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We bring the concept that quantum symmetries describe theories with nontrivial momentum space 
properties one step further, looking at quantum symmetries of spacetime in presence of a nonvanish-
ing cosmological constant �. In particular, the momentum space associated to the κ-deformation of the 
de Sitter algebra in (1 + 1) and (2 + 1) dimensions is explicitly constructed as a dual Poisson–Lie group 
manifold parametrized by �. Such momentum space includes both the momenta associated to spacetime 
translations and the ‘hyperbolic’ momenta associated to boost transformations, and has the geometry 
of (half of) a de Sitter manifold. Known results for the momentum space of the κ-Poincaré algebra are 
smoothly recovered in the limit � → 0, where hyperbolic momenta decouple from translational mo-
menta. The approach here presented is general and can be applied to other quantum deformations of 
kinematical symmetries, including (3 + 1)-dimensional ones.
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1. Introduction

Recent developments in quantum gravity research have revived 
and given new substance to the long-forgotten idea that momen-
tum space should have a nontrivial geometry, an intuition origi-
nally due to Max Born [1]. After more than a decade since De-
formed Special Relativity (DSR) was first proposed [2,3], it is now 
understood that a nontrivial geometry of momentum space is a 
general feature of DSR theories [4–8]. This is intimately related 
with the presence of the Planck energy as a second relativistic in-
variant (besides the speed of light), that can play the role of a 
curvature scale of the momentum manifold [9]. Nontrivial prop-
erties of momentum space emerge also in (2 + 1)-dimensional 
quantum gravity, where explicit computations show that the ef-
fective description of quantum gravity coupled to point particles is 
given by a theory with curved momentum space and noncommu-
tative spacetime coordinates [10–13]. Of more direct interest for 
the results we are going to present here are models of noncom-
mutative geometry, where the space of momenta that are dual to 
the noncommutative spacetime coordinates is curved [14–17].
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Besides finding increasing theoretical support, Planck-scale 
modifications of the geometry of momentum space are extremely 
relevant from a phenomenological point of view. In fact, features 
due to curvature of momentum space are dual to those that in 
general relativity are ascribed to curvature of spacetime: in the 
same way as spacetime curvature induces redshift of energy, cur-
vature of momentum space induces a dual redshift, that is, an 
energy-dependent correction to the time of flight of free par-
ticles [18]. Such effects open up a much needed observational 
window for Planck-scale physics, since they are testable with as-
trophysical observations [19].

Despite the recent significant theoretical and phenomenological 
progress just discussed, an important ingredient which is neces-
sary to connect the properties of momentum space to observations 
is still missing. In fact, all of the models mentioned above are 
essentially deformations of special relativity: even though space-
time might be nontrivial (e.g. spacetime coordinates might not 
commute), still it has vanishing curvature. This is clearly a phe-
nomenological shortcoming, since the most promising observations 
involve propagation of particles over cosmological distances, for 
which spacetime curvature cannot be neglected [20]. In the past 
few years several proposals aimed at extending relativistic mod-
els with curved momentum space were put forward in order to 
include nonvanishing spacetime curvature. The first concrete ap-
proach [21] focussed on constructing an extension of the Poincaré 
algebra that includes both the Planck scale and a (constant) space-
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time curvature scale as relativistic invariants. The resulting algebra 
can be seen as a DSR version of the de Sitter (hereafter dS) algebra 
of symmetries, but the associated coalgebra was not investigated. 
Other proposals focussed on developing a unifying description of 
the whole phase space of free particles moving on a curved space-
time with deformed local Poincaré symmetries [22–26]. The gen-
eral understanding coming from these approaches is that when 
both momentum space and spacetime have nonvanishing curva-
ture they become so intertwined that it is not possible to give a 
neat geometrical description of the properties of momentum space 
on its own.

In this work we show that this is not necessarily the case. In-
deed, we are able to explicitly construct the curved momentum 
space generated by quantum-deformed spacetime symmetries in 
presence of a nonvanishing cosmological constant. We achieve this 
result by enlarging the momentum space so that it is not only the 
manifold of momenta associated to translations on spacetime, but 
it also includes the ‘hyperbolic’ momenta associated to the boost 
transformations and the angular momenta associated to rotations. 
Within this construction we can also show that in the vanish-
ing cosmological constant limit the Lorentz sector is not needed 
because it decouples from the energy–momentum sector, thus re-
covering previous results in the literature.

While we would like to argue that our results are general, we 
use the setting of Hopf algebras to present an explicit deriva-
tion. Hopf algebras have proved to be a very useful mathematical 
framework to model DSR effects. The most studied example is the 
κ-Poincaré Hopf algebra [27–29], the investigation of which pro-
vided inspiration and more precise understanding of several fea-
tures of DSR models. For example, it can be explicitly shown that 
the manifold of momenta associated to the κ-Poincaré translation 
generators is a (portion of a) dS manifold, whose curvature is de-
termined by the quantum deformation scale κ [17,30] and whose 
metric determines the free particle dispersion relation that is in-
deed compatible with the κ-Poincaré symmetries, thus showing 
that the phenomenology associated to the κ-Poincaré algebra fits 
very naturally within the framework of relative locality [17,31].

Here we present a generalization of all these results by working 
with the κ-deformation of the dS algebra (see [32–38]). The name 
is due to the fact that in the limit of vanishing cosmological con-
stant � one recovers the κ-Poincaré algebra, while in the limit of 
vanishing quantum deformation parameter z = 1/κ one recovers 
the algebra of symmetries of the dS spacetime. It is worth noticing 
that it was exactly using this Hopf algebra that the first pioneer-
ing investigations concerning the interplay between spacetime and 
momentum space curvature were undertaken [39].

The Poisson version of the κ-dS Hopf algebra in (1 + 1) and in 
(2 + 1) dimensions is defined in section 2, where it is shown that 
the main differences with respect to the corresponding κ-Poincaré 
structures fully arise in the (2 + 1) setting: whilst in the vanishing 
cosmological constant limit the translation generators {P0, P1, P2}
close a Hopf subalgebra, this is no longer the case for the κ-dS al-
gebra, since the cosmological constant mixes the translation and 
Lorentz sectors within both the coproduct map and the deformed 
Casimir function. Thus, for nonvanishing � it seems natural to con-
sider an enlarged momentum space including also the dual coor-
dinates to the Lorentz generators. This idea allows us to construct 
the curved (generalized) momentum manifold in the nonvanishing 
cosmological constant setting as the full dual Poisson–Lie group 
manifold, whose explicit construction can be achieved through the 
Poisson version of the ‘quantum duality principle’ (see [40–43] and 
references therein).

The κ-dS dual Poisson–Lie groups are explicitly constructed in 
section 3. In (1 + 1) dimensions the dual group coordinates are 
those associated to both the spacetime translations and boosts, 
and a certain linear action of the dual group on the origin of mo-
mentum space generates (half of) a (2 + 1)-dimensional dS man-
ifold MdS3 , spanned by the orbit of the group passing through 
the origin. In this case, the fact that boosts have the same role 
in the momentum space as translation generators can be under-
stood since their coproducts have the same formal structure. In 
(2 + 1) dimensions one spatial rotation comes into play and the 
structure of the κ-dS Hopf algebra is apparently much more in-
volved. Nevertheless, the construction of the full dual Poisson–Lie 
group G∗

� gives the clue for the full geometrical description of the 
associated momentum space. The dual Lie algebra and its asso-
ciated Poisson–Lie group are explicitly constructed in section 3.2, 
and the corresponding linear action on the enlarged momentum 
space can be defined in such a way that the dual rotation gener-
ates the isotropy subgroup of the origin of the momentum space. 
As a consequence, we find that a (4 + 1)-dimensional space of mo-
menta associated to translations and boosts arises as a dual group 
orbit passing through the origin, and such a space again has the 
geometry of (half of) a dS manifold MdS5 . Moreover, in the van-
ishing cosmological constant limit, the Lorentz sector completely 
decouples both in the dispersion relation and in the coproduct, 
thus recovering the well-known κ-Poincaré momentum space. The 
paper ends with a concluding section in which the applicability 
of the method here presented to the construction of the κ-AdS 
momentum space is shown, and the keystones for solving the cor-
responding (3 + 1)-dimensional problem are presented.

2. The κ-dS Poisson–Hopf algebra

Let us start by reviewing the structural properties of the 
κ-deformation of the (1 + 1) and (2 + 1) dS algebra, which will be 
presented by considering the cosmological constant � > 0 as an 
explicit parameter whose � → 0 limit provides automatically the 
expressions for the κ-Poincaré algebra. In this way, the specific 
features of the construction leading to the κ-Poincaré momen-
tum space will become transparent, and the proposed path to its 
nonvanishing cosmological constant generalization will arise in a 
natural way.

In the subsection on the (1 + 1)-dimensional case we just 
briefly present the essential formulas, postponing a more in-depth 
discussion of the relevant features of the κ-dS algebra to the fol-
lowing subsection focussing on the (2 + 1)-dimensional case.

2.1. The (1 + 1) κ-dS algebra

The (undeformed) Poisson–Hopf dS algebra in (1 + 1) dimen-
sions is defined by the brackets

{K , P0} = P1, {K , P1} = P0, {P0, P1} = −� K , (1)

where K is the generator of boost transformations, P0 and P1 are 
the time and space translation generators and the (undeformed) 
coproduct is given by �0(X) = X ⊗1 +1 ⊗ X , with X ∈ {K , P0, P1}. 
The Poisson version of the (1 + 1) κ-dS quantum algebra [34] is a 
Hopf algebra deformation of (1), given by

{K , P0} = P1, {K , P1} = sinh (zP0)

z
, {P0, P1} = −� K ,

(2)

with deformed coproduct map

�(P0) = P0 ⊗ 1 + 1 ⊗ P0,

�(P1) = P1 ⊗ e
z
2 P0 + e− z

2 P0 ⊗ P1, (3)

�(K ) = K ⊗ e
z
2 P0 + e− z

2 P0 ⊗ K .
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The quantum deformation parameter is z = 1/κ and the deformed 
Casimir function for (2) is

Cz =
(

sinh (zP0/2)

z/2

)2

− P 2
1 + � K 2. (4)

The so-called bicrossproduct-type basis [27] for this algebra is 
given through the nonlinear change

P0 → P0, P1 → e
z
2 P0 P1, K → e

z
2 P0 K , (5)

so that the algebra becomes

{K , P0} = P1, {K , P1} = 1 − exp(−2zP0)

2z
− z

2
(P 2

1 − � K 2),

{P0, P1} = −� K , (6)

with associated coproduct map

�(P0) = P0 ⊗ 1 + 1 ⊗ P0,

�(P1) = P1 ⊗ 1 + e−zP0 ⊗ P1, (7)

�(K ) = K ⊗ 1 + e−zP0 ⊗ K .

In this basis, the deformed Casimir reads

Cz =
(

sinh (zP0/2)

z/2

)2

− ezP0(P 2
1 − �K 2). (8)

We point out that for � = 0 (the κ-Poincaré case), the momentum 
sector given by P0 and P1 generates an Abelian Hopf subalgebra, 
and the � = 0 Casimir function provides the well-known (1 + 1)

κ-Poincaré deformed dispersion relation (see e.g. [17]). Note also 
that the coproduct (7) does not depend on �, although this prop-
erty will not hold in higher dimensions.

2.2. The (2 + 1) κ-dS algebra

In (2 + 1) dimensions, the Poisson–Lie brackets of the (unde-
formed) dS algebra take the form

{ J , Pi} = εi j P j, { J , Ki} = εi j K j, { J , P0} = 0,{
Pi, K j

} = −δi j P0, {P0, Ki} = −Pi, {K1, K2} = − J ,

{P0, Pi} = −� Ki, {P1, P2} = � J ,

(9)

where i, j = 1, 2, and εi j is a skew-symmetric tensor with ε12 = 1
(note that for negative values of �, this bracket defines the AdS 
Poisson–Lie algebra). The two quadratic Casimir functions for (9)
are

C = P 2
0 − P2 − �( J 2 − K2), W = − J P0 + K1 P2 − K2 P1,

(10)

where P2 = P 2
1 + P 2

2 and K2 = K 2
1 + K 2

2 . Recall that C comes from 
the Killing–Cartan form and is related to the energy of a point 
particle, while W is the Pauli–Lubanski vector. The undeformed 
Hopf algebra structure is given by �0.

The (2 +1) κ-dS Poisson–Hopf algebra in the bicrossproduct ba-
sis is the Hopf algebra deformation with parameter z = 1/κ given 
by [35–37]

{ J , P0} = 0, { J , P1} = P2, { J , P2} = −P1,

{ J , K1} = K2, { J , K2} = −K1, {K1, K2} = − sin(2z
√

� J )
2z

√
�

,

{P0, P1} = −� K1, {P0, P2} = −� K2, {P1, P2} = �
sin(2z

√
� J )√ ,
2z �
{K1, P0} = P1, {K2, P0} = P2,

{P2, K1} = z (P1 P2 − �K1 K2) {P1, K2} = z (P1 P2 − �K1 K2) ,

{K1, P1} = 1

2z

(
cos(2z

√
� J ) − e−2zP0

)

+ z

2

(
P 2

2 − P 2
1

)
− z�

2

(
K 2

2 − K 2
1

)
,

{K2, P2} = 1

2z

(
cos(2z

√
� J ) − e−2zP0

)
+ z

2

(
P 2

1 − P 2
2

)

− z�

2

(
K 2

1 − K 2
2

)
, (11)

and with deformed coproduct map

�(P0) = P0 ⊗ 1 + 1 ⊗ P0, �( J ) = J ⊗ 1 + 1 ⊗ J ,

�(P1) = P1 ⊗ cos(z
√

� J ) + e−zP0 ⊗ P1 + �K2 ⊗ sin(z
√

� J )√
�

,

�(P2) = P2 ⊗ cos(z
√

� J ) + e−zP0 ⊗ P2 − �K1 ⊗ sin(z
√

� J )√
�

,

�(K1) = K1 ⊗ cos(z
√

� J ) + e−zP0 ⊗ K1 + P2 ⊗ sin(z
√

� J )√
�

,

�(K2) = K2 ⊗ cos(z
√

� J ) + e−zP0 ⊗ K2 − P1 ⊗ sin(z
√

� J )√
�

,

(12)

which explicitly depends on the cosmological constant �. The de-
formed Casimir function for this Poisson–Hopf algebra reads

Cz = 2

z2

[
cosh(zP0) cos(z

√
� J ) − 1

]

− ezP0
(

P2 − �K2
)

cos(z
√

� J ) − 2� ezP0
sin(z

√
� J )√

�
R3,

(13)

with R3 = ε3bc Kb Pc . Note that the projection to the κ-dS algebra 
in (1 + 1) dimensions is obtained by setting to zero the generators 
{P2, K2, J }.

The (2 + 1) κ-Poincaré Hopf algebra is smoothly recovered in 
the � → 0 limit and in this ‘flat’ case the momentum sector 
{P0, P1, P2} generates an Abelian Hopf subalgebra with coproducts

�(P0) = P0 ⊗ 1 + 1 ⊗ P0,

�(P1) = P1 ⊗ 1 + e−zP0 ⊗ P1, (14)

�(P2) = P2 ⊗ 1 + e−zP0 ⊗ P2.

Such a nonlinear superposition law for momenta is the essential 
footprint of a curved momentum space, which can be explicitly 
constructed by following the procedure presented in [9]. Essen-
tially, the κ-Poincaré momentum space is a three-dimensional 
manifold generated by the action on a certain ambient space of 
the three-dimensional dual Lie group G∗ whose Lie algebra g∗ ,

[
X0, X1

]
= −z X1,

[
X0, X2

]
= −z X2,

[
X1, X2

]
= 0,

(15)

is defined as the dual of the skew-symmetric part of the first order 
deformation in z of the coproducts (14). The Lie algebra (15) is the 
so-called (2 + 1) κ-Minkowski noncommutative spacetime [27,44]. 
Moreover, when � = 0 the deformed Casimir function

Cz = 2
2 [cosh(zP0) − 1] − ezP0 (P 2

1 + P 2
2), (16)
z
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provides the κ-Poincaré deformed dispersion relation in (2 + 1)

dimensions. The same construction can be straightforwardly gen-
eralized to the (3 + 1) κ-Poincaré algebra (see [9] and references 
therein).

The main obstruction to a similar construction when � �= 0 is 
readily seen by inspection of eq. (12). In fact, in the κ-dS case 
the momentum sector {P0, P1, P2} is no longer a Hopf subalgebra, 
since the coproduct of spatial momenta includes all the generators 
{ J , K1, K2} of the Lorentz sector (note that this is not the case in 
(1 + 1) dimensions, where the coproduct does not depend on �). 
Moreover, the deformed Casimir Cz contains the Lorentz genera-
tors as well, and this feature is also present in the (1 + 1) case 
(see eq. (8)). These two observations hold true also in the (3 + 1)

κ-dS Poisson–Hopf algebra that has been explicitly presented for 
the first time in [38].

We already mentioned that Hopf-algebraic deformations of 
spacetime symmetries can be endowed with a phenomenological 
interpretation. Specifically, the Casimir Cz of the algebra deter-
mines the dispersion relation of free particles, while the coproduct 
of the translation generators determines the rules of conservation 
of energy and spatial momentum in interactions [17]. Therefore, 
when � �= 0 we can say that both the conservation rules in inter-
actions and the deformed dispersion relation involve an enlarged 
set of ‘momenta’, including also the angular momentum and the 
‘hyperbolic’ momenta corresponding, respectively, to the rotation 
and to boost transformations (hyperbolic rotations). In this frame-
work, it seems natural to propose that when � �= 0 the (curved) 
momentum space is defined by an enlarged space parametrized 
by the six coordinates that are dual to the generators of the full 
quantum algebra. Nevertheless, a simple inspection at the coprod-
ucts (12) shows that the role of the J generator is somewhat 
different from that of K1 and K2, since the latter have coproducts 
which are formally equivalent to those of P1 and P2. All these as-
pects will have a clear interpretation once the explicit construction 
of the κ-dS momentum space is performed in the following sec-
tion.

3. Momentum space for the κ-dS Poisson–Hopf algebra

As anticipated above, in this section the momentum space for 
the κ-dS Poisson algebra with nonvanishing cosmological constant 
will be constructed as the full dual Poisson–Lie group G∗

� , whose 
Lie algebra g∗

� is provided by the dual of the cocommutator map 
δ generated by the coproduct of all the κ-dS generators in the bi-
crossproduct basis, including the Lorentz sector. This construction 
will be firstly illustrated in (1 + 1) dimensions. While this case is 
simpler, it does not allow to appreciate the richness of structure 
characterising higher-dimensional models. The consistency and ge-
ometric features of our approach will be made fully explicit in the 
second subsection, where we demonstrate the full construction for 
the (2 + 1)-dimensional case.

3.1. The (1 + 1) case

The cocommutator map for the full κ-dS algebra can be read 
from the skew-symmetric part of the first-order deformation in z
of the coproduct (7), namely

δ(P0) = 0, δ(P1) = z P1 ∧ P0, δ(K ) = z K ∧ P0. (17)

If we denote by {X0, X1, L} the generators dual to, respectively, 
{P0, P1, K }, the dual Lie algebra g∗

� is given by the Lie brackets[
X0, X1

]
= −z X1,

[
X0, L

]
= −z L,

[
X1, L

]
= 0. (18)

A faithful representation ρ of this Lie algebra for � �= 0 is given by 
the 4 × 4 matrices
ρ(X0) = z

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ ρ(X1) = z

⎛
⎜⎜⎝

0 1 0 0
1 0 0 1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

ρ(L) = z
√

�

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ . (19)

If we denote as {p0, p1, χ} the local group coordinates which are 
dual, respectively, to {X0, X1, L}, then the group element of the 
dual Lie group G∗

� is given by:

G∗
� = exp

(
p1ρ(X1)

)
exp (χρ(L)) exp

(
p0ρ(X0)

)
. (20)

A straightforward computation leads to the following explicit ma-
trix

G∗
� =

⎛
⎜⎜⎝

cosh(zp0) + 1
2 ez p0 z2(p2

1 + �χ2) zp1 z
√

�χ sinh(zp0) + 1
2 ez p0 z2(p2

1 + �χ2)

ez p0 zp1 1 0 ez p0 zp1

ez p0 z
√

�χ 0 1 ez p0 z
√

�χ

sinh(zp0) − 1
2 ez p0 z2(p2

1 + �χ2) −zp1 −z
√

�χ cosh(zp0) − 1
2 ez p0 z2(p2

1 + �χ2)

⎞
⎟⎟⎠.

(21)

The multiplication law for the group G∗
� is obtained by multi-

plying two matrices of the form (21), and it can be written as a 
co-product (see [43]) in the form

�(p0) = p0 ⊗ 1 + 1 ⊗ p0, �(p1) = p1 ⊗ 1 + e−zp0 ⊗ p1,

�(χ) = χ ⊗ 1 + e−zp0 ⊗ χ. (22)

As the quantum duality principle indicates, this coproduct is just 
the one (7) for the κ-dS algebra once one identifies the dual group 
coordinates and the generators of the κ-dS Poisson–Hopf algebra 
as follows:

p0 ≡ P0, p1 ≡ P1, χ ≡ K . (23)

Moreover, by following the technique presented in [43] it can 
be shown that the unique Poisson–Lie structure on G∗

� that is 
compatible with the coproduct (22) and has the undeformed dS 
Lie algebra (1) as its linearization is given by the Poisson brackets

{χ, p0} = p1, {χ, p1} = 1 − exp(−2zp0)

2z
− z

2
(p2

1 − �χ2),

{p0, p1} = −�χ, (24)

which is exactly the κ-dS algebra (6) under the identification (23). 
Evidently, the Casimir function for this Poisson bracket is

Cz =
(

sinh (zp0/2)

z/2

)2

− ezp0(p2
1 − �χ2). (25)

In this way, the composition law for the momenta with κ-dS 
symmetry (7) has been reobtained as the group law (22) for 
the coordinates of the dual Poisson–Lie group G∗

� , and the κ-dS 
Casimir function (8) can be interpreted as an on-shell relation (25)
for these coordinates.

We stress that the main novelty with respect to the κ-Poincaré 
case described in [9] is the fact that the dual Lie group G∗

� is now 
three-dimensional, and the momentum space associated to κ-dS is 
parametrized by the three coordinates {p0, p1, χ}, and not only by 
the momenta associated to spacetime translations. Moreover, both 
in the coproduct (22) and the Casimir function (25) the role of 
the parameters χ and p1 turns out to be identical, which supports 
the role of the former as an additional ‘hyperbolic’ momentum for 
quantum symmetries with nonvanishing cosmological constant.
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An explicit geometric interpretation of this enlarged momen-
tum space can be obtained along the same lines of [9] by observing 
that the entries of the fourth column in G∗

� , given by

S0 = sinh(zp0) + 1

2
ez p0 z2(p2

1 + �χ2),

S1 = ez p0 z p1,

S2 = ez p0 z
√

�χ, (26)

S3 = cosh(zp0) − 1

2
ez p0 z2(p2

1 + �χ2),

satisfy the defining relation for the (2 + 1)-dimensional dS space,

−S2
0 + S2

1 + S2
2 + S2

3 = 1. (27)

Moreover, if we consider a linear action of the Lie group G∗
�

onto a four-dimensional ambient Minkowski space with coordi-
nates (S0, S1, S2, S3), we have that

G∗
� · (0,0,0,1)T = (S0, S1, S2, S3)

T , (28)

which means that the (2 + 1)-dimensional dS space is generated 
through G∗

� as the orbit that passes through the point (0, 0, 0, 1) in 
the ambient space, corresponding to the origin of the (generalized) 
momentum space. Note that the orbit passing through the point 
(0, 0, 0, α), with α �= 0, would satisfy −S2

0 + S2
1 + S2

2 + S2
3 = α2. 

Moreover, we have that the condition

S0 + S3 = ez p0 > 0, (29)

is automatically obeyed, so that only half of the (2 + 1)-
dimensional dS space is generated as an orbit of the free action 
of G∗

� , and we will denote this manifold as MdS3 . Finally, when 
� = 0 the ambient coordinate S2 vanishes, as well as the realiza-
tion ρ(L) of the dual of the boost generator, thus recovering the 
well-known interpretation of the κ-Poincaré momentum space as 
(half of) a (1 + 1)-dimensional dS space, i.e., MdS2 .

3.2. The (2 + 1) case

The very same procedure described in the previous section can 
be applied to the construction of the momentum space associated 
to the (2 + 1) κ-dS Poisson–Hopf algebra. The skew symmetrized
first order in z of the coproduct (12) is given by the cocommutator 
map

δ(P0) = δ( J ) = 0,

δ(P1) = z(P1 ∧ P0 + � K2 ∧ J ),

δ(P2) = z(P2 ∧ P0 − � K1 ∧ J ), (30)

δ(K1) = z(K1 ∧ P0 + P2 ∧ J ),

δ(K2) = z(K2 ∧ P0 − P1 ∧ J ).

Denoting by {X0, X1, X2, L1, L2, R} the generators dual to, respec-
tively, {P0, P1, P2, K1, K2, J }, the Lie brackets defining the Lie al-
gebra g∗ of the dual Poisson–Lie group G∗

� are

[X0, X1] = −z X1, [X0, X2] = −z X2, [X1, X2] = 0,

[X0, L1] = −z L1, [X0, L2] = −z L2, [L1, L2] = 0,

[R, X2] = −z L1, [R, L1] = z � X2, [L1, X2] = 0,

[R, X1] = z L2, [R, L2] = −z � X1, [L2, X1] = 0,

[R, X0] = 0, [L1, X1] = 0, [L2, X2] = 0.

(31)

A (faithful) representation ρ of this Lie algebra for � �= 0 is given 
by the 6 × 6 matrices
ρ(X0) = z

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

ρ(X1) = z

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

ρ(X2) = z

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

ρ(L1) = z
√

�

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

ρ(L2) = z
√

�

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

ρ(R) = z
√

�

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(32)

If we denote as {p0, p1, p2, χ1, χ2, θ} the local group coordinates 
which are dual, respectively, to {X0, X1, X2, L1, L2, R}, then the Lie 
group element G∗

� can be written as

G∗
� = exp (θρ(R)) exp

(
p1ρ(X1)

)
exp

(
p2ρ(X2)

)

× exp
(
χ1ρ(L1)

)
exp

(
χ2ρ(L2)

)
exp

(
p0ρ(X0)

)
, (33)

and its explicit expression can be straightforwardly computed, al-
though we omit it here for the sake of brevity. By multiplying two 
of these generic group elements, the group law for G∗

� can be di-
rectly derived and written as the following coproduct map for the 
six dual group coordinates:

�(p0) = p0 ⊗ 1 + 1 ⊗ p0, �(θ) = θ ⊗ 1 + 1 ⊗ θ,

�(p1) = p1 ⊗ cos(z
√

�θ) + e−zp0 ⊗ p1 + �χ2 ⊗ sin(z
√

�θ)√
�

,

�(p2) = p2 ⊗ cos(z
√

�θ) + e−zp0 ⊗ p2 − �χ1 ⊗ sin(z
√

�θ)√
�

,

�(χ1) = χ1 ⊗ cos(z
√

�θ) + e−zp0 ⊗ χ1 + p2 ⊗ sin(z
√

�θ)√
�

,

�(χ2) = χ2 ⊗ cos(z
√

�θ) + e−zp0 ⊗ χ2 − p1 ⊗ sin(z
√

�θ)√
�

.

(34)

Again, under the identification

p0 ≡ P0, p1 ≡ P1, p2 ≡ P2, χ1 ≡ K1, χ2 ≡ K2, θ ≡ J ,

(35)

this is exactly the coproduct for the κ-dS Poisson–Hopf algebra 
given in (12), and the unique Poisson–Lie structure on G∗

� that is 
compatible with (34) and has the undeformed dS Lie algebra (9)
as its linearization is the deformed Poisson algebra given by (11).

In order to provide a geometric interpretation of the six-
dimensional generalized momentum space manifold, we proceed 
similarly to the (1 + 1) case and consider the action of G∗

� onto 
an ambient space. The entries of the sixth column in the matrix 
realization (33) are

S0 = sinh(zp0) + 1

2
ez p0 z2

(
p2

1 + p2
2 + �

(
χ2

1 + χ2
2

))
,

S1 = ez p0 z (cos(z
√

�θ) p1 − √
� sin(z

√
�θ)χ2),
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S2 = ez p0 z (cos(z
√

�θ) p2 + √
� sin(z

√
�θ)χ1),

S3 = ez p0 z (− sin(z
√

�θ) p2 + √
� cos(z

√
�θ)χ1), (36)

S4 = ez p0 z (sin(z
√

�θ) p1 + √
� cos(z

√
�θ)χ2),

S5 = cosh(zp0) − 1

2
ez p0 z2

(
p2

1 + p2
2 + �

(
χ2

1 + χ2
2

))
,

and satisfy the condition

−S2
0 + S2

1 + S2
2 + S2

3 + S2
4 + S2

5 = 1, (37)

which is the defining relation for the (4 +1)-dimensional dS space. 
Therefore, by assuming that the space of generalized momenta is 
the group manifold for the dual group G∗

� , we can conclude that a 
linear action of the Lie group G∗

� onto a six-dimensional ambient 
Minkowski space with coordinates (S0, S1, S2, S3, S4, S5) allows us 
to obtain a (4 + 1) dS space as the orbit that passes through the 
point in the ambient space with coordinates (0, 0, 0, 0, 0, 1), which 
is the origin of the (generalized) momentum space. Moreover, we 
have that S0 + S5 = ez p0 > 0, so only half of the dS space is gener-
ated in this way, and we will denote this manifold as MdS5 . There-
fore, the (1 + 1) construction can be generalized to this (2 + 1)

setting, although some distinctive features of the latter are worth 
to be stressed.

Firstly, given that in the (2 +1) case one has six symmetry gen-
erators, one would naively expect that the generalized momentum 
space be a six dimensional manifold, given that in the (1 + 1) case 
the dimensionality of the manifold corresponds to the number of 
symmetry generators. Instead, we demonstrated the emergence of 
a five-dimensional orbit under the action of G∗

� . The reason for this 
is the completely different role that the dual rotation (R, θ) plays 
with respect to the dual boosts (Li, χi), both in the coproduct and 
in the action (36). In particular, it is immediate to check that the 
isotropy subgroup of the point (0, 0, 0, 0, 0, 1) is just the one given 
by G∗

0 = exp (θρ(R)). Therefore, the full momentum space for the 
κ-dS algebra in (2 +1) dimensions is the six-dimensional manifold 
MdS5 × S1, where the rotation coordinate θ is the one parametriz-
ing S1 while (pi, χi) parametrize MdS5 .

Secondly, under the identification (35) the deformed Casimir is 
written as the following function on the generalized momentum 
space:

Cz = 2

z2

[
cosh(zp0) cos(z

√
�θ) − 1

]

− ezp0
(

p2
1 + p2

2 − �(χ2
1 + χ2

2 )
)

cos(z
√

�θ)

− 2� ezp0
sin(z

√
�θ)√

�
R3, (38)

which involves all the translation and Lorentz momenta. Neverthe-
less, if we specialize this function onto the five-dimensional orbit 
MdS5 by taking the S1 coordinate θ = 0, we get

Cz = 2

z2 [cosh(zp0) − 1] − ezp0
(

p2
1 + p2

2 − �(χ2
1 + χ2

2 )
)

, (39)

which is an on-shell relation that is just a higher dimensional gen-
eralization of the one obtained in the (1 +1) κ-dS case, eq. (25). In 
this way, the striking equivalence between the role played by the 
momenta associated to space translations and boosts is manifestly 
shown.

Finally, the (2 + 1) κ-Poincaré construction is again straightfor-
wardly recovered in the limit � → 0, where the action (36) pro-
vides S3 = S4 = 0 and the representation (32) is only defined for 
{X0, X1, X2}, thus giving rise to (half of) a (2 + 1) dS space as an 
orbit under the action of the corresponding three-dimensional dual 
group. Summarizing, in (2 + 1) dimensions the momentum space 
for κ-dS is found to be the six-dimensional manifold MdS5 × S1, 
while its κ-Poincaré limit was known to be the three-dimensional 
one MdS3 .

4. Concluding remarks

Deformed special relativity (DSR) theories are characterized by 
the presence of an energy scale that plays the role of a second rel-
ativistic invariant besides the speed of light. Such an energy scale 
allows the geometry of momentum space to be nontrivial, and in 
fact it is a general feature of DSR models that the manifold of mo-
menta has nonzero curvature.

In this paper we have shown that the curved momentum space 
construction can be extended to cases where also a nonvanish-
ing spacetime cosmological constant is present. We explored in 
particular the momentum space of the κ-deformation of the dS al-
gebra, called κ-dS, and we showed that one can construct a curved 
generalized-momentum space, that includes not only the momenta 
associated to spacetime translations but also the hyperbolic mo-
menta associated to boosts. The procedure is an adaptation of the 
one that was successfully used to show that the momentum space 
of the κ-Poincaré algebra has the geometry of (half of) a dS man-
ifold and is generated by the orbits of the dual Poisson–Lie group. 
The construction here presented can be applied to any other Hopf 
algebra deformation of kinematical symmetries with nonvanish-
ing �, although the orbit structure of the momentum space so 
obtained will indeed depend on the chosen quantum deformation.

The construction in (1 + 1) dimensions is quite straightfor-
ward once one realizes that the boosts play a very similar role 
to spatial translations in the structure of the algebra and coalge-
bra. We indeed found that the generalized-momentum manifold is 
a (2 +1)-dimensional dS manifold, whose coordinates are the local 
group coordinates associated to spacetime translations and boosts.

In (2 + 1) dimensions matters are complicated by the presence 
of a rotation generator in the algebra, that significantly compli-
cates its structure. However the rotation generator has a peculiar 
role in the structure of the algebra and coalgebra, while boosts 
still behave similarly to spatial translations. We were indeed able 
to construct the generalized momentum space of the (2 + 1) κ-dS 
algebra whose coordinates are the local group coordinates associ-
ated to spacetime translations and boosts, and we showed that this 
is half of a (4 +1)-dimensional dS manifold, for which the dual ro-
tation generator generates the isotropy subgroup of the origin.

It is worth mentioning that the formalism here presented, in 
which � is considered as an explicit ‘classical’ deformation param-
eter (and this fact is connected with the so-called ‘semidualization’ 
approaches in (2 + 1) quantum gravity [45,46]), suggests the pos-
sibility of performing the same construction of the generalized 
momentum space for the κ-AdS (Anti de Sitter) algebra by tak-
ing � < 0. It turns out that one can indeed work out fully the 
κ-AdS counterpart of the results described above. The main differ-
ence between the κ-dS and κ-AdS cases arises from the dual group 
representation (32), which has to be modified in the � < 0 case in 
order to have a real representation of the corresponding dual Lie 
group G∗

� . The latter can be explicitly constructed and leads to an 
action on the point (0, 0, 0, 0, 0, 1) that generates the quadric

−S2
0 + S2

1 + S2
2 − S2

3 − S2
4 + S2

5 = 1, (40)

which is no longer the MdS5 momentum space. Nevertheless, the 
� → 0 limit of this action annihilates the S3 and S4 coordinates, 
thus giving rise to the same κ-Poincaré limit as the one previously 
obtained from the κ-dS algebra, as it should be.

While the point of this paper was clearly made limiting the 
analysis to lower-dimensional algebras, the application of the ap-
proach here presented to the construction of the momentum space 
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for the (3 + 1)-dimensional κ-dS algebra seems to be feasible. In 
fact, the full κ-dS Poisson Hopf algebra in (3 + 1) dimensions has 
been recently presented in [38], and its corresponding momentum 
space should be obtained as a 10-dimensional dual Poisson–Lie 
group manifold by mimicking the procedure here presented. In 
fact, by direct inspection of the expressions for the coproduct and 
cocommutator map in the (3 + 1) κ-dS algebra [38], the formal 
similarity between boosts and spatial momenta is again evident, 
while the three rotations are composed in a completely different 
way. This is work in progress and will be presented elsewhere, in-
cluding the analysis of the momentum space for the (3 + 1) κ-AdS 
algebra. Also, it would be interesting to use this approach in or-
der to construct the curved momentum spaces for other quantum 
deformations of kinematical symmetries with nonvanishing cos-
mological constant, like for instance the (2 + 1) (A)dS quantum 
group recently introduced in [47] or other possible quantum (A)dS 
deformations (see [48,49]).
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