

This paper considers the practical problem of distributing a fixed budget for poverty

alleviation to a population whose poverty status is not directly observable. The so-

lution we propose improves on the techniques that are commonly used in practice by

taking both the concavity of the social welfare function and the entire conditional

distribution of poverty status into account, and by endogenously determining the op-

timal transfer levels. We provide an algorithm to calculate the optimal transfers for

any population of benefit applicants. Finally, we explain how our method is a general-

ization of statistical classification techniques and thus provide an intuitive discussion

of the defects of currently operational methods.
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1 Introduction

The main determinants of the impact of antipoverty schemes are the magnitude of the aid

flow and the accuracy with which it reaches those with the greatest need. Although the

former dominates news headlines and popular debate, the call for an efficient and system-

atic approach to tackling the latter has become more pressing over time (see among others

World Bank (1990) and World Bank (2001)). The first best solution to a redistribution

problem requires the knowledge of households’ material wealth1. However, the latter is

not observable in most practical situations faced by governments in developing countries.

Hence, the implementation of a “second best” solution is the key issue in the design of

antipoverty programs in general, and of direct income support schemes, in which poor

households receive direct monetary transfers, in particular.

In this paper we study the problem of how to optimally distribute a fixed budget for

poverty alleviation to a population whose poverty status is not directly observable. Indirect

information, e.g. in the form of a household survey, is available about the relationship

between a number of easily observable and verifiable personal characteristics on the one

hand and income or consumption on the other. How exactly such information should

be translated into an assignment rule, however, is not obvious. In practice a range of

statistical classification techniques are employed to associate prespecified transfer levels

with particular target groups, although the appropriateness of these techniques in the

context of income support targeting has not been established.

Several income support schemes have been running over the past decades in a large

number of developing countries. We will refer to the type of targeting rules used in

programs such as Subsidio Unico Familiar (Chile) or Progresa (Mexico) and some others

by “Proxy Means Tests” (PMT) (as in some of the literature - see e.g. Grosh (1994)2).

Proxy Means Tests typically consist of training a classifier on the available sample (or

using other information) and then using it to allocate prespecified amounts of money

to households in the population. A commonly used procedure is as follows. First, the

administrative body sets a poverty treshold - a household will be regarded as poor if

its income is below the treshold - and a transfer level. Second, the conditional mean of

household income given a set of observable characteristics is estimated using a houshold

survey in which income data are available. Finally, to decide which households are poor,

the estimated regression function is used to calculate a prediction (“proxy”) of the income

(“means”) of each candidate recipient, and this prediction decides whether the applicant

is eligible for a transfer. Before the actual transfer, the administrative body may verify

that the covariates were truthfully reported.

1 In practice, the best indicators of “material wealth” (lifetime income) are income or consumption.
Although there is a debate about the relative merits of various indicators, we do not address this problem
in particular. Instead we focus on targeting constraints in program design that are present irrespective of
whether an ideal indicator is available. Therefore “income” or “consumption” will be used throughout to
mean an indicator of material wealth (see Chaudhuri and Ravallion (1994) for related comments).

2Besley and Kanbur (1993) provide a discussion of this method and call it “targeting using indicators”.
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Our work is motivated by the observation that several features of the targeting problem

are not present in “standard” classification problems and that therefore methods designed

to deal with the latter are not necessarily appropriate solutions to the former. We make

these ideas more precise by formulating the targeting problem as a social welfare maxi-

mization problem subject to a budget constraint and a shape constraint on the transfer

function. The latter is specified to be piecewise constant with a prespecified number of

levels. The solution to this problem is the optimal transfer function.

The main contributions of this work can be summarized as follows. Firstly, our solution

embeds currently operational targeting procedures (i.e. PMTs) as a special case. This

allows us to describe precisely which unnecessary assumptions the latter implicitly impose

on the problem and to explain how they can be improved upon.

Secondly, our targeting rule can be designed to exactly fit the administrative format of

PMTs and is therefore directly applicable in practice. Moreover, the problem formulation

is flexible enough to incorporate the usual program design features (equivalence scales,

extra credits for special needs such as young children). Since practical implementation of

our method entails no additional difficulties over those currently encountered, and since

it always performs at least as well as PMTs in the metric defined by the social planner’s

objective, it has the potential to become the preferred tool in practical work.

Finally, and in our view most importantly, our solution provides the option of optimal

endogenous determination of transfer levels. This feature is not present in current targeting

practice. Nevertheless, it is intuitively clear that the “best” transfer levels depend on the

accuracy with which target groups can be reached. It is therfore natural to choose levels

and target groups simultaneously. The construction of a computer algorithm to this end

is one of the central practical contributions of our work.

A large number of studies address various aspects of indicator targeting. One of the

earlier occurrences of the idea is in Akerlof (1978), who discusses the option of using

household characteristics to identify the poor in the context of optimal income taxation.

Further developments can be found in Besley and Kanbur (1988), Besley and Kanbur

(1993), Kanbur (1987b), Kanbur and Keen (1989), Kanbur, Keen, and Tuomala (1995)

and Nichols and Zeckhauser (1982). Only a surprisingly small number of papers have con-

sidered practical implementation of the targeting problem, two notable exceptions being

Ravallion and Chao (1989) and Glewwe (1992).

The rest of the paper is organized as follows. First we state and solve the targeting

problem mathematically. Then, in Section 3, we explain precisely why PMT based pro-

grams can be improved upon and provide an intuitive discussion of these insights using an

example with an artificial data. Section 4 presents two small applications using Peruvian

and Argentinian household surveys and Section 5 concludes. The Appendix contains a

description of the algorithm implementing our method, details of the conditional density

estimation method and the datasets used.
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2 The optimal transfer function

We now present a mathematical description of the problem faced by a social planner having

to distribute a given budget to households with unobservable poverty status.

2.1 Set-up and problem statement

Assume that the index of material wealthW measures household material well-being. It is

not obvious how to actually construct such a measure, but in most applications the stan-

dard practice seems to be to use current consumption. We use the convention of referring

to W as “income”. Each household is characterized by its income W and by a number of

easily observable and verifiable characteristics (“covariates”) X. Because these character-

istics will form the basis for the transfer mechanism, they should be difficult to modify by

households. Some variables may be good predictors of poverty but if they are easily mod-

ifiable the target mechanism may induce undesirable behavior on the population. Hence,

there is a trade-off between targeting accuracy and incentives3.

The social planner’s problem is to divide the budget B over a population with char-

acteristics distributed according to F (X). Instead of observing W directly, the social

planner only knows the conditional distribution F (W |X) of household wealth given the
observables4. In practice, lack of knowledge of F (W |X) is remedied by the availability
of a household survey containing both W and X. This household survey can only be

exploited to obtain an estimate of F (W |X); it is anonymous and hence useless for direct
redistribution purposes.

The social planner’s preferences are represented by a utilitarian social welfare function

(SWF) where the social welfare contribution of a household is denoted by v(W,X) with

v(., .) continuous and weakly concave in W . The presence of the covariates X in the

social welfare contribution function may seem odd. However, in recent programmes such

as Progresa (Mexico) special attention has been given to families with special needs. A

typical example is children at primary school age. In a sense, this concern can be seen

as a short-cut to a dynamic poverty reduction strategy, because education is typically a

strong determinant of future income. The idea behind including X in v is to take this

intertemporal feature into account. Indeed, the example cited above can be rephrased

by regarding the social welfare contribution of households with equal income to be lower

the more children at primary school age there are in the household. The exact functional

specification is of course ad-hoc, as is the current practice of implementing these features.

We restrict the transfer function to take a fixed number of values t1, ..., tK for reasons of

administrative feasibility and efficiency. This is reminiscent of an argument commonly used

in the taxation literature: Hettich and Winer (1988, p. 706), for example, rationalize the

typically small number of tax bands observed in practice by arguing that administration

3One of the few studies addressing this issue is Kanbur, Keen, and Tuomala (1995).
4 In what follows, density functions are denoted by f(.) and distribution functions by F (.) where the

arguments indicate which distribution is meant.
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of personalized tax rates would be too costly. With this assumption, the social planner’s

problem of choosing the optimal transfer function t(x) amounts to selecting K transfer

levels and their respective non-overlapping recipient groups.

Problem 1 Let Ωk denote the recipient group of transfer level tk; k = 1, ...,K. The social
planner chooses the transfer rule t(x) by solving

max
(tk,Ωk) k=1,...,K

KX
k=1

Z
Ωk

½Z
W
v(W + tk,X)− v(W,X) dF (W |X)

¾
dF (X) (1)

s.t.
KX
k=1

Z
Ωk

tk dF (X) ≤ B (2)

2.2 Optimal transfer function

Although no closed-form solution to Problem 1 exists, the following result provides the

motivation for a simple numerical algorithm to determine recipient groups associated with

given transfer levels. Once this is possible, the choice of optimal transfer levels becomes

an unconstrained numerical maximization problem that is relatively easy to implement.

Theorem 1 (Optimal allocation rule for fixed transfer levels) Let T = {0, t1, t2, ..., tK} be
the set of fixed possible transfer levels. Define the eligibility index I(tk, x) as

I(tk, x) =

Z ∞

0
[v(W + tk, x)− v(W,x)] dF (W |X = x)− λ.tk (3)

for some appropriately chosen scalar λ. Then the optimal allocation rule is given by

t(x) = argmax
tk∈T

I(tk, x) (4)

Proof. Assume that all variables are continuously distributed. Denoting the popu-
lation by Ω, we look for an expression defining subspaces Ωk ⊂ Ω corresponding to fixed
transfer levels tk, k = 1, ...,K. These subspaces define who will receive which benefit: a

household with characteristics x receives transfer tk if x ∈ Ωk. The problem is

maxΩk
PK

k=1

R
Ωk

R
W v(W + tk,X)− v(W,X) dF (W,X)

s.t.
PK

k=1

R
Ωk

tk.dF (X) ≤ B
(5)

By Lemma 1 in the Appendix, there exists a number λ such that the above problem is

equivalent to maximizing

KX
k=1

Z
Ωk

Z
W
v(W + tk,X)− v(W,X) dF (W,X) + λ.(B −

KX
k=1

Z
Ωk

tk.dF (X)) (6)

5



Rewriting:

KX
k=1

Z
Ωk

½Z
W
[v(W + tk,X)− v(W,X) − λtk] dF (W |X)

¾
dF (X) + λ.B

This will be maximized for given λ and tk, k = 1, ...,K by choosing to assign x to Ωk if, at

this x, the expression between {} is maximal (over all k). In other words, if the expected
increase in social welfare obtained by giving the transfer tk to a person with characteristics

x exceeds some treshold level λ.tk by more than it exceeds any other treshold level λ.tj :

Ωk =

(
x ∈ Ω : RW [v(W + tk,X)− v(W,X) − λtk] dF (W |X) ≥R

W [v(W + tj ,X)− v(W,X) − λtj ] dF (W |X) ∀j 6= k

)

This defines the form of the decision function.

Theorem 1 does not specify the value of λ in closed form. However, since targeting

rule (4) will produce different recipient groups and hence different total expenditure for

each value of λ, one can choose λ so as to equate expenditure to the budget. Because λ is

a scalar, this is a one-dimensional, and therefore computationally simple problem.

We now add a few ingredients that were omitted from Problem (1) for expositional

clarity. In practice one usually takes the household rather than the individual as the unit

to be targeted. Household utility will be measured based on per capita equivalent income

or expenditure. This requires the following modifications to the above set-up. W denotes

equivalent per capita household income or expenditure (total income W tot adjusted by

some fixed equivalence scale ρ(X), i.e. W = W tot/ρ(X)). v(W,X) denotes total social

welfare generated by a household with per capita income W and can (for instance) be

constructed as its members’ individual utility (evaluated at per capita income) times the

number of members.

When the program chooses to administer only a single transfer level, this transfer is

typically expressed in per capita terms. Often some adaptation is made to account for

varying family sizes, for instance using some fixed multiplicative scale φ(X) depending on

the number of members of the household or its composition5. The eligibility index in (3)

now becomes

I(tk, x) =

Z ∞

0

·
v(
W.ρ(x) + tk.φ(x)

ρ(x)
, x)− v(W,x)

¸
dF (W |X = x)− λ.tk.φ(x) (7)

With this modification and a corresponding change in the budget constraint all results go

through as before. Using this notation, tk remains the “base” transfer level for group k.

5When using endogenously determined transfer levels and a sufficiently large number of levels, this
modification is probably unnecessary as the method will automatically choose the optimal levels. When
only one or two levels are used, the transfer scaler φ(.) can be useful.
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2.3 Interpretation

For the simplest case of a single transfer level (K = 1), the optimal allocation rule (4)

reduces to

t(x) = t 1

½Z ∞

0
[v(W + t, x)− v(W,x)] dF (W |X = x) ≥ λ.t

¾
(8)

where the indicator function 1{.} equals 1 if the statement between {} is true and 0
otherwise. This says that the single transfer t should be allocated first to households with

characteristics X which, according to F (W |X), will benefit most, then to households with
the second highest impact on social welfare, and so on until one reaches households for

which the expected increase in social welfare does not exceed λt anymore.

For the general case where K > 1, expression (4) states that the transfer given to a

household with characteristics X should be tk if the “expected excess increase in social
welfare” is highest when this transfer level is used for the household concerned. Fig-

ure 1 illustrates the idea for a situation where there are three equally large groups A,

B and C, with covariates XA,XB and XC respectively and two transfer levels. De-

fine the average increase in social welfare by giving a transfer t to group A as gA(t) ≡R∞
0 [v(W + t,XA)− v(W,XA)] dF (W |X = XA) and similarly for the other groups. Sup-

pose that the graph shows the optimal value for λ and the two transfer levels. Then one

sees that group A will not receive any transfer and groups B and C will both receive t1.

Although budget-feasible, it would not be optimal to take away the transfer from group

B and use it to finance a transfer t2 (= 2.t1) to group C. Further note that because of the

concavity of g(.) the targeted groups will be unique for given transfer levels.

Two features of the solution deserve special attention. Firstly, since the expected

increase in social welfare for all households with a particular configuration of personal

characteristics is what determines the recipient group of a particular transfer level, the

targeting rule takes both the shape of the social welfare function (and in particular the

possibly high concern for the very poor6) and the entire conditional distribution of income

into account. This allows the social planner to fine-tune targeting to his sensitivity to

“missing the very poor” and “wasting money on the rich” and leads us to dub our method

“weighted classification (WT)”. Secondly, the fact that in Problem 1 transfer levels and

the corresponding target groups are determined simultaneously stresses the importance of

the interrelationship between ability of precise targeting on the one hand and choice of

transfer levels on the other.

Theorem 1 does not specify the optimal transfer levels: it only defines the optimal

recipient groups for a given configuration of transfer levels. Hence, it applies in a program

in which transfer levels are exogenously specified as well. In order to calculate optimal

transfer levels for a given population of applicants, one can numerically maximize social

6 Indeed, it is not necessarily the number of succesfully targeted poor (as defined by some poverty line)
households that is being maximized: the impact (as measured by v(.)) of the degree of poverty is what
matters.
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Figure 1: An illustration of the optimal transfer rule

welfare function (1) - replacing the integral over X by summing over the population - with

respect to tk, using targeting rule (4) to determine the recipients. Details can be found in

the Appendix.

A required input in Theorem 1 is the conditional distribution F (W |X). It can be
estimated from a household survey (Section 6.4 in the Appendix describes the method used

in this paper, but this choice is by no means compelling). If this estimate is inaccurate,

the resulting transfer rule may well be far from optimal relative to a situation where the

true distribution is known. Determination of the best method for estimation of F (W |X)
for a given dataset is a difficult problem which we do not attempt to solve in this paper7.

2.4 Related literature

In this section, we discuss the most important studies that aim to provide an imple-

mentable method for targeting. Although these papers are notable contributions in their

own respect, here we only focus on the differences between the solution they propose to

income support targeting and ours.

Ravallion and Chao (1989) (see also Ravallion (1989), Datt and Ravallion (1993),

Ravallion (1993) and Ravallion and Sen (1994) for applications and extensions) present

an algorithm to implement the targeting problem formulated by Kanbur (1987a). Their

set-up is similar in spirit to that in Problem 1, with the following important differences.

7Given the typical sample size of household surveys available in developing countries, fully nonpara-
metric conditional density estimation methods are unlikely to be a viable possibility. Seminonparametric
approaches with a flexible parametric specification of the regression for the mean, variance and skewness
may be more promising.
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Firstly, the social welfare function is fixed to be the Foster, Greer, and Thorbecke (1984)

poverty index FGT2. This assumption is necessary because the algorithm is based on the

first-order conditions of the maximization problem and the linearity of the derivative of

FGT2 turns out to be an essential feature. The drawback is that the type of flexibility

in the objective function that our method can incorporate cannot be accommodated.

Secondly, the optimal transfer rule is not constrained to any class of functions at all: the

algorithm calculates a separate transfer level for each value of the covariates X. This

fully non-parametric approach allows for added flexibility in principle, but puts practical

restrictions on the number and type (continuous / categorical) of indicators that can be

used. If for instance three indicators are used that can take 10 different values each,

one needs to calculate 1000 transfer levels. Apart from the computational problems this

entails, it is not clear that such flexibility is an advantage from an administrative point

of view. As Ravallion and Chao’s (1989) choice of application suggests, their method

is primarily designed for situations where the population consists of a small number of

groups. As a final point to note, estimation of the conditional income distributions is

treated separately as in our work8.

Glewwe’s (1992) approach, as opposed to Ravallion and Chao’s work, does allow for

flexibility in the objective function. The starting point of his paper is similar to our Prob-

lem 1 without the piecewise constancy assumption on t(.). Details of implementation,

however, differ substantially. Firstly, where our Theorem 1 holds the key to computa-

tional feasibility, Glewwe immediately proposes a “brute force” numerical approach to the

original constrained maximization problem. It is far from clear whether this is a workable

approach in general. In an application, Glewwe (1992) focusses on a specific choice of

functional form, in which the optimal transfer rule is formulated to be a polynomial in

the covariates, truncated at zero. It is questionable whether a continuous transfer func-

tion is a desirable feature from the point of view of transfer administration. In addition

to the practical and logistic problems this entails, one might worry about the “political”

difficulty of distributing different amounts to people that are quite similar (e.g. living in

the same community) but not exactly identical. Secondly, instead of using the conditional

distribution of income given the covariates as an input, Glewwe (1992) solves for the op-

timal transfer function by numerically maximizing the social planner’s objective function

over the sample. De facto, when casting the problem in terms of our Problem 1, such a

procedure uses the empirical conditional distribution and skips the modelling stage. This

confounds the transfer choice problem with the statistical task of smoothing - see Section

4 for related remarks. Thus, only in an ideal world where administration costs are irrele-

vant, computing power unbounded, and household surveys very large, the solution to (a

slightly generalized version of) Glewwe’s problem weakly dominates our proposal.

8The method used is a type of histogram estimator (linear interpolation of the empirical conditional
distribution functions). This fully nonparametric procedure performs only a minimal amount of smoothing
and is suitable for large datasets and a small number of groups. As with our targeting rule, other estimators
for conditional densities can in principle be used. See Section 4 for related comments.
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3 Comparison with Proxy Means Tests

The exposition in Section 2 has shown that (4) is the best possible piecewise constant

targeting rule. In current income support targeting practice, a group of methods referred

to as Proxy Means Tests (PMTs) are the “industry standard”. Any proposal for a new

methodology should therefore provide evidence of its comparative virtues over PMTs.

Subsection 3.1 develops a formal argument to this end. We first show how PMTs fit in

our framework and hence how they can be interpreted as a special case of the optimal rule.

In particular, we explain how PMTs mistakenly regard targeting implicitly as a statistical

classification problem. By nesting PMTs within the class of optimal transfer rules, we can

analyze in detail which implicit restrictions PMTs impose.

Subsection 3.2 then presents a numerical example. The aim is to provide an intuitive

discussion of the features of the optimal solution compared to those of PMTs. We use

artificial data in order to focus on the issues of interest in a controlled set-up.

3.1 PMTs as a special case of optimal targeting

We begin by describing the mechanics of a PMT based program in detail. In addition to the

budget B such a program would specify a poverty line W pov and declare everybody with

income below W pov eligible for the prespecified transfer t. Since income is not observable,

the transfer is allocated to an individual with characteristics X if the income proxy cW (X)

(e.g. a regression function estimated from household survey data in whichW is observable)

falls below the poverty line. This classifies the population into poor (W < W pov) and rich

(W > W pov) households: the income proxycW (X) andW pov form the classification device.

An important difference between the general targeting problem formulated in Problem 1

and PMTs is that in the latter the single transfer level t is fixed by a government agency

to some amount t.

The classification method described above is only one example: other well-known sta-

tistical classification techniques are also commonly used in PMTs: Progresa, for instance,

uses discriminant analysis. In that case the household survey (with income coded into a

binary variable - poor and rich - according to W pov) is used to estimate a discriminant

function which is then used as the classifier in the population of benefit applicants.

The reader will have noticed from the above exposition that classification methods,

and hence PMTs, only look at whether the individual is poor or rich and not at the extent

of poverty. This suggests that the social welfare function “implied” in a PMT equally

weighs the increase in welfare achieved by transferring one dollar to any poor individual

(anyone below W pov) and considers money given to any rich individual as wasted. This

can be formalized by (a multiple of) the poverty index FGT1 from Foster, Greer, and

Thorbecke (1984). In our notation this becomes

v(W ) =W.1{W < W pov}+W pov.1{W ≥W pov} (9)

10



To make the analogy exact, we make the simplifying assumption that f(W ) = 0 for W ∈
[W pov − t,W pov] (i.e. that there is nobody with income in the interval [W pov − t,W pov]).

Applying formula (8) using (9), the optimal decision is to allocate the transfer according

to

1{
Z Wpov

0

£
W + t−W

¤
dF (W |X) ≥ λ.t}

or

1{
Z Wpov

0
f(W |X) dW ≥ λ}

Applying Bayes’ rule one obtains

1{ 1

f(X)

Z Wpov

0
f(X|W ).f(W ) dW ≥ λ}

or

1{
Z Wpov

0
f(X|W ).f(W ) dW ≥ λ

Ã RWpov

0 f(X|W ).f(W ) dW

+
R∞
Wpov f(X|W ).f(W ) dW

!
}

Using f(X|W < W pov) = 1
F (Wpov)

RWpov

0 f(X|W ).f(W ) dW (analogously for the other

term) and rearranging results in

1{f(X|W < W pov)

f(X|W > W pov)
≥ c} (10)

where c = λ
1−λ

1−F (Wpov)
F (Wpov) is a constant. This is the optimal classifier or Bayes classifier (see

the original paper by Welch (1939) or a textbook like Hand (1989)). f(X|W < W pov) is

the density of the characteristics of the group of poor people, and f(X|W > W pov) that

of the rich.

This derivation shows that the optimal statistical classification method coincides with

targeting rule (8) if the transfer level is exogenously given and v(.) is specified as in (9).

PMTs regard targeting as a classification exercise, and in that sense could be close to the

optimal procedure in this restrictive set-up. Nevertheless, optimality is only achieved by

the Bayes classifier (10) and not necessarily by any other classification method.

The restrictions that were imposed on the general formulation in Problem 1 in order to

obtain a solution that resembles a PMT based program clearly illustrate how the latter may

be suboptimal. Firstly, they do not determine the choice of transfer level simultaneously

with the target group. Secondly, PMT based programs do not always use the entire

distribution of income given the covariates (which is needed to construct the optimal

classifier). Finally, in cases where the preferences of the social planner are not as in

expression (9), they fail to take the concavity of the social welfare function into account.

While the latter two problems can in principle be dealt with within the framework of

PMTs, the endogenous determination of the transfer level cannot. This is likely to be a

significant restriction. The optimal solution we propose does take all these features into

account without jeopardizing computational tractability.
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3.2 Determinants of the superiority of WT: some Monte Carlo investi-
gations

This section summarizes the conclusions of a number of experiments on the performance of

the optimal rule using artificial data. Our aim is to provide an intuitive feel for the reasons

behind the superiority of WT over PMTs, and to point out in which type of situations

one may expect this superiority to be large.

Our randomly generated datasets contain 3 covariates; the distributions from which

they are drawn are calibrated to generate “reasonable looking” data. Experiments are

performed as follows. First, a “household survey” of size 3000 is generated, containing

income. This sample is then used to obtain conditional density estimates bf(W |X). Finally,
the resulting estimates are plugged into the allocation rule from Theorem 1 to perform

the targeting exercise in a “population” of 30000 drawn from the same DGP. In all direct

comparisons with a PMT we keep the single transfer level fixed for WT. The PMT we use

is dubbed “OLS” and implemented as follows: first use the sample to estimate a regression

function bE(R|X); then assign the transfer to the households in the population with the
lowest predicted income until the budget is depleted. In the interest of space, we present

a summary of the results, organized along 3 themes9.

Shape of the social welfare function One may expect targeting outcomes to vary

with the degree of concern for the very poor. To examine these effects, we conduct targeting

exercises using as social welfare functions the negative of the poverty indices FGT1 and

FGT2 from Foster, Greer, and Thorbecke (1984). These are defined as

FGT (n) =

Z Wpov

0

¯̄̄̄
W −W pov

W pov

¯̄̄̄n
dF (W )

so in terms of our notation, vFGT (n)(W ) = −1{W < W pov} ¯̄W−Wpov

Wpov

¯̄n
; as n increases,

the SWF becomes more concave and concern for the very poor becomes stronger. The

following pattern emerges across experiments. Firstly, for FGT1, WT only marginally

outperforms PMT in social welfare terms. However, the additional weight on the very

poor assigned by FGT2 dramatically widens the performance gap, leading to WT social

welfare increases over twice as large as those obtained by PMT. The latter effect becomes

even stronger as the poverty line is lowered and the budget is decreased: targeting then

becomes more difficult.

Figure 2 displays the realized income distributions of benefit recipients for OLS and

WT based on FGT1 and FGT2, generated by a representative experiment. Note that

OLS does not involve any SWF and therefore the distribution is invariant to the choice of

SWF. The distribution for WT with FGT1 in Panel B is similar to that obtained through

OLS (Panel A). This is the case because under FGT1 the problem solved by WT is a

9Ox -code to repeat the experiments and variations thereof is downloadable from the authors’ website,
as is a more detailed discussion of the experiments on which this section is based. The Ox compiler,
documented in Doornik (1999), is available free of charge.
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Figure 2: Realized income distributions of benefit recipients in an artificial dataset (poverty
line = 592).

“standard” binary classification problem and, as shown in Section 3.1, WT then collapses

to the Bayes classifier. OLS is also a binary classification method; the only difference

with WT in this case is that the latter is the optimal classifier. The extent to which

OLS is a “non-optimal” classification method is in other words the only factor to cause a

discrepancy between the target populations.

Introducing a second factor, extra concern for the very poor, alters the outcome dra-

matically: for FGT2, WT generates an income distribution for benefit receivers that is far

more disperse than that obtained by OLS. Since under this SWF the concern for the very

poor is much higher, WT chooses to target groups of households that have, conditional

on their observable characteristics, a thicker left tail in their income distribution. In our

artificial population, it appears to be the case that several extremely poor households

have the same observable features than some relatively well-off ones. Even though some of

these configurations of characteristics (i.e. values of the vector X) may well be associated

with a higher conditional mean income (and hence will not be targeted by OLS), they also

have a higher dispersion, and hence fatter tails. Since the left tail receives a much higher

weight under FGT2, these households are preferred by WT.

The role of conditional heteroskedasticity One conclusion from the above discus-

sion is that the presence of an inverse relationship between the conditional mean and the

thickness of the conditional left tail across groups in the population will increase the su-
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periority of WT. This, however, is a feature of the data and not of the targeting method.

The artificial data used above were designed to contain some amount of conditional het-

eroskedasticity. However, one can easily imagine a population where, for instance, income

is lognormally distributed conditional on the observables with fixed dispersion and a linear

regression for the mean. In such a situation, WT will produce the same outcome as OLS.

WT cannot improve on OLS in this case because all the relevant information about the

population is summarized in the regression function.

The performance differential between standard PMTs and WT will depend on the

nature of the population as well as on the budget and the shape of the SWF. There is no

reason why this differential should always be of the same magnitude or nature as in this

example. However, by construction WT always performs at least as well - up to estimation

error or misspecification in the conditional densities - as PMTs in the metric defined by

the social planner’s objective. Since WT does not require any additional administrative

effort and may result in considerable gains, we regard this “weak” superiority to be a good

reason to prefer WT to PMT in practical applications.

Endogenous multiple transfer levels Compared to the above results based on a

single fixed transfer level, the use of endogenously determined multiple levels leads, un-

surprisingly, to further increases in the performance of WT. Interestingly however, in the

experiments a clear pattern of diminishing returns to the inclusion of transfer levels was

detected. Where the use of 2 transfer levels led to a 5% improvement over the reference

situation with a single level, use of more than three transfer levels only generated trivial

benefits. The limiting case with a nearly continuous transfer function (398 levels) only

resulted in a 1.5% increase over the result based on 3 levels. Although this conclusion

is certainly dependent on the data and the program parameters, it does suggest that the

gains in terms of administrative efficiency and political feasibility resulting from the use

of a small number of transfer levels are likely to outweigh the social welfare costs.

4 An application

Until now we have ignored the requirement that the conditional distribution F (W |X) be
known. In the experiments presented in the previous section this distribution could be es-

timated fairly easily and accurately from a small “household survey” so as to approximate

the distribution in the larger “population”. In practice, the situation is often not as ideal.

Typically a large number of indicators are available. The sample then consists of a large

number of groups for some of which only very few observations are available. The role of

the smoothing / interpolation device used to recover F (W |X) then becomes much more
important. In fact, analogously to the standard classification literature10, each choice of

10See e.g. Fix and Hodges (1951) for an old but excellent discussion. The optimal classifier was shown
in 1939 to be the Bayes classifier; subsequent research focussed on implementation, i.e. estimation of the
distribution of the covariates for the different groups.
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estimator for F (W |X) results in a different version of the WT rule.
The central issue in actual applications of WT in situations with small household

surveys and many indicators is therefore the construction of a good approximation of the

conditional income distribution in the population. A full examination of this problem is

outside the scope of this paper, but we now briefly present two applications using actual

household surveys. Our aim is to illustrate the potential impact of the choice of estimator

on the results as well as to give an example of the simplicity and flexibility of our targeting

method.

For simplicity, we perform in-sample targeting throughout. This is not a particularly

relevant exercise from the point of view of method design11, but will suffice as an illus-

tration of our main points. We use two different datasets. The first is the Argentine

Permanent Household Survey (2001, 12413 households), the second the Peruvian National

Survey of Life Standards (2000, 3949 households). Both are described in the Appendix.

The following conventions are used. Household wealth W is measured by per capita

income (Argentina) or expenditure (Peru) and is defined by total income / expenditure

divided by the square root of number of members; in the notation of expression (7) this

means ρ(X) =
√
nrMembers. Because households vary in family composition, we need

to specify how to count the social welfare contribution. We do this by simply multiplying

the social welfare contribution evaluated at household per capita income by the number

of members. Since income is scaled by ρ(X), this procedure implies that a given dollar

amount of transfer is “money better spent” when given to a large houshold than to a small

one, ceteris paribus. This is natural as it reflects the economies of scale such as sharing of

consumption goods prevailing in larger households.

Because large households would be disadvantaged if only a single level were used, we

scale transfers by the same function as used for the equivalence scale, i.e. φ(x) = ρ(X) =√
nrMembers. In each case, the base transfers are fixed at roughly 20% of the poverty line

and the budgets are set such that roughly 15% of the population will receive a transfer.

For both datasets, we perform the following computations. The benchmark case is

targeting by the OLS PMT used before: households are ranked based on predicted log per

capita income12 and a fixed transfer level (scaled for family composition) is distributed to

households with the lowest predicted income until the budget is depleted. We compare

this to two versions of WT. The first uses the parametric model for the conditional den-

sities outlined in the Appendix (denote this by WT(par)); the second uses the empirical

conditional distribution (WT(emp)). If the sample is considered to be the population, the

latter case can be seen as a literal application of Theorem 1. On the other hand, it is

useless for practical applications, in which the central issue is out-of-sample classification,

as it performs no smoothing at all and assigns zero probability to all points not in the

11When choosing between alternative estimators of F (W |X) using only a single small household survey,
methods commonly used in the classification literature (e.g. cross-validation) are more reliable.
12Using a logarithmic transformation for estimation was found to perform considerably better than

working on the original scale.

15



FGT 2 Log utility
fixed optimal fixed optimal

parametric 5% 14% 7% 11%
empirical 135% > 200% 26% 39%

Table 1: Equivalent gain over PMT for various versions of WT rules: Peruvian data

sample. The results for WT(emp) are best interpreted as the upper bound of in-sample

targeting performance over all possible conditional density estimation techniques.

The social welfare functions are FGT 2 with a poverty line at the 25th percentile of

the unconditional per capita household income distribution and a utilitarian social welfare

function with logarithmic utility. Transfer levels for WT are chosen in two ways for each

case. Either it is done under the same conditions as for the PMT (single fixed level with

prespecified scaling for family size) - see column “FIXED” in Tables 1 and 2, or using the

additional features of WT (5 endogenous levels without scaling) - see column “OPTIMAL”.

The latter case is perhaps most natural: when the transfer level is made dependent on

household size, de facto multiple levels apply anyway and hence it makes sense to let the

targeting method tune these levels optimally to the accuracy with which target groups

can be reached.

The results are presented in terms of equivalent gain of using WT over PMT, i.e. the

percentage budget increase needed by PMT in order to reach the same level of performance

as WT with the initial budget. These comparisons are computed by letting PMT always

use the fixed base level of transfer with fixed scaling for family size.

Results for the Peruvian dataset are presented in Table 1. Use of WT result in nonneg-

ligible savings, especially when transfer levels are determined endogenously. Two striking

features deserve further comment. The first is the relatively small performance increase

over PMT when using our parametric smoother to construct F (W |X). For some com-
binations of program parameters t and B for the “FIXED” case, the superiority of WT

disappears (details not reported). The second is the discrepancy between the results ob-

tained by using our smoother and those obtained when using the empirical distributions.

Although this discrepancy may be due to the inability of the parametric smoother is to

capture variations in conditional higher moments, it is most likely caused by extreme over-

fitting of WT(emp). Especially for the set-up using FGT(2), only very few observations

are available (since only the left tail of the distribution is relevant) for some values of the

covariate-vector. This can occasionally lead to very precise location of small groups of

very poor households when using the empirical distribution13. When, in addition, trans-

fer levels are determined endogenously, WT(emp) will assign very high transfers to these

households14. A standard PMT is not able to do this.

The results for the Argentinian dataset presented in Table 2 are similar. The only

13 In fact, this effect disappears when only a few indicators are used: more data are available for each
group and the smoothed and empirical versions of WT perform similarly.
14This illustrates a potential pitfall when using the empirical distribution from a small dataset to calculate

the optimal transfer rule, as for instance done in Glewwe (1992).
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FGT 2 Log utility
fixed optimal fixed optimal

parametric 5% 15% 7% 12%
empirical 62% 131% 29% 44%

Table 2: Equivalent gain over PMT for various versions of WT rules: Argentinian data

notable difference are the less extreme numbers for WT(emp) with FGT 2. This is not

surprising: the dataset is 3 times larger so that the danger of in-sample overfitting is

smaller.

WT(par) performs rather modestly when a single scaled fixed transfer level is used.

As for the Peruvian data, this means that either the parametric smoother is unable to

capture the kind of features in the data that gave rise to the more impressive results in the

experiments with artificial data, or these features are not present in the data. Nevertheless,

endogenous determination of transfer levels naturally increases the edge of WT over PMT.

In summary, these empirical applications illustrate that (i) WT can incorporate all

features of a targeting program (equivalence scales, fixed corrections for family composi-

tion, etc) in a single consistent framework, (ii) endogenous determination of transfer levels

can increase the performance differential and (iii) WT always performs at least as well

as PMT, even though the difference can be small. Perhaps the most important insight

gained from this application concerns the construction of an estimate for the conditional

densities. Targeting decisions and performance can be sensitive to the choice of smoother

(as exemplified by the extreme case WT(emp) discussed above). Moreover, improvements

may be available by constructing conditional density estimates using information from

various sources (see e.g. the welfare estimator of Elbers, Lanjouw, and Lanjouw (2003))

and making corrections for measurement error (as in Chesher and Schluter (2002)).

5 Conclusion

In this paper, we have outlined an optimal operational method for distributing a fixed

budget among a population whose poverty status is not directly observable. Our main

contribution is the development of a computationally feasible technique that allows joint

determination of transfer levels and their corresponding target groups whilst closely fit-

ting the administrative set-up prevailing in currently operational programs. The targeting

rule is obtained as the solution to a social welfare maximization (or poverty index mini-

mization) problem under the constraint that the transfer function be piecewise constant.

This ensures that implementation is feasible and transparent even when administrative

resources are limited. Importantly, the assumption of discrete-valued transfer functions

turned out to be not at all restrictive.

Since our method was shown to include currently used techniques based on Proxy

Means Tests as a special case, a comparison with these techniques was straightforward

and stressed their three defects. Firstly, Proxy Means Tests treat the income support
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targeting problem as a “standard” statistical classification problem without (in most cases)

using the optimal solution to that problem (the Bayes classifier). Secondly, since most

governments measure poverty by a concave poverty index, the relevant problem to be

solved is a weighted classification problem instead of the standard one15. Finally, PMT

based support programs determine transfer levels exogenously whereas they should depend

on the accuracy with which the target groups can be reached.

Several interesting questions remain unanswered, especially those of a more practical

nature. The selection of covariates for targeting and its relationship with incentives and

possible feedback effects on social welfare is the most important issue. It is possible to

calculate within our framework the cost of excluding a variable for targeting. Case-specific

studies are needed to evaluate whether this cost exceeds the social cost due to incentive

effects when including the variable. Another important issue pertains the choice of the

social welfare function. One option could be to elicit a policy maker’s preferences by

computing transfer functions for various SWFs. Finally, robust out-of-sample targeting

requires a sensible estimation method for the conditional densities of income. Extensive

experimentation with various methods and testing procedures is required.

6 Appendices

6.1 Proof of the Lagrange multiplier representation

The aim of this Appendix is to show formally that the problem of choosing receiver groups

associated with given transfer levels can be written using a “Lagrange multiplier” repre-

sentation, a fact used in the key step of the proof of Theorem 1:

Lemma 1 Under assumptions given below, there exists a number λ such that the solution
π∗ of

maxπ∈Π
PK

k=1

R
Ωk

R
W v(W + tk,X)− v(W,X) dF (W,X)

s.t.
PK

k=1

R
Ωk

tk.dF (X) ≤ B
(11)

where Π is the set of partitions π := {Ω0,Ω1, ...,ΩK} of the population Ω, can be obtained
by solving

max
π∈Π

KX
k=1

Z
Ωk

Z
W
v(W + tk,X)− v(W,X) dF (W,X) + λ.(B −

KX
k=1

Z
Ωk

tk.dF (X)) (12)

Define the following 2K measures (real-valued countably additive set functions) on the

measure space (Ω,Σ, µF ), where Ω represents the population, the sigma-algebra Σ is

loosely interpreted as the collection of potential target groups in the population, and

15This is by far the least substantial of our contributions, because one could easily perform a PMT
replacing R by v(R) in the household survey (and changing the “poverty line” accordingly). It is important,
however, to be aware of the relationship between targeting rule and choice of SWF or poverty index.
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µF is the dominating measure associated with the distribution function F :

µSW,k(Ωk) :=

Z
Ωk

½Z
W
v(W + tk,X)− v(W,X) dF (W |X)

¾
dF (X) k = 1, ...,K

µBC,k(Ωk) :=

Z
Ωk

tk dF (X) k = 1, ...,K

where “SW” stands for “social welfare” and “BC” stands for “budget constraint”. Using

this notation, Lemma 1 states that maximizing

KX
k=1

µSW,k(Ωk) s.t.
KX
k=1

µBC,k(Ωk) ≤ B

is equivalent to maximizing

KX
k=1

µSW,k(Ωk) + λ(B −
KX
k=1

µBC,k(Ωk))

for some fixed number λ.

Definition 1 A measure µ is said to be nonatomic on Σ if for every S ∈ Σ and every
positive number b < µ(S) there exists an Sb ⊂ S for which µ(Sb) = b. A set E ∈ Σ is an
atom of µ if for every measurable set F ⊂ E either µ(F ) = 0 or µ(F ) = µ(E).

Assumption 1 µSW,k and µBC,k are nonatomic, ∀k.

The key to the proof of Lemma 1 is Chernoff’s (1951) generalization of Lyapunov’s (1940)

convexity theorem for the range of a vector measure. This generalization proves convexity

for the range of a vector-valued function ψ, which maps a partition of Ω into a 2K-

dimensional vector of positive numbers and is defined as

ψ(π) :=
h
µSW,1(Ω1) · · · µSW,K(ΩK) µBC,1(Ω1) · · · µBC,K(ΩK)

i0
(13)

where π := {Ω0,Ω1, ...,ΩK} is a partition of Ω. The range R of ψ is the subset of R2K

obtained by collecting all values of ψ as its argument ranges across all possible partitions

π ∈ Π of the population into recipient groups in Σ, i.e. R := {ψ(π) ∈ R2K | π ∈ Π}.
Throughout, we use the generic notation of a vector z ∈ Rn with components denoted by

zk, that is, z = (z1, z2, ..., zn)0. The following Lemma carries the main burden of the proof
of Lemma 1 and follows directly from a theorem by Chernoff (1951).

Lemma 2 The range R of the function ψ is bounded, closed and convex.

Proof. Define ψ+(π) := [µextra(Ω0) ψ(π)0]0 where 0 ≤ µextra(Ω0) ≤ A < ∞ and

nonatomic but otherwise arbitrary. By the theorem of Chernoff (1951) (choosing, in his

notation, k = K + 1, n1 = 1 and ni = 2, i > 1), the range R+ of ψ+ is bounded, closed
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and convex (BCC). It is easily shown by contradiction that the projection of R+ on the

space {z ∈ R2K+1| z1 = 0}, given by {z ∈ R2K | [y z0]0 ∈ R+ for some y} = R, is also

BCC.

The scene is now set for the proof of Lemma 1:

Proof. The proof only considers the case where the budget is insufficient to assign the
maximum transfer level to everybody; otherwise the Lemma obviously holds with λ = 0.

The idea of the proof is graphically displayed in Figure 3 for the case of a single transfer

level (K = 1). The range R of ψ is BCC by Lemma 2. Because all components of ψ are

finite measures, µSW,k ≤ A for some finite A. The set

Υ := {z ∈ R2K |
2KX

k=K+1

zk ≤ B; zk ≥ 0; z1, ..., zK ≤ A}

is clearly BCC. The intersection of two BCC sets is BCC, hence the choice set R ∩ Υ of
the optimization problem in Lemma 1 is BCC. Therefore the objective function

PK
k=1 zk

reaches its maximum M on R ∩ Υ. Call this point z∗. This point corresponds to the
solution to problem (11). Because the objective function is increasing as recipient groups

are expanded, we may assume that the budget constraint binds at this maximum, i.e.P2K
k=K+1 z

∗
k = B.

Rµ B
C
(Ω

1)
(i.

e.
 z

2)

µSW(Ω1) (i.e. z1)

HB
B

HM

M

z*

H*

1/λ

NB

N

hypothesized z*

Figure 3: Graphical representation of the key concepts in the proof of Lemma 1 for the
case of K = 1.

Define the (2K − 1)-dimensional “budget constraint” hyperplane HB

HB := {z ∈ R2K |
2KX

k=K+1

zk = B}
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and the “iso-social welfare increase” hyperplane HM

HM := {z ∈ R2K |
KX
k=1

zk =M}

z∗ is a boundary point16 of R. Why? Suppose instead that z∗ ∈ int(R). Then there

exists a neighbourhood N of z∗ such that N ⊂ R. Since HB contains z∗, NB := N ∩HB

is a neighbourhood of z∗ relative to HB. NB only contains points satisfying the budget

constraint. Hence,
PK

k=1 zk cannot be maximized in the interior of NB. This is a contra-

diction, and hence z∗ must be a boundary point of R.
Consequently, by the Supporting Hyperplane Theorem, there exists a supporting hyper-

plane H∗ to R containing z∗. H∗ is defined by constants ak, bk and c:

H∗ := {z ∈ R2K |
KX
k=1

akzk +
KX
k=1

bkzK+k = c}

with the property that

∀z ∈ R :
KX
k=1

akzk +
KX
k=1

bkzK+k ≤ c. (*)

We now search for restrictions on the coefficients of H∗. By the definition of z∗ as the
maximizer of

PK
k=1 zk over R∩HB with

PK
k=1 z

∗
k =M , HM∩HB is a (2K−2)-dimensional

supporting hyperplane to R ∩HB relative to HB and contains z∗17. This is also true for
H∗ ∩HB. Hence

H∗ ∩HB = HM ∩HB (**)

(if H∗ is not unique, it can be chosen such that (**) holds) From (**) it follows that

H∗ ∩HB ∩HM = H∗ ∩HB, which implies two constraints on the coefficients defining H∗.
The first is that the matrix G

G :=

 a1 · · · aK b1 · · · bK

1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1


associated with the system of equations

Gz =

 c

M

B


16Throughout, a “boundary point” of a set A is to be interpreted relative to the lowest dimensional

hyperplane containing A.
17This follows from the shape of the objective function and is easily proven by contradiction; the state-

ment that z∗ is a boundary point of R (and not only of R ∩HB), proven before, is not as direct.
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has row rank 2. Hence a1 = ... = aK = a and b1 = ... = bK = b.

The second constraint is c = aM + bB.

By (*) we now have that

∀z ∈ R : a
KX
k=1

zk + b
KX
k=1

zK+k ≤ aM + bB

Dividing through by a and defining λ = − b
a gives ∀z ∈ R :

PK
k=1 zk+λ(B−PK

k=1 zK+k) ≤
M , or otherwise stated that

∀{Ω0,Ω1, ...,ΩK} ∈ Π :
KX
k=1

µSW (Ωk) + λ(B −
KX
k=1

µBC(Ωk)) ≤M

with equality at the solution to (11).

6.2 The assumption of nonatomicity

An important assumption behind the convexity result in Chernoff’s (1951) theorem is the

non-atomicity of the measures µSW,k and µBC,k. In practice, this assumption is always

violated, and this section examines how this affects the use of Theorem 1. We begin by

examining the most extreme possible example, in which there is a single binary covariate

x, i.e. two groups in the population. The small group of households defined by x = 0 are

rich; allocating the fixed transfer level to each member of this group results in the outcome

marked “r” in Figure 4. The large group of households defined by x = 1 are poor and

are associated with the point marked “p”. It turns out that the budget B is too small to

make p feasible; therefore the optimal solution is point r. When using Theorem 1 to select

recipient groups, it is intuitively clear (see (8)) that the solution will be point 0. Formally,

there exists no supporting hyperplane H∗ as in Figure 3 that passes through point r.
This extreme example illustrates the type of problems that may arise when applying

Theorem 1 in practical calculations. One possible solution to this problem is to convexify

the solution set by allowing randomization within the marginal recipient group18 as is for

instance done in the Mexican program Tu Casa. Even without this, in typical situations

encountered in practice, problems due to atoms are unlikely to lead to large discrepancies

between the computed optimum and the true optimum. Indeed, one usually encounters

situations in which a few continuous covariates are available, leading to a population with

many thousands of small atoms. The kind of “mistake” one can make in such situations

is schematically displayed in Figure 5. When using our algorithm based on Theorem 1,

one will select the outcome z∗, even though the exact maximum is reached at z0.
So far we have focussed on the case where transfer levels are fixed. When varying

transfer levels, the location of the atoms in the Figures in this section changes, further

18 In the example, this amounts to allowing some fraction of the group of poor to receive a transfer.
Graphically, the dotted line connecting 0 and p then becomes part of the choice set.
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Figure 4: Illustration of the failure of an algorithm base on Theorem 1 to select the correct
constrained maximum when the assumption of nonatomicity is not valid.

reducing potential problem due to atoms. For instance, in the example of Figure 4, the

ideal outcome can be achieved by lowering the transfer level enough so that allocating

transfers to the group of poor becomes budget feasible. It is clear that the value of t at

which this becomes possible corresponds to a strong discontinuity in the social planner’s

objective. Consequently, all numerical searches are performed using custom-designed grid-

search algorithms. The user can set the initial range of the grid over which the search

is performed as wide as desired, and in situations where one suspects large atoms to be

present, one may increase this range accordingly. Details of implementation are discussed

in the following section.

6.3 Computational details: brief overview

The main technical contribution of the paper is Theorem 1, which allows us to transform

the original constrained maximization problem into two nested unconstrained problems,

where the “inner” loop is a one-dimensional search. The objective functions for these

searches may be discontinuous, and consequently we have developed tailor-made routines.

6.3.1 Calculating λ for given transfer levels

For given transfer levels, changing the value of lambda will alter the recipient groups of

the respective transfer levels and hence the total amount spent. Since this amount has

to equal the budget, it is easy to define a function H(λ,B) which has a maximum at the

“correct” value of lambda. This function is then maximized numerically using a gridsearch

algorithm to avoid local maxima problems and problems due to discontinuities. As in the
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Figure 5: The effect of atoms on algorithm performance in realistic situations.

example depicted in Figure 5, it may happen that no value of λ exists for which the entire

budget is depleted exactly.

6.3.2 Calculating the transfer levels

Once we are able to calculate recipient groups for any configuration of transfer levels and

hence the corresponding increase in social welfare, finding the optimal levels becomes an

unconstrained maximization problem. However, since for each K-vector of transfer levels

determining the recipient groups involves calculating K integrals for each household in

the database, the computational burden could easily become prohibitive for a desktop

PC. Additionally, the objective function may contain discontinuities, rendering standard

gradient algorithms unreliable.

Our solution is to construct an algorithm that performs a multidimensional gridsearch

on a lattice. That is, the transfer levels are restricted to take values on a lattice (e.g.

integers 10 to 200). For each household i in the population and each t on the lattice,

the quantity
R∞
0 [v(W + t, xi)− v(W,xi)] dF (W |X = xi) is calculated and stored before

iteration starts. The resulting matrix is then used as an input to the gridsearch algorithm.

6.4 A flexible parametric method for estimating conditional densities

We now describe the method for constructing the conditional density estimates used in

the paper. We note that this is just an example of how this can be done in practice. In

principle, any density estimation method can be used as an input to our procedure.

We parametrize the conditional density f(W |X) as a (uniform) mixture of J+1 normal
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densities:

f(W |X) = 1

J + 1

JX
j=0

1p
2πs(j,X)

exp(−(W −m(j,X))2

2s(j,X)
)

where the mean m(j,X) of subdensity j is parametrized as

m(j,X) = b0(X) + b1(X).
j

J + 1

and the variance s(j,X) of subdensity j as

s(j,X) = exp

·
θ0(X) + θ1(X)

j

J + 1
+ θ2(X)(

j

J + 1
)2 + θ3(X)(

j

J + 1
)3
¸

This choice of m(j,X) and s(j,X) is of course not the only possible one: anything flexible

enough suffices. The parametrization of the functions b0(X), b1(X), θ0(X), θ1(X), θ2(X)

and θ3(X) is left as a modelling exercise. Not all functions need to be nonzero nor should

each function contain the same variables.

For example, if the data are jointly normally distributed, then only b0(X) = X 0β and
θ0(X) = σ2 (where β and σ2 are constants to be estimated) is the appropriate parametriza-

tion: f will then be the normal density. If the only deviation from this setup is conditional

heteroskedasticity, then an appropriate model choice is to also include θi(X) i = 1, 2, 3 as a

linear function of X with some unknown parameters. Typically, income distributions will

be very skewed, in which case also b1(X) should be included, possibly with dependence

on some or all covariates.

The parameters are estimated by maximum likelihood. The only aim is smoothing

and “filling in the gaps left by the dataset” and not “estimating fundamental or causal

parameters” that need to be used for further research.

6.5 Description of the household surveys

Peruvian data Source: Encuesta Nacional sobre Medición de Niveles de Vida, Mayo
2000, Instituto CUANTO. Size: 3949 households. Variables: total (yearly) expenditure,
age, gender and (binary) skill level of head of the household, number of member and

numbers of minors per household, dummies for regions, dummies for water, sewage and

electricity access, and quality indicators and size of the house.

Argentinian data Source: Encuesta Permanente de Hogares (EPH), Mayo y Octubre
2001, Instituto Nacional de Estadística y Censos. Size: 12413 households. Variables:
average total income in 2001, gender and (binary) skill level of head of the household,

number of members and number of minors per household, dummies for regions, dummies

for water, sewage and electricity access, and quality indicators and size of the house.
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