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Abstract: Current regulation for marine toxins requires a monitoring method based on mass
spectrometric analysis. This method is pre-targeted, hence after searching for pre-assigned masses,
it identifies those compounds that were pre-defined with available calibrants. Therefore, the scope
for detecting novel toxins which are not included in the monitoring protocol are very limited. In
addition to this, there is a poor comprehension of the toxicity of some marine toxin groups. Also,
the validity of the current approach is questioned by the lack of sufficient calibrants, and by the
insufficient coverage by current legislation of the toxins reported to be present in shellfish. As an
example, tetrodotoxin, palytoxin analogs, or cyclic imines are mentioned as indicators of gaps in the
system that require a solid comprehension to assure consumers are protected.
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1. Monitoring of Toxins

The current monitoring method for marine toxins is based on an analysis with liquid
chromatography separation coupled to a mass spectrometric detection [1] using interlaboratory
validated methods [2].

The regulatory situation in Europe has been under critical scrutiny with regard to some
contaminants such as endocrine disrupters [3], where toxicity was presumed in the absence of specific
data demonstrating non toxicity. A critical letter was published simultaneously about this matter
in several pharmacology and toxicology journals [4]. A similar situation is being criticized with
regard to marine toxins, although with not such a relevant coordination by several journal editors.
The work by the European Food Safety Authority (EFSA) working group has evidenced that even
legally regulated, there is a lack of demonstrated toxic effect in humans by pectenotoxins [5] or
yessotoxins [6]. On the other hand, there is a demonstrated presence of tetrodotoxin, a well known
lethal compound [7], in shellfish [8]. Palytoxin and analogs, also very toxic to humans [9] were also
reported to be present in shellfish [10]. Similarly, spirolides and cyclic imines, which were reported to
be neurotoxic [11], orally absorbed and able to reach the central nervous system [12], are a frequently
detected in shellfish [13]. With regard to marine toxins, it can be stated that some toxins are included
in the legislation unless they are proven to be non toxic. This is the case as some of them are regulated
while being non toxic (i.e., pectenotoxin), and others are not regulated even though they are very toxic
(i.e., tetrodotoxin, palytoxin).
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2. Analysis and Toxicity

The analytical control of the presence of marine toxins in shellfish [1,2] is based on a targeted
method that only seeks to find predetermined compounds, while missing all other toxins that could be
present in the sample [14]. Table 1 shows the toxins currently regulated and the suspected number of
non regulated toxins. This new analytical monitoring approach for marine toxins has several important
advantages, as it is possible to know the toxins profile and amount in a sample. Nevertheless, the
pre-targeted monitoring has been a fundamental loss with regard to the capability to identify new
toxins. When the mouse bioassay, that is regarded as a universal detector, was replaced by analytical
methods [15], no new toxin can be detected unless new intoxications appear in consumers. A few
years before the introduction of mass spectrometric analysis, the appearance of fast neurotoxins was
reported in several parts of Canada and Europe [16]. Those fast neurotoxins were probably spirolides,
and although their analysis was not required by the legislation, the bioassay was warning of something
unusual present in the sample. This is no longer the case with the mass spectrometric detection.

Table 1. Monitored toxins vs. toxins not required to be monitored [1,17–19].

Toxin Group Proven to Be Toxic
to Humans?

Number of Analogs
Monitored [1]

Number of Analogs
not Monitored #

Okadaic acid YES 4 (DTX3 is a group of
molecules) 0

Azaspiracid YES 3 40
Domoic acid YES 2 0 (traces of others)

Saxitoxin YES 14 30

Bevetoxin YES Non polar (Mouse bioassay) Polar compounds are undetected
due to poor extraction

Ciguatoxin YES 0 (two in the US) 15
Tetrodotoxin YES 0 15

Palytoxin YES 0 Unkown. In theory many billions
[17].

Cyclic imines NO * 0 40
Yessotoxin NO ** 4 50

Pectenotoxin NO 2 15

# Numbers are approximate. There are many analogs reported in some toxin groups, but the toxicity and the
abundancy of each analog is either low or unknown. * No evidence reported in humans, mechanistically they
might be toxic in the long term [11,12]. ** Reported cardiotoxicity in animals [20], toxic episode never reported
in humans.

The term SWATH, that stands for “sequential windowed acquisition of all theoretical fragment
ion mass spectra” has been applied for the total search of compounds in a sample, eliminating the
main bias of mass spectrometric analysis, the targeted nature of the analysis [21–23]. This is certainly
an approach that can be adopted for marine toxins, although it will not be an easy task. There are
several drawbacks that make this approach difficult, if possible at all. One is the complex nature of the
matrix effect (clams, scallops, mussels, oysters, etc.) on the analysis [24], that prevent the development
of universal protocol. In fact, even for a single toxin group it is difficult to use the same method in
different matrices, and in many occasions a method is validated only for a limited number of matrices
and toxins. Recent examples of interlaboratory exercices prove how difficult this matter can be, and a
validated method [25] requires several refinements to extend it to more matrices [26] and toxins [27].
Also, mass spectrometric analysis for marine toxins face a significant challenge not only for matrices,
but because marine toxins have a molecular range rather large, from small compounds such as domoic
acid (MW 311 Da) to the largest non polimeric molecules in nature, such as palytoxin (MW 2680 Da)
or maitotoxin (MW 3422 Da). In addition to the molecular weight range, the complexity of some
groups is extreme; maitotoxin may have a theoretical number of 299 possible stereoisomers [17],
and palytoxin “only” 264 stereogenic isomers [28]. Since each analog, even with a small stereogenic
change, may be relevant from a toxicological standpoint, it is very difficult to decide what should
be tested or not. The analysis of complex molecules, even with high resolution equipment, shows
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that different molecular charges and too many analogs for just one single toxin group, makes the
analysis extremely complex. A recent study that combines high resolution mass spectrometric analysis
of palytoxins combined with the high throughput capability of antibody-based flow cytometry [29]
demonstrates that a routine analysis of certain toxin groups is close to impossible. The combination of
limited antibody crossreactivity and the existance of so many analogs, such as palytoxins, ostreocins
or ovatoxins create a situation of many potential toxic molecules and no discrimination capability,
with very limited output in terms of toxicity. Although this problem can be avoided with functional
assays [30], todays legislation do not contemplate such an option.
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Figure 1. Uncertainty scheme of marine toxins analytical monitoring under the current situation and
under an ideal situation.

Another aspect to consider in non targeted mass spectrometric analysis is the influence of
uncontrolled factors in the quality of the study, specially if the method is to be translated to equivalent
results in another laboratory through a validated method [31]. Since the control of toxins has to be
quantitative, the monitoring analysis must be able to detect toxins levels, below the legal threshold,
that permit to release a product to the market. An analysis in multiple reaction monitoring (MRM)
mode with a triple quadrupole, which would allow only targeted screening, could hardly be replaced
by a scan analysis, that adds to the system the low sensitivity of a quantitation in this mode and
requires an extremely efficient separation of the molecules by chromatography. Generally, LC-MRM is
used for strictly targeted screening, and untargeted screening can be done with high resolution mass
spectrometers (HRMS). Nevertheles, there is a limitation due to the lower speed and sensitivity of a
HRMS when compared to triple quadrupoles [32] although the most modern (and expensive) HRMS
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have a high sensitivity, that equals that of triple quadruples [33]. Also the fact that a high resolution
ion spectrum requires to predefine the criteria to select mass precursors for the trigger events, creates a
contradiction between exclusion times (to reduce peak numbers) and maximum peak quantitation
(the more trigger events the longer cycle times). Therefore, a SWATH approach would requires a
narrow mass range for the equipment to be able to cope with many compounds [21], and this is not
compatible with the mass range required for marine toxins. Moreover, a SWATH approach would
requires a very extensive database, which might be is partially available for some of the toxin groups
(azaspiracids [34], yessotoxins [35], dinophysistoxins, tetrodotoxins), but not for others (ostreocins,
ovatoxins [36], palytoxins, ciguatoxins [37]).

In the best of the situations, where a very fast high resolution mass spectrometer with very low
detection limit can analyze several hundred compounds simultaneously, there would be is still a
fundamental limitation based on the lack of standards to identify each individual mass. Even if these
standards were available (we are far from that), there would not be certified standards for a proper
calibration, not to mention the need of an interlaboratory quantification exercise that validates the
method. So, to be realistic, this will not happen in quite some time. The current situation is reflected
and summarized in Figure 1.

3. Toxicity Itself

Finally, for each compound identified, there would be it is needed a toxicity equivalency factor
(TEF) that converts the calculated value to a reference compound of the same toxin group, as toxicity
values are referred as equivalents of a reference compound [1]. The problem of the estimation of
TEF is another challenge that requires a combined effort of toxicologists and analytical chemists, and
it is not resolved for most the toxins, since the toxicology is not understood, even for toxin groups
that are very common. An example of this complexity is the worldwide common group of diarrheic
phosphatase inhibitors, such as dinophysistoxins (DTX) and okadaic acid (OA) [38]. These toxins were
considered to be diarrheic as a consequence of a mechanism that would modify the integrity of the gap
junctions in the intestinal epithelium, hence increasing paracellular permeability [39]. But there are
several phosphatase inhibitors that do not cause diarrhea, but hepatotoxicity, such as tautomycin, [40]
microcystins, calyculin A or nodularins [41]. It has been reported that severe diarrhea induced by
OA and DTX is not associated with mucosal damage [42]. Also, a non-phosphatase inhibitor, methyl
okadaate, has a higher potency than OA to disrupt F-actin [43], and in general there is no study
that links phosphatase inhibition with tight junction integrity and diarrhea [44]. On the other hand,
it has been proposed that OA-induced diarrhea might be associated to modes of action related to
neurotransmitters [45].

Given the poor toxicological comprehension of some toxin groups, it is therefore difficult to define
a TEF. The mechanism of action of azaspiracids has not been elucidated yet, although several potential
candidates were outlined [46], and this makes difficult to propose a TEF for this group. Also, it is
unclear how relevant it is the oral toxicity of a toxin group in mice compared to the potency of the
same group in human receptors in vitro, as it is the case for saxitoxin and analogs [47,48]. It seems to
be the case though that most of the very toxic compounds, such as palytoxin, are far less toxic by the
oral route [18], but they are still quite toxic. Another example is the cardiotoxicity associated to some
toxins, such as yessotoxin, azaspiracids or domoic acid [49–52]. The majority of these results are recent
and were not included in the risk assessment performed at the time by EFSA [19].

The rapid alert system in the EU (RASFF, Food and Feed Safety Alerts [53]) shows for
marine toxins the same frequency of incidences before and after the introduction of LC-MS in
2011 (i.e., 14 in 2010, 14 in 2014, 8 in June 2016), and two serious notifications for ciguatoxin, in 2012
(Germany) and 2015 (France) [54,55]. RASFF shows no result on tetrodotoxin, although a serious
intoxication did occur [56].
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Therefore, the conclusion is that the combination of unclear TEFs, lack of sufficient standards,
a targeted analytical method for monitoring and a poorly defined legislation that does not include
several relevant toxin groups, makes the consumer situation for marine toxicity safety, uncertain.
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