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non-linear, respectively. The small-x improved TMD factorization framework deals with

both situations in the same formalism. In the latter case, which corresponds to nearly

back-to-back jets, we find that saturation effects induce a significant suppression of the

forward di-jet azimuthal correlations in proton-lead versus proton-proton collisions.
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1 Introduction

Measurements of forward particle production in high-energy hadronic collisions provide

unique opportunities to study the QCD dynamics of the non-linear parton saturation

regime [1]. Such processes, in which, for kinematical reasons, high-momentum partons

from one of the colliding hadrons mainly scatter with small-momentum partons from the

other, are called dilute-dense collisions. Indeed, the density of the large-x partons in the

projectile hadron is small, while the density of the small-x gluons in the target hadron

is large, and the former, well understood in perturbative QCD, can be used to probe the

dynamics of the latter. This is true already in proton-proton collisions, although using a

target nucleus does enhance the dilute-dense asymmetry of such collisions.

RHIC measurements have provided some evidence for the presence of saturation effects

in the data, the most compelling of which is the successful description of forward di-hadron

production [2–4], using the most up-to-date theoretical tools available at the time in the

Color Glass Condensate (CGC) framework [5, 6]. In particular, this approach predicted

the suppression of azimuthal correlations in d+Au collisions compared to p+p collisions [7],

which was observed later experimentally [8, 9].

The CGC effective theory provides a tool to compute observables when non-linear

QCD dynamics must be taken into account. It effectively describes, in terms of strong
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classical fields, the dense parton content of a hadronic/nuclear wave function, at small

longitudinal momentum fraction x. The separation between the linear and non-linear

regimes is characterized by a momentum scale Qs(x), called the saturation scale, which

increases as x decreases, and roughly scales as A1/6. The CGC description of dilute-dense

collisions from first principles is valid provided Qs � ΛQCD, therefore it should work better

with higher energies, as they open up the phase space towards lower values of x. In order to

verify that this is the case, the CGC predictions must be extended from RHIC kinematics

to the Large Hadron Collider (LHC), where the relevant observables involve high-pt jets,

as opposed to individual hadrons with pt of the order of a few GeV at RHIC.

In this context, we shall consider forward di-jet production in proton-lead versus

proton-proton collisions. In that case, it was shown in [10] that the full complexity of

the CGC machinery is not needed. Indeed, for the di-hadron process at RHIC energies, no

particular ordering of the momentum scales involved is assumed in CGC calculations, while

at the LHC one can take advantage of the presence of final-state partons with transverse

momenta much larger than the saturation scale to obtain simplifications. On the flip side,

different complications — left for future studies — are expected to arise due to QCD dy-

namics relevant at large transverse momenta and not part of the CGC framework, such as

Sudakov logarithms [11–14] or coherence in the QCD evolution of the gluon density [15–17].

There are three distinct momentum scales in the forward di-jet process. The typical jet

transverse momentum Pt is always one of the hardest scales, and it is much bigger than the

saturation scale Qs, which is always one of the softest scales. The third momentum scale

is the total transverse momentum of jet pair kt, which also corresponds to the transverse

momentum of the small-x gluons involved in the hard scattering. Depending on where

kt sits with respect to Pt and Qs, the full CGC formulation simplifies either to the high

energy factorization (HEF) framework [18, 19] or to the (small-x limit of the) transverse

momentum dependent (TMD) factorization framework [20].

The HEF framework is recovered from the CGC when Qs � kt ∼ Pt [10]. In that case,

non-linear effects are absent, and the description of forward di-jets involves off-shell hard

matrix elements, along with a single TMD gluon distribution for the small-x target (also

called unintegrated gluon distribution in the literature). The TMD framework is recovered

from the CGC when kt ∼ Qs � Pt [21–23]. In that case, some non-linear effects do sur-

vive, and the description of forward di-jets involves several TMD gluon distributions, each

associated to a sub-set of the hard matrix elements, but those are on-shell. In ref. [10],

we proposed an interpolating formula between those two limits, applicable for Pt � Qs
regardless of the magnitude of kt, which is more amenable to phenomenological implemen-

tations than the CGC expression which, as we pointed out, also contains both the HEF and

TMD limits. Not unexpectedly, the interpolating formula involves the several unintegrated

gluon distributions of the TMD formula, each associated to a sub-set of the off-shell matrix

elements of the HEF formula.

The goal of this paper is to provide a numerical implementation of that new formu-

lation, dubbed improved TMD (ITMD) factorization. In spite of that denomination, the

ITMD factorization formula is more a model than a rigorous factorization framework, in the

sense that it is an interpolation formula between two factorization frameworks (HEF and
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TMD), which emerge in two distinct limits. Away from both limits, there is no established

factorization formula in terms of short distance matrix elements and gluon distributions,

and the ITMD interpolation was proposed in order to avoid having to deal with the full

CGC complexity (in which there is also a short-distance/long-distance factorization of the

physics, but it looks different from a kt-dependent factorization formula, and it is more

complicated to cope with). We note however, that if one would be able to directly derive

a factorization formula valid for Qs � Pt regardless of the value of kt, any additional

term compared to the ITMD interpolation should vanish in both limits Qs ∼ kt � Pt and

Qs � kt ∼ Pt.
The various off-shell matrix-element subsets needed to compute the ITMD factorization

formula for the forward di-jet process have all been calculated in [10], but evaluating all the

necessary gluon TMDs is not straightforward. Very recently, they have been obtained from

a numerical simulation of the non-linear QCD evolution in the leading ln(1/x) approx-

imation [23], that is from the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner

(JIMWLK) [24–30] equation. However, further work is required before those TMDs can be

incorporated into a cross section calculation. Therefore, in the present work, we shall stick

to a mean-field type approach in which all the gluon distributions needed can be related

to each other, and obtained from the simpler Balitsky-Kovchegov (BK) equation [31, 32].

A detailed comparative study using solutions of the different extensions of the original BK

equation is left for future work. The version that we shall use in this work is known as the

KS gluon distribution [33]. It incorporates the running of the QCD coupling, non-singular

pieces (at low x) of the DGLAP splitting function, a sea-quark contribution, and resums

dominant corrections from higher orders via a kinematic constraint [34, 35].

By comparing the forward di-jet production cross sections in proton-lead and proton-

proton collisions, we can clearly see the onset of parton saturation effects, as we go from

a kinematical regime in which kt ∼ Pt towards one where kt ∼ Qs, and we obtain a good

estimation of the size of those effects where they are the biggest, which is for nearly back-to-

back jets. We note that probing non-linear effects of similar strength with single-inclusive

observables requires to make the only transverse momentum involved in those processes

of the order of the saturation scale, which may not be easy experimentally. With di-jets,

assuming Pt ∼ 20 GeV and kt ∼ Qs ∼ 2 GeV, we can reach RpPb ∼ 0.5.

The paper is organized as follows. In section 2, we recall the essence and the ingredients

of the ITMD factorization formula for forward di-jets in dilute-dense collisions. In section 3,

we introduce the mean-field approximation that allows us to express the various gluon

TMDs in terms of the solution of the BK equation. In section 4, we present numerical

results for the proton and lead gluon TMDs obtained with the KS gluons, and compare

them with analytical expressions obtained in the Golec-Biernat-Wusthoff (GBW) model.

In section 5, we present our results for forward di-jet production in p+p and p+Pb collisions

at the LHC, as well as nuclear modification factors RpPb. Finally, section 6 is devoted to

conclusions and outlook.
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2 The ITMD factorization formula for forward di-jets in dilute-dense

collisions

We consider the process of inclusive forward di-jet production in hadronic collisions

p(pp) +A(pA)→ j1(p1) + j2(p2) +X , (2.1)

where the four-momenta of the projectile and the target are massless and purely longitu-

dinal. The longitudinal momentum fractions of the incoming parton from the projectile,

x1, and the gluon from the target, x2, can be expressed in terms of the rapidities (y1, y2)

and transverse momenta (pt1, pt2) of the produced jets as

x1 =
p+

1 +p+
2

p+
p

=
1√
s

(|p1t|ey1 +|p2t|ey2) , x2 =
p−1 +p−2
p−A

=
1√
s

(
|p1t|e−y1 +|p2t|e−y2

)
. (2.2)

By looking at jets produced in the forward direction, we effectively select those fractions to

be x1 ∼ 1 and x2 � 1. Since the target A is probed at low x2, the dominant contributions

come from the subprocesses in which the incoming parton on the target side is a gluon

qg → qg , gg → qq̄ , gg → gg . (2.3)

Moreover, the large-x partons of the dilute projectile are described in terms of the

usual parton distribution functions of collinear factorization fa/p(x1) while the small-x

gluons of the dense target are described by TMD distributions Φg/A(x2, kt) . Indeed, the

momentum of the incoming gluon from the target is not only longitudinal but also has a

non-zero transverse component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2
t = |p1t|2 +

|p2t|2 + 2|p1t||p2t| cos ∆φ. The validity domain of ITMD factorization is

Qs(x2)� Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ∼
|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.

The ITMD factorization formula reads [10]

dσpA→dijets+X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1)

1 + δcd

2∑
i=1

K
(i)
ag∗→cd(Pt, kt)Φ

(i)
ag→cd(x2, kt) . (2.6)

It involves several gluon TMDs Φ
(i)
ag→cd (2 per channel), with different operator definitions,

that are accompanied by different hard factors K
(i)
ag∗→cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they

are given in Table 1 in terms of the Mandelstam variables of the 2→ 2 parton level process.

They encompass the improvement over the TMD factorization formula derived in ref. [22]
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i 1 2

K
(i)
gg∗→gg 2

(
s4+t

4
+u4

)
(uû+tt̂)

t̄t̂ūûs̄ŝ
−

(
s4+t

4
+u4

)
(uû+tt̂−sŝ)

t̄t̂ūûs̄ŝ

K
(i)
gg∗→qq

1
2Nc

(
t
2
+u2

)
(uû+tt̂)

sŝt̂û
1

2N3
c

(
t
2
+u2

)
(uû+tt̂−sŝ)
sŝt̂û

K
(i)
qg∗→qg −u(s2+u2)

2tt̂ŝ
− s(s2+u2)

2tt̂û

Table 1. The hard factors accompanying the gluon TMDs Φ
(i)
ag→cd in the large-Nc limit. The finite

Nc expressions can be found in [10].

where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are

normalized such that ∫
d2kt Φ

(i)
ag→cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].

As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ∼ kt � Pt
and to the HEF formula when Qs � kt ∼ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K
(i)
ag∗→cd(Pt, kt) into

K
(i)
ag∗→cd(Pt, 0) ≡ K(i)

ag→cd(Pt):

dσpA→dijets+X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1)

1 + δcd

2∑
i=1

K
(i)
ag→cd(Pt)Φ

(i)
ag→cd(x2, kt) . (2.8)

The derivation of this expression from the CGC framework was done in [22] in the

large-Nc limit, and in [23] for the finite Nc case. Its domain of validity (Qs ∼ kt � Pt)

corresponds to nearly back-to-back jets, and saturation effects must be accounted

for, in our small-x context (forward jets). We note that the TMD approach has been

previously extensively studied in the literature [20, 36–42], in a broader context than

small-x physics.

• Obtaining the HEF formula with a single gluon TMD and off-shell matrix elements

from eq. (2.6) relies on the fact that up to power corrections, all the gluon TMDs

coincide in the large kt limit:

Φ
(i)
ag→cd(x2, kt)→ Φg/A(x2, kt) +O(1/k2

t ) . (2.9)

Then, denoting

g4
s

2∑
i=1

K
(i)
ag∗→cd(Pt, kt) = |Mag∗→cd|2 (2.10)
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the HEF formula is

dσpA→dijets+X

d2Ptd2ktdy1dy2
=

1

16π2(x1x2s)2

∑
a,c,d

x1fa/p(x1)

1 + δcd
|Mag∗→cd|2Φg/A(x2, kt) . (2.11)

This expression also emerges from the CGC framework, in the dilute target limit [10].

It corresponds to the Balitsky-Fadin-Kuraev-Lipatov [43–45] limit of the CGC and

is sometimes referred to as kt-factorization, instead of HEF. It has been extensively

studied in the literature [13, 19, 33, 46, 47] (where the gluon TMD is denoted Fg/A =

πΦg/A due to a different normalization convention). Its domain of validity (Qs �
kt ∼ Pt) corresponds to jets away from the back-to-back region, where the small-

x2 gluon is hard, and saturation effects are negligible. However, given that we are

dealing with forward jets, linear small-x effects are still relevant [13].

We would like to point out again that the ITMD factorization formula 2.6 was build

in order to contain both the HEF and the TMD expressions as its limiting cases, and

as such should be considered no more than an interpolating formula. In either of these

limits, there are known methods in order to evaluate the theoretical uncertainties due to

the truncation of the perturbation series, and we shall provide, as is standard, estimates

of the scale uncertainty.

We also note that any systematic improvements of the HEF or TMD factorization

frameworks in perturbation theory, which may be obtained in the future, could be imple-

mented in the ITMD factorization formula as well. Regarding the theoretical uncertainties

associated to using an interpolation formula instead of the full CGC expressions, they may

be assessed in cases where the CGC framework becomes tractable (for instance with the

gg → qq̄ channel).

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization

formula, which first requires to evaluate all the gluon TMDs that enter eq. (2.6). Let

us start with the simplest of them, Φ
(1)
qg→qg, also called the dipole gluon distribution and

often denoted x2G
(2). In the small-x2 limit, it can be related to the Fourier transform

of the fundamental dipole amplitude NF (x2, r) where r denotes the transverse size of the

dipole [22, 23]:

Φ(1)
qg→qg(x2, kt) =

Nc

αsπ(2π)3

∫
d2b

∫
d2r e−ikt·r∇2

r NF (x2, r) ≡ x2G
(2)(x2, kt) . (3.1)

The amplitude NF is defined through the CGC expectation value of the S-matrix, SF ,

of a quark-antiquark dipole scattering off the dense target: NF (x, r) = 1 − SF (x, r) with

SF (x, r) =
〈
Tr
[
U(r)U †(0)

]〉
x
/Nc in terms of fundamental Wilson lines. The dipole gluon

distribution can then be written in a compact form as:

x2G
(2)(x2, kt) =

Nc k
2
t S⊥

2π2αs
F (x2, kt) , (3.2)

– 6 –
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where F (x2, kt) is a Fourier transform of the fundamental dipole

F (x2, kt) =

∫
d2r

(2π)2
e−ikt·rSF (x2, r), (3.3)

and with S⊥ denoting the transverse area of the target.

In full generality, none of the other gluon TMDs can be obtained in such a straight-

forward manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, de-

noted x2G
(1), should be obtained in the small-x2 limit from the quadrupole operator

〈Tr [A(x)A(y)]〉x2 where A(x) = U †(x)∂xU(x), and in general is not related to F (x2, kt).

Therefore, in order to simplify the evaluation of all the gluon TMDs which we need, we

will resort to a mean-field type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7, 48–53]. The

essence of this approximation is to assume that all the color charge correlations in the

target stay Gaussian throughout the evolution: 〈ρ(x)ρ(y)〉x ∝ µ2(x,x − y). In addition,

for simplicity, we shall work in the large-Nc limit. This Gaussian approximation allows to

write, among other things, the WW gluon distribution in terms of an adjoint dipole:

x2G
(1)(x2, kt) =

CF
2αsπ4

∫
d2b

∫
d2r

r2
e−ikt·r [1− SA(x2, r)] , (3.4)

where now, SA(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write SF = S
2CF /CA

BK and SA =

S2
BK , where CF and CA are the Casimirs of the fundamental and adjoint representations

of SU(Nc), respectively, and with SBK denoting the solution of the BK equation. At large

Nc, SA(x, r) = [SF (x, r)]2, and one can write:

k2
t∇2

kt x2G
(1)(x2, kt) =

CFS⊥
2αsπ4

k2
t

∫
d2r e−ikt·r [SF (x2, r)]2 (3.5)

=
2CFS⊥
αsπ2

k2
t

∫
d2qt F (x2, qt)F (x2, kt − qt) (3.6)

= 2k2
t

∫
d2qt
q2
t

x2G
(2)(x2, qt)F (x2, kt − qt). (3.7)

Then the Laplacian can be inverted as:

x2G
(1)(x2, kt) =

1

2

∫ ∞
k2t

dk
′2
t ln

(
k′2t
k2
t

)∫
d2qt
q2
t

x2G
(2)(x2, qt)F (x2, k

′
t − qt) . (3.8)

In the large Nc limit, the six gluon distributions Φ
(i)
ag→cd reduce to [10]:

Φ(1)
qg→qg = F (1)

qg , Φ(2)
qg→qg ≈ F (2)

qg ; (3.9)

Φ
(1)
gg→qq̄ ≈ F (1)

gg , Φ
(2)
gg→qq̄ ≈ −N2

cF (2)
gg ; (3.10)

Φ(1)
gg→gg ≈

1

2

(
F (1)
gg + F (6)

gg

)
, Φ(2)

gg→gg ≈ F (2)
gg + F (6)

gg . (3.11)

Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F (2)
qg , F (1)

gg , F (2)
gg , and F (6)

gg . The WW distribution is

– 7 –
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not directly one of them, but in the Gaussian approximation coupled to the large-Nc limit,

which ensures the factorization of CGC expectation values into single trace expectation

values, those four gluon distributions can be expressed in terms of x2G
(1) and x2G

(2) [22]:

F (1)
qg (x2, kt) = x2G

(2)(x2, qt) , (3.12)

F (2)
qg (x2, kt) =

∫
d2qt x2G

(1)(x2, qt)F (x2, kt − qt) , (3.13)

F (1)
gg (x2, kt) =

∫
d2qt x2G

(2)(x2, qt)F (x2, kt − qt) , (3.14)

F (2)
gg (x2, kt) = −

∫
d2qt

(kt − qt) · qt
q2
t

x2G
(2)(x2, qt)F (x2, kt − qt) , (3.15)

F (6)
gg (x2, kt) =

∫
d2qtd

2q′t x2G
(1)(x2, qt)F (x2, q

′
t)F (x2, kt − qt − q′t) . (3.16)

Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of

F (x2, kt), the solution of the BK equation in the momentum space (or equivalently Fourier

transform of solution of the BK equation in the coordinate space).

4 Results for the gluon TMDs

Before we proceed with the computation of the gluon TMDs (3.2) and (3.12)–(3.16) from

a solution of the BK equation, we would like to give a couple of useful and interesting

results. First, we obtain the gluon TMDs in the Golec-Biernat-Wusthoff (GBW) model

analytically; those results may be used for various purposes, such as checking the numerical

procedure needed for the various convolutions in (3.12)–(3.16). Second, we compute the

high-kt behavior of the gluon TMDs in the McLerran-Venugopalan (MV) model, and show

that it features the behavior (2.9) expected from the operator definitions of the TMDs;

this was not obvious a priori, and in general not every model possesses this characteristic.

We recall that this behavior is necessary in order for the ITMD formula to reproduce the

HEF limit when Qs � kt ∼ Pt. Finally, we present the gluons which we will use for our

cross section calculations, obtained from the KS solution of the BK equation.

4.1 Analytical results in the GBW model

The GBW model [54] is a phenomenological model for the dipole scattering amplitude

NF (x, r), that describes deep inelastic (proton) data at small-x and for moderate val-

ues of the photon virtuality. The scattering amplitude in this model is NF (x, r) = 1 −
exp

[
−r2Q2

s(x)/4
]

and the Fourier transform of SF reads:

F (x2, kt) =
1

πQ2
s(x2)

exp

[
− k2

t

Q2
s(x2)

]
. (4.1)

Using this result in formulae (3.2) and (3.8), we get x2G
(1) and x2G

(2) in the GBW model

(see appendix A):

x2G
(2)(x2, kt) =

NcS⊥
2π3αsQ2

s(x2)
k2
t exp

[
− k2

t

Q2
s(x2)

]
, (4.2)
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Figure 1. The gluon TMDs (up to a constant factor) in the GBW model as a function of k2t /Q
2
s

(left) and as a function of log(k2t /GeV2) at x = 10−4 (right).

and

x2G
(1)(x2, kt) =

NcS⊥
4π3αs

∫ ∞
1

dt

t
exp

[
− k2

t

2Q2
s(x2)

t

]
. (4.3)

Note that the above result for the WW distribution can also be obtained directly from

eq. (3.4), with SA(x, r) = exp
[
−r2Q2

s(x)/2
]
. The expression for the WW distribution

can be simplified by expressing the remaining integral in terms of the exponential integral

special function, Ei(x) =
∫∞
x dt e−t/t:

x2G
(1)(x2, kt) =

NcS⊥
4π3αs

Ei

(
k2
t

2Q2
s(x2)

)
. (4.4)

Using eqs. (4.1), (4.2) and (4.4) in the relations (3.12)–(3.16), we get the form of all

the gluon TMDs in the GBW model:

F (1)
qg (x2, kt) =

NcS⊥
2π3αsQ2

s(x2)
k2
t exp

[
− k2

t

Q2
s(x2)

]
, (4.5)

F (2)
qg (x2, kt) =

NcS⊥
4π3αs

[
Ei

(
− k2

t

Q2
s(x2)

)
− Ei

(
− k2

t

3Q2
s(x2)

)]
, (4.6)

F (1)
gg (x2, kt) =

NcS⊥
16π3αs

exp

[
− k2

t

2Q2
s(x2)

](
2 +

k2
t

Q2
s(x2)

)
, (4.7)

F (2)
gg (x2, kt) =

NcS⊥
16π3αs

exp

[
− k2

t

2Q2
s(x2)

](
2− k2

t

Q2
s(x2)

)
, (4.8)

F (6)
gg (x2, kt) =

NcS⊥
4π3αs

[
Ei

(
− k2

t

2Q2
s(x2)

)
− Ei

(
− k2

t

4Q2
s(x2)

)]
. (4.9)

Their behavior as a function of kt is plotted in figure 1, using Qs = 0.88 GeV at x = 10−4.

4.2 Large-kt behavior in the MV model

The GBW model is not a good parametrization for large transverse momenta, since not

only the various TMDs do not converge to a single one at large kt, but also the exponential
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fall-off of each gluon TMD is unphysical. A model in which those deficiencies are corrected

is the MV model [55, 56]. This model comes about when the color field correlations in the

Gaussian approximation are assumed to stay local µ2(x,x − y) → µ2δ(x − y). Then the

saturation scale is related to the color charge density in the transverse plane of the nucleus

µ2, integrated over the longitudinal direction: Q2
s = g4CF /(2π)

∫
dz+µ2. In addition, the

scattering amplitude in this model can be written

NF (x, r) = 1− exp

[
−r2Q2

s

4
log

1

rΛ

]
, (4.10)

where Λ is an infrared cut-off.

The logarithmic behavior in (4.10) is only valid in the limit of small dipole sizes, but

this is precisely what we need in order to study the high-kt behavior of F (x, r) and of the

various gluon TMDs. As a matter of fact, the logarithm is the crucial difference between

the GBW and the MV model, which restores the correct high-kt perturbative power-law

behavior of the dipole gluon distribution, x2G
(2)(x2, kt), and of the WW gluon distribution,

x2G
(1)(x2, kt), which both behave identically as ∼ Q2

s/k
2
t (see for example [57] and [58]).

In the appendix B, we derive the leading order term in Q2
s/k

2
t for the remaining TMDs,

by expanding eq. (4.10) to first order in r2Q2
s. We find that, expect for F (2)

gg which goes to

zero at leading order, they all scale the same as x2G
(2) and x2G

(1):

F (1)
qg ,F (2)

qg ,F (1)
gg ,F (6)

gg '
NcS⊥Q

2
s

4π3αsk2
t

+O
(
Q4
s

k4
t

log
k2
t

Λ2

)
, (4.11)

F (2)
gg ' O

(
Q4
s

k4
t

log
k2
t

Λ2

)
. (4.12)

The sub-leading Nc contribution to Φ
(2)
gg→qq̄ (see (3.10)) is actually x2G

(1) [10], therefore

these results show that in the MV model, the behavior (2.9) is satisfied, and the ITMD

formula will indeed reproduce the HEF limit when Qs � kt ∼ Pt. This is also true if the

MV model is used as an initial condition to solve the BK equation, since the power-law

fall-off (4.11) will acquire an anomalous dimension due to the small-x2 evolution, but it

will stay the same for all the gluon TMDs.

4.3 Gluon TMDs from the KS solution to the BK equation

The KS solution [33] is a solution to BK equation extended to take into account higher-

order corrections relevant in order to provide realistic phenomenological predictions when

somewhat large transverse momenta are involved as is the case with jets. Namely, these

are corrections coming from including non-singular pieces of the gluon splitting function,

kinematic constraint effects and contributions from sea quarks [35, 59]. Let us already point

out that the initial condition used in [33] is not the MV model, and therefore in the large

kt limit, all the gluon TMDs will not exactly coincide. The mismatch is small however,

probably due to the fact that the initial condition used does also effectively contain a

logarithmic behavior.

The KS solution provides directly the dipole gluon TMD x2G
(2)(x2, kt), and the param-

eters of the initial condition are constrained by a fit to experimental data on deep inelastic

– 10 –
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Figure 2. The KS gluon TMDs as a function of log(k2t /GeV2) at x = 1.1 10−4 for the proton (left)

and the lead nucleus (right). Since F (2)
gg goes negative above log(k2t ) ∼ 2, we show its absolute

value in that region, and we observe that it is orders of magnitude smaller than other gluons. F (3)
gg

corresponds to the Weizsäcker-Williams defined in eq. (3.8).

scattering off protons. To deal with the nuclear case, the following formal substitution is

made in the non-linear term of the equation

1

R2
→ d

A

R2
A

, with R2
A = R2A2/3 , (4.13)

where RA is the nuclear radius and A the mass number (A = 208 for Pb). d is a parameter

that we shall vary between 0.5 and 0.75 in order to assess the uncertainty related to the

strength of saturation effect in the lead nucleus compared to the proton. The nuclear dipole

gluon TMD obtained in this way is also normalized to the number of nucleons A.

In order to calculate all the gluon TMDs (3.12)–(3.16) from x2G
(2)(x2, kt), we are facing

the following issue. The KS solution provides directly an impact-parameter-integrated

distribution, which in fact explains why the non-linear term depends on the target size. As

a consequence, it is not straightforward to extract S⊥ and obtain F (x2, kt). Our procedure

will be first to compute the dipole cross section σdipole(x, r= |r|) = 2
∫
d2b NF (x2, r) from

x2G
(2)(x2, kt) by inverse Fourier transformation of eq. (3.1), and then to define S⊥ as its

value at large r i.e. when it saturates (since in that limit NF → 1):

1

2
σdipole(x2, r=∞) = S⊥(x2) = lim

r→∞

4π3

Nc
αs

∫
dk

k
[1− J0(k r)] x2G

(2)(x2, k) . (4.14)

We can now obtain F (x2, kt) and calculate all the needed gluon TMDs. Their behavior as

a function of kt is plotted in figure 2, both for the proton and the lead nucleus. The small

mismatch between their high-kt behavior, expected due to the initial condition for the x2

evolution, can be seen.

– 11 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
4

1.0

10.0

100.0

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

d
σ
/d
Δ
φ
 [

n
b
]

Δφ

√S = 8.16 TeV

pT1>pT2 > 20 GeV

3.5<y1,y2<4.5

ITMD (KS), p+p
HEF (KS), p+p 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

R
pA

Δφ

√S = 8.16 TeV

pT1>pT2 > 20 GeV

3.5<y1,y2<4.5

ITMD, d=0.5
HEF, d=0.5

Figure 3. Left plot: differential cross section as a function of the azimuthal angle between the

jets for p+p collisions, comparing the new ITMD approach with previously obtained HEF results.

The ITMD/HEF difference, which as expected is the largest around ∆φ ' π is similar in p+Pb

collisions, resulting in almost identical RpPb for both approaches: right plot.

5 Numerical studies of the forward di-jet cross section

We move now to the numerical results for forward di-jet production in p+p and p+Pb

collisions at the LHC. We consider a center-of-mass energy of 8.16 TeV, and generate all

our predictions with the forward region defined as the rapidity range 3.5 < y < 4.5 on one

side of the detector. The two hardest jets are required to lie within this region and we also

impose a cut on the minimal transverse momentum of each two jets: pt0 = 20 GeV. In

such a setup, the cross section still may be divergent due to collinear singularities. These

are cut-off by applying a jet algorithm on the final state momenta with a delta-phi-rapidity

cut R = 0.5. Finally, we require the jets to be ordered according to increasing transverse

momentum, that is we have |pt1| > |pt2| > pt0.

The new factorization approach summarized in eq. (2.6) has been implemented in

two independent Monte Carlo codes avhlib [60–62] and LxJet [63]. To be more precise,

the computer programs do not utilize the formula 2.6 which uses amplitudes squared and

summed over polarizations and colors. Instead, the more generic color-ordered off-shell

helicity amplitudes are used, as derived in [10]. This approach follows the modern direction

of amplitude calculation and allows for more ‘exclusive’ calculations in the future (for

example a study of helicity dependence or interfacing with color-flow dependent parton

shower generators). The calculations of matrix elements are made keeping Nc finite.

For the collinear parton distributions that enter the ITMD formula, we choose the

general-purpose CT10 set [64]. For the central value of the factorization and renor-

malization scale, we choose the average transverse momentum of the two leading jets,

µF = µR = 1
2(|pt1| + |pt2|). We will produce error bands corresponding to the renormal-

ization and factorization scale uncertainties by varying the central numbers from half to

twice their value.
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Figure 4. Left plot: differential cross section as a function of the azimuthal angle between the jets

for p+p and p+Pb collisions (rescaled by the number of nucleons). The distributions are identical

everywhere expect near ∆φ ' π, where saturation is the strongest. Right plot: nuclear modification

factors for two values of the nuclear saturation scale, providing an uncertainty band.

For the various observables O shown below, we also consider the nuclear modification

factors defined as

RpPb =
dσp+Pb

dO
A dσp+p

dO
, (5.1)

with A = 208 for Pb. In our approach, in the absence of saturation effects, or in the case

in which they are equally strong in the nucleus and in the proton, this ratio is equal to

unity. If, however, the non-linear evolution plays a more important role in the case of the

nucleus, the RpPb ratio will be suppressed below 1.

We start by investigating the azimuthal correlations, with the azimuthal angle between

the jets ∆φ defined to lie within 0 < ∆φ < π. First we compare the new ITMD approach

with previously obtained HEF results in figure 3. For the ∆φ distribution in p+p collisions,

we see that at small angles where ideally they should match, there remains a small difference

between the ITMD and HEF curves. As we anticipated, this is due to the initial condition

used to obtain the KS gluons. By contrast, near ∆φ ' π, we observe a large difference, as

expected: the ITMD result is about a factor 3 bigger than the HEF one. The ITMD/HEF

ratio is very similar in the case of p+Pb collisions, resulting in almost identical RpPb for

both approaches, as also shown on the figure. For that comparison, we have parametrized

the strength of the non-linear term in the evolution equation for the Pb gluon distributions

(see (4.13)) with d = 0.5.

Next, we compare the ∆φ distribution in p+p and p+Pb collisions in figure 4. After

rescaling the p+Pb cross section by the number of nucleons, we obtain identical distri-

butions almost everywhere. It is only for nearly back-to-back jets, around ∆φ ' π, that

saturation effects induce a difference. This difference is better appreciated on the nuclear
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Figure 5. Nuclear modification factors as a function of the transverse momentum of the leading

(left) and subleading (right) jet, comparing the new ITMD approach with previously obtained

HEF results.

modification factor, which goes from unity to 0.6, as ∆φ varies from ∼ 2.7 to π. Two values

of the parameter d have been considered, which makes up an uncertainty band that turns

out to be rather small. This means that the uncertainty related to the value of the satura-

tion scale of the lead nucleus does not strongly influence the predicted RpPb suppression.

Finally, in figure 5 we display the nuclear modification factors as a function of the

transverse momentum of the leading and sub-leading jet. Our conclusions are similar for

these observables: the new ITMD predictions are similar to the previously obtained HEF

results, due to the fact that the ITMD/HEF ratio is similar in p+p and p+Pb collisions.

This means that the HEF framework, which is incorrect for nearly back-to-back jets —

since in this formalism all the gluon TMDs are considered equal regardless of the kinematics

— can nevertheless be safely used for RpPb calculations. The same is not true for cross

section calculations. Figure 6 shows those same nuclear modification factors but comparing

the predicted suppression for two different values of the parameter d. As a function of the

leading jet pt, RpPb rises up from about 0.6 for pt1 = 20 GeV to unity for pt1 = 50 GeV.

However, it is interesting to note that as a function of the sub-leading jet pt, this ratio

rather stays flat around 0.8.

6 Conclusions

In this paper, we have studied forward di-jet production in proton-proton and proton-

lead collisions, using the small-x improved TMD factorization framework eq. (2.6). This

model provides an interpolation between the high-energy factorization and the transverse-

momentum-dependent factorization formalisms, in order to allow for arbitrary values of the

total transverse momentum of jet pair, which also corresponds to the transverse momentum

of the small-x gluons involved in the hard scattering.
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Figure 6. Comparison of nuclear modification factors as a function of the transverse momentum

of the leading (left) and subleading (right) jet, using two different choices of the non-linear term

strength parameter for the nucleus d.

We have obtained the first numerical implementation of this new formulation, and the

first predictions for forward di-jets at the LHC, a process which is particularly interesting

from small-x point of view. Our results for the nuclear modification factors in p+Pb vs

p+p collisions confirm the conclusions obtained in [46] in the HEF framework, that for

nearly back-to-back jets, non negligible effects of gluon saturation are to be expected as

one goes from p+p to p+Pb collisions.

This is due to the fact that in such configurations, the total transverse momentum

of the jet pair is of the order of the saturation scale of the target, and even though the

jet transverse momenta are individually much larger than Qs, saturation effects are not

irrelevant. To obtain our predictions, we used the KS gluon distributions, and it would

certainly be interesting to use other extensions of the BK equation, such as for instance the

rcBK gluon distribution [65], in order to compare the level of saturation effects expected.

It is important to note that so far, our results have been obtained using an impact-

parameter averaged nuclear saturation scale. However, the outcome of high-energy proton-

nucleus collisions seems to be quite sensitive to the fact that the nucleon positions in the

nucleus fluctuate event by event. We have provided predictions using two different nuclear

saturation strength parameters d, but a more complete study including such nucleon-level

fluctuation effects would allow to better estimate the uncertainty related to the nuclear

geometry. In the meantime, our results are enough to motivate experimental measurements

at the LHC.

Finally, one important theoretical ingredient is still missing in our formulation: the Su-

dakov logarithms. Their effect should be the largest also for nearly back-to-back jets, since

they are logarithms of the ratio of the hard scale to the transverse momentum imbalance of

the jet pair, and therefore are expected to compete with saturation effects. The Sudakov

logarithms are identical in p+p and p+Pb collisions, which means that to some extent
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they will cancel in the nuclear modification factors, as has been observed in an HEF based

approach in [13, 14], but nevertheless they could smear the saturation effects, depending

on which contributes the most. We plan to tackle those interesting studies in the future.
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A Calculation of the gluon distributions in the GBW model

In this appendix we list some of the intermediate steps leading to the result (4.3). The

Weizsäcker-Williams gluon distribution can be obtained from eq. (3.8) by using eqs. (4.1)

and (4.2):

x2G
(1)(x2, kt) =

NcS⊥
4π4αsQ4

s(x2)

∫ ∞
k2t

dk
′2
t ln

(
k′2t
k2
t

)∫
d2qt exp

[
− q2

t

Q2
s(x2)

]
exp

[
−(k

′
t − qt)2

Q2
s(x2)

]

=
NcS⊥

2π3αsQ4
s(x2)

∫ ∞
k2t

dk
′2
t ln

(
k′2t
k2
t

)
exp

[
− k

′2
t

Q2
s(x2)

]

×
∫ ∞

0
d|qt| |qt| exp

[
−2

q2
t

Q2
s(x2)

]
I0

(
2
|k′t||qt|
Q2
s(x2)

)

=
NcS⊥

8π3αsQ2
s(x2)

∫ ∞
k2t

dk
′2
t log

(
k′2t
k2
t

)
exp

[
− k

′2
t

2Q2
s(x2)

]
. (A.1)

By performing a change of variables k′t → ktt we get:

x2G
(1)(x2, kt) =

NcS⊥
8π3αsQ2

s(x2)
k2
t

∫ ∞
1

dt log(t) exp

[
− k2

t

2Q2
s(x2)

t

]
. (A.2)

One partial integration leads to the final result for x2G1(x2, kt):

x2G
(1)(x2, kt) =

NcS⊥
4π3αs

∫ ∞
1

dt

t
exp

[
− k2

t

2Q2
s(x2)

t

]
. (A.3)

Similar calculations give the results (4.5)–(4.9).

B High-kt limit of the gluon distributions in the MV model

The large-kt behavior of the dipole and WW distributions has been derived before (see for

instance [57] and [58]). We briefly recall these results and then we calculate F (i)
qg and F (i)

gg .
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The basic building block is the Fourier transform of the fundamental dipole

F (x2, kt) =

∫
d2r

(2π)2
e−ikt·rSF (x, r) . (B.1)

We are interested in the region of large transverse momentum, or equivalently in small

values of dipole sizes r. Therefore, we expand SF to first non-trivial order in r2Q2
s:

F (x2, kt) '
∫

d2r

(2π)2
e−ikt·r

[
1− r2Q2

s(x2)

4
log

1

rΛ
+O

(
r4Q4

s(x2) log2 1

rΛ

)]
. (B.2)

The first term in the expansion formally gives a delta function δ(2)(kt). This term will

contribute only for values of kt around zero, and not in the region of large kt that is

considered here, so it can be safely dropped. The next terms give:

F (x2, kt) ' −
Q2
s(x2)

4(2π)2

∫
d2re−ikt·r r2 log

1

rΛ

[
1 +O

(
r2Q2

s(x2) log
1

rΛ

)]
' −Q

2
s(x2)

8π

∫
dr r3 log

1

rΛ

[
1 +O

(
r2Q2

s(x2) log
1

rΛ

)]
J0(ktr)

' 1

2π

Q2
s(x2)

k4
t

+O
(
Q4
s(x2)

k6
t

log
k2
t

Λ2

)
. (B.3)

The dipole gluon distribution from eq. (3.2) is:

F (1)
qg (x2, kt) ≡ x2G

(2)(x2, kt) '
NcS⊥Q

2
s(x2)

4π3αsk2
t

+O
(
Q4
s(x2)

k4
t

log
k2
t

Λ2

)
. (B.4)

Similarly, to get the perturbative behavior of the WW density, we start from eq. (3.4),

and we expand the adjoint dipole, SA(x, r)'1− r2Q2
s

2 log 1
rΛ +O

(
r4Q4

s log2 1
rΛ

)
. For x2G

(1)

we get:

x2G
(1)(x2, kt) =

NcS⊥
4αsπ4

Q2
s(x2)

2

∫
d2r e−ikt·r

[
log

1

rΛ
+O

(
r2Q2

s(x2) log2 1

rΛ

)]
=
NcS⊥
2αsπ3

Q2
s(x2)

2

∫
dr r

[
log

1

rΛ
+O

(
r2Q2

s(x2) log2 1

rΛ

)]
J0(ktr)

=
NcS⊥Q

2
s(x2)

4π3αsk2
t

+O
(
Q4
s(x2)

k4
t

log
k2
t

Λ2

)
. (B.5)

Using the above results we can calculate the perturbative expansion of the rest of the

distributions. For F (2)
qg we have:

F (2)
qg (x2, kt) =

∫
d2qt x2G

(1)(x2, qt)F (x2, kt − qt)

'
∫
d2qt

[
NcS⊥Q

2
s(x2)

4π3αsq2
t

+O
(
Q4
s(x2)

q4
t

log
q2
t

Λ2

)]
×
[
δ(2)(kt − qt) +

1

2π

Q2
s(x2)

(kt − qt)4
+O

(
Q4
s(x2)

(kt − qt)6
log

(kt − qt)2

Λ2

)]
' NcS⊥Q

2
s(x2)

4π3αsk2
t

+O
(
Q4
s(x2)

k4
t

log
k2
t

Λ2

)
. (B.6)
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To this order x2G
(1)(x2, kt) = x2G

(2)(x2, kt) and

F (1)
gg (x2, kt) = F (2)

qg (x2, kt) =
NcS⊥Q

2
s(x2)

4π3αsk2
t

+O
(
Q4
s(x2)

k4
t

log
k2
t

Λ2

)
. (B.7)

Similarly:

F (2)
gg (x2, kt) = −

∫
d2qt

(kt−qt) · qt
q2
t

x2G
(2)(x2, qt)F (x2, kt−qt)

' −
∫
d2qt

(kt−qt) · qt
q2
t

[
Ncq

2
t S⊥

2π2αs
δ(2)(qt)+

NcS⊥Q
2
s(x2)

4π3αsq2
t

+O
(
Q4
s(x2)

q4
t

log
q2
t

Λ2

)]
×
[
δ(2)(kt−qt)+

1

2π

Q2
s(x2)

(kt−qt)4
+O

(
Q4
s(x2)

(kt−qt)6
log

(kt−qt)2

Λ2

)]
' 0 , (B.8)

and

F (6)
gg (x2, kt) =

∫
d2qtd

2q′t x2G
(1)(x2, qt)F (x2, q

′
t)F (x2, kt−qt−q′t)

'
∫
d2qtd

2q′t

[
NcS⊥Q

2
s(x2)

4π3αsq2
t

+O
(
Q4
s(x2)

q4
t

log
q2
t

Λ2

)]
×
[
δ(2)(q′t)+

1

2π

Q2
s(x2)

q′4t
+O

(
Q4
s(x2)

q′6t
log

q′2t
Λ2

)]
×
[
δ(2)(kt−qt−q′t)+

1

2π

Q2
s(x2)

(kt−qt−q′t)4
+O

(
Q4
s(x2)

(kt−qt−q′t)6
log

(kt−qt−q′t)2

Λ2

)]
' NcS⊥Q

2
s(x2)

4π3αsk2
t

+O
(
Q4
s(x2)

k4
t

log
k2
t

Λ2

)
. (B.9)
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