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Computational Drug Target 
Screening through Protein 
Interaction Profiles
Santiago Vilar1,2, Elías Quezada3, Eugenio Uriarte2, Stefano Costanzi4, Fernanda Borges3, 
Dolores Viña5 & George Hripcsak1

The development of computational methods to discover novel drug-target interactions on a large 
scale is of great interest. We propose a new method for virtual screening based on protein interaction 
profile similarity to discover new targets for molecules, including existing drugs. We calculated Target 
Interaction Profile Fingerprints (TIPFs) based on ChEMBL database to evaluate drug similarity and 
generated new putative compound-target candidates from the non-intersecting targets in each pair of 
compounds. A set of drugs was further studied in monoamine oxidase B (MAO-B) and cyclooxygenase-1 
(COX-1) enzyme through molecular docking and experimental assays. The drug ethoxzolamide and 
the natural compound piperlongumine, present in Piper longum L, showed hMAO-B activity with IC50 
values of 25 and 65 μM respectively. Five candidates, including lapatinib, SB-202190, RO-316233, 
GW786460X and indirubin-3′-monoxime were tested against human COX-1. Compounds SB-202190 
and RO-316233 showed a IC50 in hCOX-1 of 24 and 25 μM respectively (similar range as potent inhibitors 
such as diclofenac and indomethacin in the same experimental conditions). Lapatinib and indirubin-
3′-monoxime showed moderate hCOX-1 activity (19.5% and 28% of enzyme inhibition at 25 μM 
respectively). Our modeling constitutes a multi-target predictor for large scale virtual screening with 
potential in lead discovery, repositioning and drug safety.

Discovery of new targets for molecules is of great interest in drug design and development1,2. High throughput 
screening and computational methods for virtual screening have been successfully used to search for novel tar-
gets in extensive libraries of compounds3,4. Moreover, when compounds of interest are drugs in the market, the 
detection of new targets have implications in drug repositioning and safety. Drugs already in the market or exper-
imental drugs can also be excellent lead compounds for optimization of the activity in the further development 
process. In recent years different computational methods have been published to discover and characterize new 
drug-target interactions5,6. In the big data era, these computational approaches can acquire great potential in drug 
discovery due to the vast amount of information we can manage currently. Molecular similarity has been a strat-
egy widely applied to discover new molecules that bind a specific target7–9. Molecular similarity can be assessed 
using different types of approaches. 2D molecular structure similarity can be calculated through methods such 
as molecular fingerprints. As an example, Keiser et al. related proteins based on 2D chemical structure similarity 
of their ligands10. Their approach, denominated SEA (Similarity Ensemble Approach), offered great results in 
drug-target discovery and yielded sets of drug-target associations confirmed experimentally10,11. A more com-
plex similarity approach takes into account 3D molecular structure information. Our research group has devel-
oped large scale predictive modeling through the implementation of 3D drug structure similarity into biological 
knowledge data sources12,13. However, alternative measures to the molecular structure can be calculated to eval-
uate the similarity between drugs. Target profile, drug-drug interaction and adverse effect profiles represent drug 
biological fingerprints that can be compared14. In fact, comparison of drug similarity using side effect profiles 
yielded methods with great applications in identifying novel drug-target associations15,16. Common molecular 
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pathology has also been exploited in drug discovery under the idea that two diseases or indications could share 
the same molecular mechanisms modulated by the drugs´ action17–19. Disease similarity based on shared 
drug therapies was already implemented to generate models to discover new drug-indication associations20.  
Integration of heterogeneous biological data, such as drug similarity profiles with protein similarity, also yielded 
good performance in drug-target prediction16,21. Other bioinformatics approaches showed the potential of com-
paring gene expression profiles in microarrays data to discover new associations between drugs, targets, pathways 
perturbations and diseases22–24.

In this article, we developed a new approach for target based-virtual screening comparing a large data of mol-
ecules, including drugs already on the market, experimental drugs and natural compounds, based on their target 
interaction profiles. The predictor described here is a large scale predictor for multiple target screening devel-
oped with extensive protein binding data extracted from ChEMBL (including 449,996 compound-target cases). 
A set of candidates including drugs and natural compounds were selected to further study through molecular 
docking and experimental validation in the human monoamine oxidase B (hMAO-B) enzyme and the human 
cyclooxygenase-1 (hCOX-1). The flowchart of the main steps carried out in this study is shown in Fig. 1.

Results
Modeling target interaction profiles for drug virtual screening. We developed a model for multiple 
target virtual screening to discover novel targets for drugs. For this purpose we calculated Target Interaction 
Profile Fingerprints (TIPFs) for the compounds in ChEMBL data source25. Tanimoto coefficient (TC) between all 
the pairs of compounds was calculated based on the target interaction profiles (see Fig. 2).

The predictor associated the TC score with the compound-target candidates exchanging targets in each pair 
of compounds. When the same compound-target association is generated from the comparison of different pairs, 
only the maximum score is retained. In that manner, each possible compound-target candidate is associated 
with the maximum similarity score calculated against the compounds associated in ChEMBL with the same 
target. The predictor yielded compound-target associations already in the initial ChEMBL data (positive con-
trols) but also new putative compound-target associations interesting to further study. Due to the big amount 
of data (28,846,904 possible compound-target combinations) and to simplify the process we retained only the 
compound-target associations with TC ≥  0.5. Sensitivity, specificity, precision and enrichment factor (EF) at dif-
ferent thresholds were reported (see Fig. 3). Results showed high degree of recovery of the active compounds.

Additional evaluation was performed through hold-out validation series. With this purpose, and before fin-
gerprint calculation, we divided the initial data in two series that were called training and testing subsets. We first 
included 80% of the initial data into a training set and the 20% in a test. Second, we introduced only the 60% of 
the data in the training whereas the 40% was included in the test set. Selection of the data was carried out ran-
domly. Results are shown in Fig. 4. The stability of the multi-target predictor was not affected by the division of 

Figure 1. Flowchart of the main steps involved in the development of the compound-target predictor.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:36969 | DOI: 10.1038/srep36969

Figure 2. Representation of Target Interaction Profile Fingerprints (TIPFs), computation of the similarity 
through the Tanimoto coefficient (TC), and generation of new putative target interaction candidates.

Figure 3. Sensitivity/specificity (a), precision (b) and EF (c) at different thresholds of the TC (TP: true 
positives, FP: false positives, FN: false negatives, TN: true negatives, EF: enrichment factor).
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the data showing the modeling robustness. However, further evaluation of the system was necessary to prove the 
predictive power. For this reason, a set of candidates was selected for further validation.

Out of the total number of compound-target candidates with TC ≥  0.5 we selected drugs already on the mar-
ket, experimental drugs and natural products. The final set of drug-target candidates comprised 267,314 asso-
ciations with a TC ≥  0.50. Out of the total number, 94,253 associations were already present in the reference 
standard, 1,192 were inactive in ChEMBL and 171,869 are new associations detected by the modeling. To validate 
our results, the candidates generated for hMAO-B and hCOX-1 were selected to carry out molecular docking 
simulations and to evaluate their in vitro hMAO-B and hCOX-1 inhibitory activities. Thirteen drugs on the mar-
ket, experimental drugs or natural compounds were pointed out by the model as hMAO-B candidates. In the case 
of hCOX-1, the model pointed out 384 candidates. A second more restrictive selection of the candidates for both 
systems was carried out through molecular docking studies.

Molecular docking simulations. Molecular docking calculations were performed in the human MAO-B 
and COX-1 (organism Ovis aries, since not human protein was available) to select a subset of candidates for 
experimental evaluation and to study the key interactions responsible for the binding between drugs/natural com-
pounds and the proteins. Docking protocol in hMAO-B was previously established by our research group26–28.  
Since some of the candidates are generated due to their similarity against the antiepileptic drug zonisamide, 
the crystal structure of the hMAO-B in complex with zonisamide (PDB: 3PO7)29 was used to carry out our 
simulations. Five water molecules were retained in the cavity of the protein (see Methods). We carried out dock-
ing calculations using Glide SP (standard precision) from Schrödinger30 (see docking validation in Methods). 
Additional docking calculations with/without water molecules in the 3PO7 pocket as well as using an alternative 
crystallized hMAO-B structure (PDB: 2V60)31 were performed and corroborated the obtained results.

The 13 candidates selected previously through our TIPF virtual screening were docked to the hMAO-B. 
Three top candidates according to the different docking scoring calculations were selected for hMAO-B binding 
assays (see Table 1 and Fig. 5 with the candidates selected for experimental evaluation and the most similar com-
pound according to our TIPF model). The score achieved by the molecular docking is shown in Table S1 of the 

Figure 4. Sensitivity and specificity values in the hold-out validation series at different thresholds (from 
top 200,000 to top 1,000,000). 
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Supporting Information. The best ranked candidate was piperlongumine, also called piplartine, a natural com-
pound present in long pepper, (Piper longum L.). Piperlongumine orientated the dihydropyridinone ring towards 
the FAD cofactor whereas the trimethoxyphenyl group was directed towards the hydrophobic entrance cavity 
(see Fig. 6). The natural compound established a hydrogen bond by anchoring the methoxy group with the resi-
due Tyr326. However, the methoxy group should have to displace a crystallized water molecule in the hMAO-B 
pocket and this fact could limit the ligand binding. Two more candidates also showed potential from the point 
of view of the molecular docking simulations. Frentizole is a benzimidazoleurea drug with immunosuppressive 
properties and ethoxzolamide is a drug, currently discontinued by the FDA32, used as diuretic and for glaucoma 
treatment. Ethoxzolamide was detected to be similar to zonisamide according to our TIPF model. The binding 
mode extracted from ethoxzolamide docking also presented some similarity with the co-crystallized zonisamide 
inside the hMAO-B (PDB: 3PO7)29. The sulfonamide group was oriented towards the FAD in a similar position 
as zonisamide (see Fig. 6) and established a hydrogen bond with the co-crystallized water molecule HOH545.

Additionally, we calculated the contribution of the different residues of the hMAO-B to the interaction energy 
with piperlongumine and ethoxzolamide (see Fig. 6). The residue contribution was calculated as the sum of 
three energetic terms: Coulomb, van der Waals and hydrogen bond energies. Both compounds were found to 
interact preferentially with residues Leu171, Ile199, Gln206, Tyr326 and Tyr398. The important role of the cited 
residues in ligand binding, such as Ile199 and Tyr326, was previously reported through molecular docking and 
site-directed mutagenesis studies27,33.

Molecular docking in the COX-1 (Ovis aries) was performed through Glide SP30 using the crystal structure 
3KK6 (PDB code)34. Validation of the docking protocol is explained in the Methods section. Five experimental/
approved drugs were selected for further biological evaluation taking into account docking ranking and commer-
cial availability (see Fig. 5 with the molecular structures and Table S2 with the docking scoring, ranking and the 
most similar compound in our ChEMBL reference standard). The candidates selected for experimental valida-
tion are: lapatinib, a drug approved by the FDA for breast cancer patients, SB-202190, an inhibitor of p38 MAP 
kinase, RO-316233, a core structure of different biologically active molecules, GW786460X, an ATP-competitive 
inhibitor of TGF-β  type I receptor, and indirubin-3′ -monoxime, a potent inhibitor of glycogen synthase kinase 
3β  and cyclin-dependent kinases. Molecular docking showed that lapatinib and SB-202190 established hydrogen 

HMAO-B CANDIDATE DOCKING RANKING REFERENCE COMPOUND CHEMBL TC

PIPERLONGUMINE 1 CHEMBL339561 0.50

FRENTIZOLE 2 CHEMBL339561 0.50

ETHOXZOLAMIDE 3 CHEMBL750 (ZONISAMIDE) 0.58

HCOX-1 CANDIDATE DOCKING RANKING REFERENCE COMPOUND CHEMBL TC

LAPATINIB 9 CHEMBL10 0.88

SB-202190 16 CHEMBL10 0.83

RO-316233 30 CHEMBL35482 0.84

GW786460X 46 CHEMBL35482 0.54

INDIRUBIN-3′ -MONOXIME 74 CHEMBL35482 0.91

Table 1.  Drug/natural compound candidates extracted from the TIPF virtual screening and molecular 
docking. Candidates are predicted to interact with hMAO-B and hCOX-1. Docking ranking is also shown 
along with the most similar compound in the reference standard (ChEMBL) and the Tanimoto coefficient (TC).

Figure 5. Structure of compounds selected for hMAO-B and hCOX-1 experimental validation. 
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bonds with the residues Ser516 and Gln192. Similar interactions are described for celecoxib in the crystal 
structure 3KK634 where the sulfonamide group interacts with residues Leu352 and Gln192. Indole groups in 
compound RO-316233 play an important role by anchoring to residues Tyr355 and Met522 through hydrogen 
bonding. Figure 7 shows the hypothetical binding modes extracted from molecular docking for the candidates 
SB-202190 and RO-316233. Additionally, Fig. 7 shows the superposition between the co-crystallized celecoxib 
and the binding modes extracted from docking along with residue interactions with the candidates SB-202190 
and RO-316233.

Experimental data validation. We evaluated three candidates, piperlongumine, frentizole and ethoxzolamide,  
for their ability to inhibit the isoform B of the human monoamine oxidase (hMAO-B). Inhibition of the isoform  
hMAO-A was also tested to prove that the candidates pointed out by the model are selective against the hMAO-B 
(the 3 candidates were not pointed out by our model as inhibitors of the A isoform). On the other hand, we evaluated  
five candidates against hCOX-1 (lapatinib, SB-202190, RO-316233, GW786460X and indirubin-3′ -monoxime). 
To assess the ability of our system to detect novel lead compounds we cross-tested our candidates. The three 

Figure 6. (A) Comparison between the theoretical poses determined for piperlongumine (green carbons) and 
ethoxzolamide (pink carbons) and the co-crystallized inhibitors c17 (2V60) and zonisamide (3PO7) inside 
the hMAO-B. (B) Binding mode for piperlongumine extracted from the hMAO-B docking. Hydrogen bond is 
represented in yellow color. Protein ribbons are partially omitted for clarity. (C) Binding mode determined for 
ethoxzolamide inside the hMAO-B. (D) Perspective of the whole hMAO-B enzyme with ethoxzolamide docked 
to the protein (FAD cofactor in stick representation and ethoxzolamide in CPK). (E) Residue interaction energy 
scores between hMAO-B and piperlongumine. (F) Residue interactions with ethoxzolamide. Contribution of 
the residues in a distance of 4 Å from the ligands is plotted. Interaction energy is calculated as the sum of the 
contributions of Coulomb, van der Waals and hydrogen bonding.
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candidates selected for hMAO-B were evaluated against hCOX-1 whereas the five hCOX-1 candidates were tested 
against hMAO-B (control tests). The corresponding IC50 values are shown in Tables 2 and 3.

Two out of our three drug candidates displayed inhibitory activity towards hMAO-B. Moreover, they were 
hMAO-B selective since none of them showed activity in the A isoform. Ethoxzolamide was found to be the most 
potent hMAO-B compound with an IC50 of 25 μM that is in a similar range as zonisamide (Ki =  3.1 μM and IC50∼ 
25 μM)35,36, the reference compound in our TIPF model. Although zonisamide exhibits a moderate hMAO-B 
potency, it has been described to improve the clinical outcome in Parkinson’s disease (PD) patients, namely when 
used as coadjuvant with other PD drugs35,37. Due to its activity in neuroprotection, zonisamide is in clinical Phase 
III for its use in PD38. Our drug, ethoxzolamide, showed similar moderate activity in hMAO-B, although further 
studies are necessary to confirm the human neuroprotective potential. However, ethoxzolamide could be a good 
candidate also as a lead compound for optimization series. Piperlongumine showed moderate hMAO-B activity 
with a IC50 of 65 μM. Further studies are needed to evaluate if the natural compound piperlongumine shows 
neuroprotective effects in humans. The natural compound present in long pepper, (Piper longum L.) can be 
considered an interesting lead for further optimization steps. Frentizole, in our experimental conditions, did not 
display a noticeable hMAO-B activity at the higher tested concentration (100 μ M).

Two of the five compounds selected for hCOX-1 evaluation showed good inhibitory activity values (see Table 3).  
The most active compounds in the hCOX-1 evaluation were SB-202190 and RO-316233 with a IC50 of 24 and 
25 μM, respectively. It is worth noting that potent, well-known hCOX-1 inhibitors in the range of nM in some 
COX assays, such as diclofenac and indomethacin, showed similar IC50 values under the same experimental 
conditions (IC50 of 18 and 12 μM respectively)39. Compounds such as lapatinib and indirubin-3′ -monoxime also 
showed moderate hCOX-1 activity although IC50 values were not obtained due to compounds solubility lim-
itations in the experimental assay (see Table 3 with % of enzyme inhibition). GW786460X is inactive against 
hCOX-1 at 100 μ M (highest concentration tested).

When we cross-tested our candidates (3 hMAO-B candidates were evaluated against hCOX-1 whereas 5 
hCOX-1 candidates were tested against hMAO-B), none of the compounds presented activity in these experi-
mental assays (inactive at 100 μ M, highest concentration tested). We compared both proportions from a statistical 
point of view and a significant difference was observed (p-value =  0.006, Fisher’s exact test). In our rationally 

Figure 7. Hypothetical binding mode extracted from docking in the COX-1 for SB-202190 (panel A) and 
RO-316233 (panel B). Hydrogen bonds are represented in yellow dashes. Protein ribbons are partially omitted 
for clarity. Panel C shows the comparison between the theoretical docking poses determined for the ligands 
(SB-202190: plum carbons, RO-316233: pink carbons) and the co-crystallized celecoxib (turquoise carbons). 
Residue interactions with the ligands (sum of Coulomb, van der Waals and hydrogen bonding) are shown in 
panel D.
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designed assays, four out of six compounds were moderately active (two compounds were not taken into account 
due to the impossibility of calculating IC50 although they presented moderate activity). However, none of the con-
trol evaluations were satisfactory from the activity point of view (0 out of 11 including hMAO-A, hMAO-B and 
hCOX-1). The data supports the predictive ability of our method. Our method was able to detect novel structures 
that can be considered interesting leads for further activity optimization.

Discussion
In our modeling each pair of compounds was compared based on their protein interaction profiles extracted 
from ChEMBL database (see Fig. 8 with a heatmap of target association profiles for the evaluated candidates). The 
modeling assigned a score to each compound-target combination based on the maximum similarity against the 
set of compounds that bind the target. In that manner, for each candidate, the system associated the most similar 
compound that causes the signaling with its respective target information, such as potency, types of assay, organ-
ism, etc. This information can be useful in evaluating the importance of the candidate and also facilitates exper-
imental validation. In our study, we focused on the evaluation of natural products and experimental or existing 
drugs. However, the use of additional synthetic compounds in the initial data was very useful to provide a frame 
of reference to calculate similarity and implement new candidate targets for drugs that would not be available 
using databases with only existing drugs.

We have shown that our TIPF model is very useful for large scale screening. In Figure S1 we showed that 
our initial model retrieved an enriched set of COX-1 candidates from the point of view of the docking score. In 
a second step and as a refinement procedure, some candidates can be studied through methodologies such as 
molecular docking to make a final candidate selection for experimental validation. Alternative similarity meas-
ures between pairs of molecules could be used in the development of methods of computational screening, such 
as structural similarity, adverse effect profiles or gene expression similarities, among others14,22. However, target 
profiles comparison is simple and efficient and big data sources are available for the scientific community, such as 
ChEMBL25 or PubChem40.

Pairs of compounds identified by our model with good target similarity scores could share many structural 
patterns or belong to the same structural family. However, our system was also able to identify pairs of com-
pounds not similar from the point of view of the molecular structure similarity, but still similar according to the 
protein interaction profiles. Figure S2 shows 2D molecular similarity for a random set of 500 pairs of molecules 
in our model with a TC ≥  0.85 using TIPFs. Moreover, ranges of similarity are dependent on the measure taken 

DRUG IC50  hCOX-1 (μM) IC50  hMAO-B (μM)

Lapatinib a19.5 % inhibition at 25 μ M **

SB-202190 23.59 ±  3.53 **

RO-316233 25.35 ±  3.80 **

GW786460X ** **

Indirubin-3′ -monoxime a28 % inhibition at 25 μ M **

Iproniazide (Reference inhibitor) 7.54 ±  0.36

Selegiline (Reference inhibitor) 0.019 ±  0.001

FR122047 (Reference inhibitor) 0.094 ±  0.006

Indomethacin (Reference inhibitor) 12.16 ±  1.16

Diclofenac (Reference inhibitor) 18.23 ±  1.73

Table 3.  IC50 values for the inhibitory effects of the test drugs (compounds and reference inhibitors) on 
the enzymatic activity of human COX-1 (rational assays selected by our modeling) and human MAO-B 
(control assays not selected by the modeling). Each IC50 value is the mean ±  S.E.M. from three experiments 
(n =  3). ** Inactive at 100 μ M (highest concentration tested). a % enzymatic inhibition at 25 μ M (compounds 
precipitated at higher concentrations).

DRUG IC50  hMAO-B (μM) IC50  hMAO-A (μM) IC50  hCOX-1 (μM)

Piperlongumine 65.07 ±  2.99 ** **

Frentizole ** ** **

Ethoxzolamide 24.57 ±  1.09 ** **

Selegiline (Reference inhibitor) 0.019 ±  0.001

Iproniazide (Reference inhibitor) 7.54 ±  0.36 6.56 ±  0.76

Moclobemide (Reference inhibitor) 0.36 ±  0.02

FR122047 (Reference inhibitor) 0.094 ±  0.006

Table 2.  IC50 values for the inhibitory effects of the test drugs (compounds and reference inhibitors) on the 
enzymatic activity of human MAO-B (rational assays selected by our modeling), human MAO-A (control 
assays not selected by the modeling) and human COX-1 (control assays not selected by the modeling). Each 
IC50 value is the mean ±  S.E.M. from three experiments (n =  3). ** Inactive at 100 μ M (highest concentration 
tested).
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into account. Two molecules with a TC =  0.5 using structural molecular fingerprints, such as MACCS, could be 
considered not similar. Two molecules with TC =  0.5 using TIPFs could be deemed as similar since they share 
around half of the protein interactions in common, with the ability of following similar biological pathways.

Our large scale multi-target predictor showed potential in lead discovery and repurposing. Moreover, appli-
cability in drug safety could be exploited. As an example, lapatinib showed moderate hCOX-1 inhibitory activity. 
Interaction with this enzyme is related with a higher risk of bleeding. No reports of bleeding were found with the 
use of the drug lapatinib but other tyrosine kinase inhibitors such as dasatinib, sunitinib, sorafenib and ponatinib, 
are associated with higher risk of bleeding41–43. Although interaction with hCOX-1 could be a possible mecha-
nism of action that contributes to the adverse effect, experimental studies are necessary to provide evidences to 
this hypothesis.

Methodology
Target interaction profiles modeling. Ligands/targets database. The set of ligands also including drugs 
in the market, experimental drugs and natural compounds, was extracted from ChEMBL database, a multiple 
source of compounds, targets and bioassays data25. The data was pre-processed as a previous step of mode-
ling. This step included elimination of no single or unspecified proteins, repeated cases, not specific biological 
data, such as cases reporting “not active”, “not determined”, “not soluble”, “potential missing data”, etc. Not high 
affinity compound-target cases, such as cases when the potency of the compounds was established as greater 
than 50,000 nM, were excluded. Different bioassays including the same protein were clustered in the same case 
target. Additional information for each case, such as types of bioassay, organism, etc, was also collected. Final 
compound-target data was transformed in a matrix representing compounds (rows) and targets or proteins (col-
umns). Each cell presented a value of 1 if the compound-target is included in our database and a value of 0 when 
the case is not incorporated to the data. With the aim of generating robust data, we considered only compounds 
with at least 15 targets. The final data set comprised 449,996 drug-target positive cases out of a total of 28,846,904 
possible drug-target combinations (11,548 compounds and 2,498 different targets).

Target interaction profile fingerprints (TIPFs). From the matrix representing our compound-target data, we cal-
culated a TIPF for each compound (data only calculated for compounds with at least 15 targets). The concept of 
TIPFs is analogous to the molecular fingerprints that codify in each vector position a structural pattern14,44. In 
our TIPFs, each bit position of the vector codified the interaction (value 1) or non-interaction (value 0) with the 
different targets (see Fig. 2 for a graphical description). As an efficient manner of representing a sparse binary bit 
vector, only the positions representing interactions were stored in the final fingerprints.

Computation of fingerprint similarity. We calculated the Tanimoto coefficient (TC) to compute similarity 
between all the TIPF pairs. The TC is defined in our case as the ratio between the protein interactions in the inter-
section and the union of the pair of fingerprints (see Fig. 2):

∩ ∪=TC x y x y x y( , ) /

Compound-target modeling. Our predictor exchanged the protein interactions between each pair of compounds 
and associated the TC to the compound-target associations. The same compound-target case can be generated 
from the comparison of different pairs. However, only the maximum TC score was retained for the candidate. 
It means that the similarity of each compound-target case was evaluated against all the compounds that are 
described to interact with the target in ChEMBL. Retrieval of known cases was measured to assess performance 
in the model. Sensitivity, specificity, precision and EF were measured at different TC thresholds as quality param-
eters. Performance was also evaluated through hold-out validation series.

Figure 8. Heatmap of target association profiles for the hMAO-B and hCOX-1 candidates along with their 
reference compounds in ChEMBL. Targets described for both types of candidates are included.
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Molecular docking simulations. Molecular docking simulations were carried out in the hMAO-B and 
COX-1 (organism Ovis aries) enzymes with Glide from the Schrödinger package30.

hMAO-B docking. Different sets of ligands were included in the docking: the set of 13 drugs and natural com-
pounds selected though TIPF modeling to further study, a set of 9 co-crystallized compounds extracted from the 
Protein Data Bank45, and a set of 1,126 drug decoys extracted from DrugBank46. The set of decoys was selected 
according to the following rules to assure certain similarity with the co-crystallized molecules and set of candi-
dates: drugs with 15–60 atoms, topological polar surface area not greater than 200, and not more than one viola-
tion to the drug-like Lipinski´s rules. All the ligands were prepared with the LigPrep module. This step included 
the generation of tautomers and different protonation states at pH =  7.0 ±  2.0, and initial optimization of the 
molecular geometry.

Two crystallized hMAO-B proteins, downloaded from the PDB (PDB codes: 3PO729 and 2V6031), were selected 
to run the docking simulations. 3PO7 contains the hMAO-B protein co-crystallized with the drug zonisamide. 
In 2V60, the protein is co-crystallized with the inhibitor 7-(3-chlorobenzyloxy)-4-carboxaldehydecoumarin 
(c17). Different calculations without and with water molecules in the pocket were performed: 5 water mole-
cules in the protein pocket (HOH545, HOH566, HOH581, HOH590, HOH846 in 3PO7; HOH1159, HOH1166, 
HOH1171, HOH1206, HOH1309 in 2V60), including waters in the pocket establishing hydrogen bonds with 
the co-crystallized ligands (1 water molecule in 2V60 and 2 waters in 3PO7), including water molecules in a 
distance of 5 Å from the ligands, and excluding water molecules in the protein pocket. Protein structures were 
pre-processed with the Protein Preparation Workflow30 that added hydrogens and cap termini, optimized proto-
nation states of the residues and optimized the hydrogen network.

In a first step, a receptor grid was calculated in each protein and centered in the co-crystallized ligands (van 
der Waals scaling factor =  1, partial charge cut-off =  0.25). Then, docking of the compounds into the different 
hMAO-B pockets were carried out with Glide SP (standard precision) from Schrödinger. Five poses for each 
ligand were retained. Final pose selection was carried out with Emodel. The docking was validated measuring the 
root mean square deviation (RMSD) of the heavy atoms coordinates between theoretical poses extracted from the 
calculation and co-crystallized conformations of 9 ligands (PDB: 3PO7, 1OJ9, 1OJA, 2BK3, 2V5Z, 2V60, 2V61, 
2XFN, 4A79)45 (see Table S3 of the Supporting Information with RMSD values). Additionally, we evaluated the 
ability of the system to prioritize ligands (9 co-crystallized compounds) over non-ligands (set of drug decoys 
extracted from DrugBank) using ROC curves (AUROC values in Table S4 of the Supporting Information).

COX-1 docking. A similar protocol and parameters as described above were used for the COX-1 docking. The 
set of ligands (including 384 candidates and 8 co-crystallized compounds) were prepared with LigPrep. We down-
loaded the protein crystal structure 3KK6 (PDB code)34. The protein belongs to the organism Ovis aries, since 
not human protein was available. Water molecules were removed and protein structure was pre-processed with 
the Protein Preparation Workflow. The receptor grid was centered in the co-crystallized inhibitor celecoxib. We 
run molecular docking simulations with Glide SP (standard precision) from Schrödinger30. Final pose selection 
was carried out with the energetic parameter Emodel. The docking was validated measuring the RMSD between 
co-crystallized conformations and theoretical poses for 8 inhibitors (see Table S5 of the Supporting Information 
with RMSD values). The area under the ROC curve was 0.7 showing the capacity to prioritize true ligands  
(8 co-crystallized compounds) over non-ligands (set of drug decoys extracted from DrugBank).

Determination of enzymatic activity towards MAO isoforms. The biological evaluation on hMAO 
activity was investigated by measuring effects on the production of hydrogen peroxide (H2O2) from p-tyramine, 
using the Amplex® Red MAO assay kit and microsomal isoforms prepared from insect cells (BTI-TN-5B1-4) 
infected with recombinant baculovirus containing cDNA inserts for hMAO-A and hMAO-B. The production of 
H2O2 catalysed by the MAO isoforms was detected using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red 
reagent), a non fluorescent and highly sensitive probe that reacts with H2O2 in the presence of horseradish perox-
idase to produce a fluorescent product, resorufin. The selected compounds and reference inhibitor were unable 
to react directly with the Amplex® Red reagent, which indicates that these drugs do not interfere with the meas-
urements. Under the experimental conditions hMAO-A displayed a Michaelis constant (Km) equal to 457.17 μ M 
and maximum reaction velocity (Vmax) in the control group of 185.67 ±  12.06 (nmol p-tyramine/min)/mg protein 
whereas hMAO-B showed a Km of 220.33 ±  32.80 μ M and Vmax of 24.32 ±  1.97 (nmolp-tyramine/min)/mg protein 
(n =  5). Most tested compounds concentration-dependently inhibited this enzymatic control activity.

The selected compounds were dissolved in DMSO (Sigma-Aldrich, Alcobendas, Madrid, Spain) to prepare 
10 mM stock solutions, which were kept for storage at − 20 °C. Percentage of DMSO used in the experiments was 
never higher than 1%. Human recombinant MAO isoforms (native enzymes), used in the experiments, were pur-
chased from Sigma-Aldrich (Alcobendas, Madrid, Spain). Test compounds were acquired from Sigma-Aldrich 
and Vitro S.A. (Madrid, Spain).

Briefly, 0.1 mL of sodium phosphate buffer (0.05 M, pH 7.4) containing different concentrations of the test 
drugs (selected compounds or reference inhibitor) and adequate amounts of recombinant hMAO-A or hMAO-B 
required and adjusted to obtain in our experimental conditions the same reaction velocity, that is, to oxidize 
(in the control group) the same concentration of substrate: 165 pmol of p-tyramine/min (hMAO-A: 1.1 μ g 
protein; specific activity: 150 nmol of p-tyramine oxidized to p-hydroxyphenylacetaldehyde/min/mg protein; 
hMAO-B: 7.5 μ g protein; specific activity: 22 nmol of p-tyramine transformed/min/mg protein) were incubated 
for 15 min at 37 °C in a flat-black-bottom 96-well microtest plate, placed in the dark fluorimeter chamber. After 
this incubation period, the reaction was started by adding (final concentrations) 200 μ M Amplex® Red reagent, 
1 U/mL horseradish peroxidase and 1 mMp-tyramine. The production of H2O2 and, consequently, of resorufin 
was quantified at 37 °C in a multi-detection microplate fluorescence reader (FLX800, Bio-Tek Instruments, Inc., 
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Winooski, VT, USA) based on the fluorescence generated (excitation, 545 nm, emission, 590 nm) over a 15 min 
period, in which the fluorescence increased linearly. Control experiments were carried out simultaneously by 
replacing the test drugs (new compounds and reference inhibitor) with appropriate dilutions of the vehicles. 
In addition, the possible capacity of the above test drugs to modify the fluorescence generated in the reaction 
mixture due to non-enzymatic inhibition (e.g., for directly reacting with Amplex® Red reagent) was determined 
by adding these drugs to solutions containing only the Amplex® Red reagent in a sodium phosphate buffer. To 
determine the kinetic parameters of hMAO (Km and Vmax), the corresponding enzymatic activity was evaluated 
(under the experimental conditions described above) in the presence of a number (a wide range) of p-tyramine 
concentrations.

The specific fluorescence emission (used to obtain the final results) was calculated after subtraction of the 
background activity, which was determined from wells containing all components except the hMAO, which were 
replaced by a sodium phosphate buffer solution. In our experimental conditions, this background activity was 
practically negligible.

MAO activity of the test compounds and reference inhibitor is expressed as IC50, e.g. the concentration of each 
drug required to produce a 50% decreased on control value activity isoform MAO.

Determination of enzymatic activity towards hCOX-1. Preparation of microsomes from human platelets.  
Human platelets were isolated by centrifugation from buffy coats obtained from the Centro de Transfusion de 
Galicia (Santiago de Compostela, Spain) and prepared as described. Briefly, the buffy coat was diluted 1:1 with 
washing buffer of the following composition at pH 6 (mM): NaCl (120), KCl (5), trisodium citrate (12), glucose 
(10), sucrose (12.5), and then centrifuged at 400 g for 8 min in a centrifuge (Omnifuge 2.0 RS, Heraeus Sepatech, 
Osterade, Germany) at 25 °C to obtain platelet rich plasma.

The upper layer obtained in this centrifugation, containing platelet rich plasma, was gently removed and 
centrifuged at 850 g for 20 min at 4 °C in a centrifuge (J2-MI, Beckman Instruments, Inc., Palo Alto, California, 
USA). The platelet pellet was recovered, resuspended with washing buffer, and centrifuged again at 850 g for 
20 min at 4 °C. To prepare human platelet microsomes, the resultant platelet pellet of the above centrifugation 
was resuspended in 7 mL of sodium phosphate buffer (10 mM, pH 7.4), sonicated at 50 W for 50 s (5 pulses of 
10 s), and centrifuged at 850 g for 20 min at 4 °C in a refrigerated centrifuge. The pellet was discarded and the 
supernatant was subsequently centrifuged at 10 000 g for 10 min at 4 °C in the same centrifuge. The pellet obtained 
in this centrifugation was discarded and the supernatant was finally centrifuged at 100 000 g for 1 h at 4 °C in an 
ultracentrifuge (Beckman Instruments, Inc., Palo Alto, California, USA).

The resultant pellet containing platelet microsomes was resuspended in 1 mL of sodium phosphate buffer 
(50 mM, pH 7.4) and the protein concentration in the platelet microsome suspension (approximately 2 mg/mL) 
was measured by the method of Bradford, using a protein assay kit from BioRad Laboratories (Alcobendas, 
Spain). Platelet microsome aliquots were stored at 80 °C for several days (without apparent loss of COX activity) 
until use.

Determination of hCOX-1 activity. The biological evaluation of the test drugs on hCOX-1 activity (bisdiox-
ygenase and peroxidase reactions) was investigated by measuring their effects on the oxidation of N, N, N’, 
N’-tetramethyl-p-phenylenediamine (TMPD) to N, N, N’, N’-tetramethyl-p-phenylene-diimine, using arachi-
donic acid as substrate for hCOX-1 from human platelet microsomes (obtained as described in the above par-
agraph). The formation of N, N, N’, N’-tetramethyl-p-phenylenediimine (a coloured compound) from N, N, 
N’, N’-tetramethyl-p-phenylenediamine catalyzed by COX can be detected spectrophotometrically at 600 nm. 
In this study, hCOX activity was evaluated using a spectrophotometric method. Briefly, 0.1 mL of Tris–HCl 
buffer (100 mM, pH 8) containing 1 mM hematin, 100 mM TMPD, various concentrations of the test drugs, 
and appropriate amounts of hCOX-1 (0.08 A600 U/min) were incubated for short periods of time (3–5 min) to 
avoid a notable loss of COX activity at 37 °C in a flat-bottom 96-well microtest plate (BD Biosciences, Franklin 
Lakes, NJ, USA) placed in the dark multimode microplate reader chamber. After this incubation period, the 
reaction was started by adding (final concentration) 100 mM arachidonic acid and the formation of N, N,N’,
N’-tetramethyl-p-phenylenediimine from TMPD, i.e., the increase in absorbance at 600 nm was measured at 
37 °C in a multi-mode microplate reader (Fluostar Optima, BMG Labtech GmbH, Offenburg, Germany) for 25 s, 
aperiod in which the absorbance increased linearly from the beginning. The specific absorbance (used to obtain 
the final results) was calculated after subtraction of the background absorbance generated in wells containing a 
blank solution, i.e., all components except the COX isoform, which were replaced by a Tris–HCl buffer solution. 
Under our experimental conditions, this background activity was practically negligible.

Control experiments were carried out simultaneously by replacing the test drugs (new compounds and ref-
erence inhibitors) with appropriate dilutions of the vehicles. In addition, the possible capacity of the above test 
drugs to modify the absorbance of the reaction mixture due to non-enzymatic inhibition (e.g., for directly react-
ing with TMPD) was determined by adding these drugs to solutions containing only TMPD in a Tris–HCl buffer 
solution.
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