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This paper studies a two dimensional boundary value problem described by a

tensorial equation in a bounded domain. Once its more general de�nition is given,

we conclude that its analysis is linked to the resolution of an overdetermined

hyperbolic problem; hence some discussions and considerations are presented.

Secondly, for a simpli�ed version of the original formulation, which leads to a

degenerate problem on a rectangle, we prove the existence and uniqueness of a

solution under proper assumptions on the data.
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1 Introduction, motivation and structure of the paper

It is well known that the Dirichlet problem associated to a hyperbolic equation

is often employed as an example of an ill posed problem in the theory of hyper-

bolic partial di�erential equations ([1]). Nevertheless, a wide range of real problems

arising in nature (gas dynamics, torsion theory of shells with alternating sign curva-

ture, mechanical behaviors of bending structures, etc.), are in fact mathematically

described through hyperbolic equations; thereafter, a deserving undertaking is de-

veloping a casuistry for which such problems are, indeed, well posed.

In this sense, matter of this investigation are the existence and uniqueness of a

solution to a tensorial boundary value problem whose analysis requires the study of

a hyperbolic equation. Precisely, the corresponding formulation models the equilib-

rium of membrane structures, used in civil engineering applications. It is worth to

underline that these equilibrium equations are not new, but linked to those dealing

with shell structures (see the fundamental monograph [2] and also [3])[1] and are

given by:


σxx,x + σxy,y = 0 in Ω,

σxy,x + σyy,y = 0 in Ω,

z,xxσxx + 2z,xyσxy + z,yyσyy = 0 in Ω,

boundary conditions on Γ = ∂Ω.

(1)

[1]In this paper the partial derivative of a function f with respect to a certain variable

w is indicated with f,w; similar symbols concerning higher order derivatives (double

or mixed) are introduced in a natural way.
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In system (1), z = z(x, y) is a regular function de�ned in a bounded domain Ω ⊂ R2,

with piecewise smooth boundary Γ = ∂Ω, and its graph represents the shape of the

shell; similarly,

σ = σ(x, y) =

(
σxx(x, y) σxy(x, y)

σyx(x, y) σyy(x, y)

)

is a symmetric second order stress tensor which determines the state (compression

or tension) of the same shell.

The main di�erence between the equilibrium approach for shell structures and that

for membrane ones are discussed, for instance, in [4, 5, 6] and references therein.

Even though this paper goes beyond the technical and physical aspects addressed

in the previous three references, it must be speci�ed that, from the mathematical

point of view, if on the one hand no assumption on the function z nor the tensor

σ appearing in system (1) is required for the analysis of the equilibrium of shell

structures, on the other hand considering membrane elements implies the following

restrictions:

(H1) the graph of z represents an almost everywhere (a.e.) negative Gaussian

curvature (alternating sign curvature) surface[2] i.e.

z,xxz,yy − z2,xy < 0 a.e. in Ω̄;

(H2) tensor σ is almost everywhere positive de�nite i.e.

σxxξ
2
1 + 2σxyξ1ξ2 + σyyξ

2
2 > 0 ∀ (ξ1, ξ2) 6= (0, 0) and a.e. in Ω̄[3].

In other words, any pair (z,σ) verifying system (1) models the equilibrium of a shell

whose shape has not necessarily a constant sign curvature and with very general

stress state (compression, tension or both). Of course, for a given z with a.e. positive

Gaussian curvature, an a.e. negative, a.e. positive or alternating sign de�nite σ

balancing z might be derived; nevertheless, no one of these cases would represent

the equilibrium of a membrane structure. Indeed, a balanced pair (z,σ) for a �xed z

with a.e. negative Gaussian curvature and a.e. negative, a.e. positive or alternating

sign de�nite σ, idealizes in only one case the equilibrium of a membrane structure.

Coming back to the framework of the equilibrium for membrane structures (which,

as already commented, justi�es this investigation), the discussion presented above

naturally allows us to de�ne two complementary approaches resulting from system

(1):

(HP) a problem of hyperbolic type where the tensor σ is the unknown: given a

function z with a.e. negative Gaussian curvature �nd an a.e. positive de�nite

tensor σ ful�lling (1);

(EP) a problem of elliptic type where the function z is the unknown: given an a.e.

positive de�nite tensor σ verifying the �rst two PDEs of (1), �nd a function

z with a.e. negative Gaussian curvature ful�lling (1).

[2]With some abuse of language we also use sentences as z has an a.e. negative Gaussian

curvature or z is a function with a.e. negative Gaussian curvature or similar; in any case, no

misunderstanding will be possible from the context.
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In this work we will mainly dedicate to problem (HP): furthermore, due to the high

complementarity between (HP) and (EP), we might make mention to this latter

approach, for which partial results are available in the literature.

The remaining structure of the paper is drawn as follows: In §2 we formulate the

so called General Problem associated to (HP), which is a very broad (tenso-

rial) boundary value problem modeling an optimal mechanical scenario appearing

in membrane structures. As detailed in [4, 5, 7], the boundary of the domain is

split in two parts; on a portion, mechanically corresponding to the boundary of

the membrane tensioned by rigid elements (which admit any geometrical shape),

a Dirichlet boundary condition is assumed, whilst on the remaining part, associ-

ated to the complementary boundary of the membrane tensioned by cables (which

cannot be straight lines, nor changing curvature curves), an unusual boundary re-

lation is given. We discuss the main mathematical properties of this formulation,

also in terms of other well known results, and we conclude that this is an overde-

termined, generally ill posed, problem, for which the part of the domain with the

singular boundary condition (free boundary) plays the role of a further unknown.

In addition, §3 deals with the analytical resolution of the Reduced Problem, a

simpli�ed version of the General Problem, linked to a more restrictive physical

situation, where the membrane is only tensioned by rigid elements: we examine a

speci�c case in a rectangle for which the resulting Dirichlet boundary problem ad-

mits an explicit unique solution. Speci�cally, once a polynomial for the function z

is �xed in such a way that its graph identi�es a surface with a.e. negative Gaus-

sian curvature, by manipulating the tensorial expressions of the problem, the main

equation reads cy2(n−1)σyy,xx − σyy,yy = 0 in (0, a)× (−b, 0), with some a, b, c > 0

and n an integer greater than 1, exactly degenerating for y = 0. Connected to the

last partial di�erential equation (PDE), the question of well posedness of boundary

value problems for linear second order PDEs of the form ψ(y)u,xx−u,yy = 0, where

ψ is a su�ciently regular function with speci�c properties, has been studied in

several works: contributions as [8, 9, 10, 11] (and references therein) include discus-

sions concerning the notorious special case of the mixed elliptic-hyperbolic Tricomi

equation, obtained for ψ(y) = y, and provide a general comprehensive picture of

the whole analysis. Also in line with these works, we cite paper [12], employed in

this present investigation to prove the main result asserted in Theorem 3.1 and, in

particular, to construct the claimed explicit solution σ to system (1). Finally, in

order to mathematically point out the di�erent physical behaviors between shells

and membranes, in §4 we also solve the same Reduced Problem presented in §3
but in the case where no restriction on the sign of σ is required (Theorem 4.1);

besides, we give a graphical representation of the derived solutions corresponding

to the two mechanical situations.

2 The General Problem
The following section includes some necessary tools used to our main purposes.

2.1 De�nition of the domain and the boundary data

In order to formulate the General Problem associated to system (1), we need to prop-

erly de�ne its domain and boundary data. The items below address these questions

and are graphically represented in the left side of Figure 1.
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Assumptions 2.1 We consider a function z = z(x, y) with a.e. negative Gaussian

curvature in Ω̄, in the sense of (H1), Ω being a bounded subset of R2 with piecewise

smooth boundary ∂Ω, obtained by the union of two portions; precisely Γ = ∂Ω =

Γr ∪ Γc and has the following properties[4]:

(i) Γc is represented by a regular curve in R2, with no vanishing curvature, whose

parametrization is given by γ(t) = (x(t), y(t)), with t ∈ [t0, t1], and obtained

by solving this ordinary di�erential equation:

z,xx(x′)2 + 2z,xyx
′y′ + z,yy(y′)2 = 0. (2)

(ii) Γr is arbitrarily �xed, but in such a way that Γr ∩ Γc = {P0, P1}, where

P0 = γ(t0) and P1 = γ(t1).

(iii) n is the outward unit vector to Γ.

(iv) fr = (fr1 , f
r
2 ) and f c = (f c1 , f

c
2) are two regular vectorial �elds, per unit

length, de�ned on Γr and Γc, respectively; in addition the continuity conditions

fr(P0) = f c(P0) and fr(P1) = f c(P1) have to be satis�ed.

2.2 Mathematical formulation of the General Problem

Let us now describe the details of the General Problem we are interested in.

General Problem 1 Under the hypothesis of Assumptions 2.1, �nd a symmetric

and a.e. positive de�nite second order tensor σ = σ(x, y) in Ω̄ and a real function

g de�ned in Γc such that



σxx,x + σxy,y = 0 in Ω,

σxy,x + σyy,y = 0 in Ω,

z,xxσxx + 2z,xyσxy + z,yyσyy = 0 in Ω̄,

σ · n = fr on Γr,

σ · n = f c on Γc,

(3a)

(3b)

(3c)

(3d)

(3e)

and 
(gx′)′ = f c1 on Γc (t ∈ [t0, t1]),

(gy′)′ = f c2 on Γc (t ∈ [t0, t1]),

g(t0) = g0,

(4)

where g0 is a given real number.

2.3 Analysis and discussion of the General Problem

Since the vectorial �eld f c has to verify both expressions (3e) and (4), it cannot

be uniquely and arbitrarily assigned (see the Counterexample 1 below). Essentially

this singularity is tied to the fact that the unknowns σ and g are coupled through

f c and that, even more, they are especially linked to the domain Γc; subsequently,

[4]Let us remark that as indicated in the paragraphs of §1 dealing with the General

Problem, the superscripts r and c stand for rigid and cable.
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the General Problem 1 represents an overdetermined system which, commonly, does

not admit solutions.

Moreover, so far we did not manage to derive a nontrivial analytical solution to

the same problem; indeed the question how to �x (z,σ, γ,f c,fr, g, g0) such that

all the relations (2), (3) and (4) hold seems rather challenging. In line with this,

the case where z is a linear function has no mathematical interest (and even less

physical), since relation (3c) is automatically veri�ed and, in addition, any γ(t) =

(x(t), y(t)) is compatible with condition (2); hence the problem merely loses its

intrinsic nature. The same mathematical and physical reasons make that functions

behaving as z(x, y) = α2x2−β2y2, with α, β ∈ R0, do not lead to stimulating issues,

since (2) would infer straight lines parametrized as γ(t) =
(
t,∓(α/β)t+ constant

)
for Γc, and essentially the General Problem would �degenerate� to the forthcoming

Reduced Problem (see page 6).

Returning to overdetermined boundary value problems, there exists a large

amount of literature dealing with the subject; in general these problems are pre-

scribed by a classical partial di�erential equation where both Dirichlet and Neumann

boundary conditions are imposed on the boundary of the domain. Some meriting

questions about the analysis are the proof of the existence of a solution, possibly

uniqueness and the study of its properties. The main characteristic of the overde-

termined problems is that such an over-determination makes the domain itself un-

known (free boundary problems), or in general it cannot be arbitrarily assigned,

resulting solvable only in precise domains; beyond the landmark result by Serrin

[13], we refer also to [14, 15, 16, 17] for contributions regarding both elliptic and

hyperbolic equations.

Remark 1 As to the speci�c problem we are focusing here, let us quote that the

elliptic version of the General Problem 1, herein indicated with (EP) and brie�y

de�ned in §1, has been deeply discussed by the same author of this paper in re-

cent investigations. We mention that the complete formulation of problem (EP)
corresponds to a boundary value problem, in the unknown z, described by an ellip-

tic di�erential equation in Ω. The portion Γc of Γ is indeed constructed by means

of σ (which in this case is �xed) and f c. Finally, the whole Γ is endowed with

Dirichlet boundary conditions but, in accordance to overdetermined problems, on

Γc another relation involving z,y and replacing expression (2) has to be satis�ed

as well. The technical aspects for the construction of Γc and the de�nition of the

complete boundary value problem are available in [18] and [7]; in particular, as for

the General Problem, the questions of the existence and the derivation of an explicit

solution are still open. Conversely in the last two aforementioned contributions an

equivalent number of numerical procedures exactly tied to free boundary approaches

are proposed and employed as resolution methods.

Counterexample 1 (Ill posedness of the General Problem). Let us �x z(x, y) =

−A2x4 + 6B2y2 (with A,B ∈ R0). From equation (2), we can choose as Γc the

curve γ(t) = (t, (A/2B)t2), with t ∈ [t0, t1]. In addition, σxx = 1, σxy = σyx = 0

and σyy = (A2/B2)x2 is a symmetric and positive de�nite tensor a.e. in R2

which solves equations (3a), (3b) and (3c). As to the expression of f c, since

n = 1/||γ′(t)||(−(A/B)t, 1), relation (3e) infers f c = (−(A/B)t, (A2/B2)t2)

on Γc; thereafter from the �rst and last conditions of (4) we arrive at g(t) =
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−(A/2B)t2 + g0 + (A/2B)t20 which, in view of the second relation of (4), leads to

the following incongruence: −(3A2/2B2)t2 + g0(A/B) + (A2/2B2)t20 = (A2/B2)t2

for all t ∈ [t0, t1].

3 The Reduced Problem

3.1 Mathematical formulation of the Reduced Problem

Let us now introduce the Reduced Problem; essentially, its de�nition corresponds

to set Γc = ∅ in Assumptions 2.1. Therefore, Γc, f c and g do not take part in the

formulation and, subsequently, we have Γ = Γr = ∂Ω; moreover, for convenience,

we avoid the superscript r for fr, and we directly consider f as a given vectorial

�eld, per unit length, on Γ = ∂Ω.

Reduced Problem 1 Under the hypothesis of Assumptions 2.1, let us set Γc = ∅.
Find a symmetric and a.e. positive de�nite second order tensor σ = σ(x, y) in Ω̄

such that


σxx,x + σxy,y = 0 in Ω,

σxy,x + σyy,y = 0 in Ω,

z,xxσxx + 2z,xyσxy + z,yyσyy = 0 in Ω̄,

σ · n = f on Γ.

(5a)

(5b)

(5c)

(5d)

In the rest of this section we show the existence and uniqueness of a solution to the

Reduced Problem 1 de�ned in a rectangle.

3.2 A case of explicit resolution in a rectangle

For any a, c1 > 0 and n ∈ N with n > 1, let us consider the rectangle Ω =

(0, a) × (−b, 0), with b = n1/n, and the function z(x, y) = c1x
2 − c2y

2n, where

c2 = a2c1/(n(2n − 1)), which satis�es z,xxz,yy − z2,xy < 0 a.e. in Ω̄. Di�erentiating

(5a) with respect to x and (5b) to y, and subtracting the results each other, give

σxx,xx − σyy,yy = 0 in Ω. (6)

On the other hand, in view of the expression of z, relation (5c) infers

σxx =
c2n(2n− 1)

c1
y2(n−1)σyy in Ω̄. (7)

Hence, (6) and (7) lead to

c2n(2n− 1)

c1
y2(n−1)σyy,xx − σyy,yy = 0 in Ω, (8)

which degenerates for y = 0. In order to endow this equation with the desired

Dirichlet conditions for the unknown σyy, let us treat the vectorial �eld f on Γ and
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let us write

f =


(γ1(y), γ2(y)) on x = a,

(−γ1(y), γ3(y)) on x = 0,

(θ1(x), θ2(x)) on y = 0,

(θ3(x),−θ2(x)) on y = −b.

In the previous de�nition, γi(y) and θi(x) (for i = 1, 2, 3) are continuous functions

for −b ≤ y ≤ 0 and 0 ≤ x ≤ a, respectively, which will be chosen later on;

subsequently, being n = (∓1, 0), respectively on x = 0 and x = a, and n = (0,∓1),

respectively on y = −b and y = 0, the boundary conditions (5d) read
σxx(a, y) = σxx(0, y) = γ1(y),

σxy(a, y) = γ2(y) and σxy(0, y) = −γ3(y),

σxy(x, 0) = θ1(x) and σxy(x,−b) = −θ3(x),

σyy(x, 0) = σyy(x,−b) = θ2(x).

(9)

Additionally, if γ1 = γ1(y) is such that the function

γ(y) =
γ1(y)c1

c2n(2n− 1)y2(n−1)

is itself continuous in −b ≤ y ≤ 0, in light of (7), (8) and (9) we arrive to this

boundary value problem
c2n(2n−1)

c1
y2(n−1)σyy,xx − σyy,yy = 0 in Ω,

σyy(x, 0) = σyy(x,−b) = θ2(x),

σyy(0, y) = σyy(a, y) = γ(y),

(10)

for which we �x these proper assumptions:

γ(0) = γ(−b) = θ2(0) = θ2(a) = K ∈ R and γ2(0) = H ∈ R. (11)

Hence, let us translate the unknown σyy through

u(x, y) = σyy(x, y)− [γ(y) + θ2(x)−K], (12)

and successively let us rescale x by the homogeneous dilation mapping (0, 1) onto

(0, a) and given by x(X) = aX; the new variable U(X, y) = u(aX, y) and data

Θ(X) = θ2(ax) are so obtained. These two transformations, in conjunction with

the relation c2 = a2c1/(n(2n− 1)), reduce (10) to


y2(n−1)U,XX − U,yy + Θ′′(X)y2(n−1) − γ′′(y) = 0 in (0, 1)× (−b, 0),

U(X, 0) = U(X,−b) = 0,

U(0, y) = U(1, y) = 0.

(13)
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Now, let us impose Θ′′(X)y2(n−1)− γ′′(y) = 0, i.e. Θ′′(X) = γ′′(y)/y2(n−1) = λ, for

some λ ∈ R. This provides, thanks to the �rst continuity conditions (11) which for

−b ≤ y ≤ 0 and 0 ≤ x ≤ 1 are γ(0) = γ(−b) = Θ(0) = Θ(1) = K,

Θ(X) =
λ

2
X2− λ

2
X+K and γ(y) =

λ

2n(2n− 1)
y2n+

λb2n−1

2n(2n− 1)
y+K; (14)

as a consequence, problem (13) is equivalent to
(−y)2(n−1)U,XX − U,yy = 0 in (0, 1)× (−b, 0),

U(X, 0) = U(X,−b) = 0,

U(0, y) = U(1, y) = 0.

(15)

According to the theory of second order linear PDE's, and by virtue of the fact that

b = n1/n, the characteristic curves associated to the equation (−y)2(n−1)U,XX −
U,yy = 0 and exactly passing through the vertexes of the rectangle (0, 1) × (−b, 0)

are (see the right side of Figure 1)

X =
1

n
(−y)n and 1−X =

1

n
(−y)n.

Thereafter we can rely on the main statement given in [12] and apply its result

to the boundary value problem (15); hence we conclude that it admits a unique

solution in (0, 1) × (−b, 0) which is continuously di�erentiable everywhere in its

closure, possibly except along the mentioned characteristics. As to our speci�c case,

in view of the homogeneous boundary conditions, U(X, y) ≡ 0 (and hence also

u(x, y) ≡ 0) is the unique function with such properties solving problem (15).

Coming back to the tensorial unknown σ in Ω̄, expression (14) produces through

the relations X = x/a, (12) and (7)σyy(x, y) = λ
2a2x

2 − λ
2ax+ λ

2n(2n−1)y
2n + λb2n−1

2n(2n−1)y +K in Ω̄,

σxx(x, y) = a2y2(n−1)σyy(x, y) in Ω̄.
(16)

As to σxy = σyx, from (5b) we deduce

σxy(x, y) = −
∫
σyy,ydx = −2nλy2n−1 + λb2n−1

2n(2n− 1)
x+ h(y),

so that imposing (5a) we get

h′(y) =
a

2
λy2(n−1) ⇔ h(y) =

aλy2n−1

2(2n− 1)
+ h0, h0 ∈ R.

Now, taking into account the second position in (11) and the boundary conditions

(9), the last two expressions yield to

σxy(x, y) = σyx(x, y)

= −2nλy2n−1 + λb2n−1

2n(2n− 1)
x+

aλy2n−1

2(2n− 1)
+H +

aλb2n−1

2n(2n− 1)
in Ω̄.

(17)
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Lately, in order to guarantee the positive de�niteness of σ a.e. in Ω̄ in the sense

of (H2), we have to impose, inter alia, that σxxσyy − (σxy)2 > 0 a.e. in Ω̄.

From (16) and (17) we obtained that σxx(x, 0) = 0 for all x ∈ [0, a], while that

σxy(x, 0) = −λb2n−1x/(2n(2n − 1)) + H + aλb2n−1/(2n(2n − 1)) for all x ∈ [0, a];

therefore, without speci�c assumptions and relations on a, b, n, λ and H, gener-

ally σxx(x, 0)σyy(x, 0) − (σxy(x, 0))2 < 0 holds in [0, a]. In these conditions, since

for continuity arguments there would exist ε > 0 such that σxxσyy − (σxy)2 < 0

in (0, a) × (−ε, 0), in (17) we have to impose H = λ = 0 obtaining σxy(x, y) =

σyx(x, y) ≡ 0 in Ω̄. In addition, in order to avoid the nil solution σ ≡ 0, we choose

a strictly positive value for K and from (16) we explicitly write σyy(x, y) = K,

σxx(x, y) = Ka2y2(n−1) in Ω̄ and also obtain the following formulas for the func-

tions γi(y) and θi(x) de�ning the boundary conditions (9):

γ1(y) = a2Ky2(n−1), θ2(x) = K, θ1(x) = θ3(x) = γ2(y) = γ3(y) = 0.

We have so proved our main result:

Theorem 3.1 Let be a, c1 > 0 and n ∈ N, with n > 1. Moreover, for b = n1/n

and c2 = a2c1/(n(2n − 1)), the rectangle Ω = (0, a) × (−b, 0) and the function

z(x, y) = c1x
2 − c2y2n are given. Then for any �xed K > 0 and vectorial �eld (per

unit length) on Γ = ∂Ω

f =


(a2Ky2(n−1), 0) on x = a,

(−a2Ky2(n−1), 0) on x = 0,

(0,K) on y = 0,

(0,−K) on y = −b,

the symmetric and a.e. positive de�nite tensor

σ(x, y) =

(
a2Ky2(n−1) 0

0 K

)
in Ω̄, (18)

is the unique classical solution of the Reduced Problem 1.

4 The case of no restriction on the sign de�niteness of σ

By retracing the proof of Theorem 3.1 we observe that, behind other technical

reasons, the �nal expression of the solution σ derived in (18) is deeply tied to

the requirement of the a.e. positivity de�niteness of such a tensor; conversely, as

announced in the introductory comments of §1, if this restriction is omitted, for

the same function z(x, y) = c1x
2 − c2y2n the unique solution in Ω̄ exhibits a more

general representation, precisely given by (16) and (17). Subsequently, we have this

other result which we state without further comments.

Theorem 4.1 Let be a, c1 > 0 and n ∈ N, with n > 1. Moreover, for b = n1/n

and c2 = a2c1/(n(2n − 1)), the rectangle Ω = (0, a) × (−b, 0) and the function

z(x, y) = c1x
2 − c2y2n are given. Then for any �xed H,K, λ ∈ R and vectorial �eld
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(per unit length) on Γ = ∂Ω

f =


(γ1(y), γ2(y)) on x = a,

(−γ1(y), γ3(y)) on x = 0,

(θ1(x), θ2(x)) on y = 0,

(θ3(x),−θ2(x)) on y = −b,

where

γ1(y) = a2y2(n−1)( λ
2n(2n−1)y

2n + λb2n−1

2n(2n−1)y +K),

γ2(y) = H + aλny
2n−1−b2n−1(n−1)

2n(2n−1) ,

γ3(y) = −H − aλ b
2n−1+y2n−1

2(2n−1) ,

θ1(x) = λb2n−1

2n(2n−1) (an− x) +H,

θ2(x) = λ
2a2x

2 − λ
2ax+K,

θ3(x) = −λb
2n−1

2n x−H,

the symmetric tensor


σyy(x, y) = λ

2a2x
2 − λ

2ax+ λ
2n(2n−1)y

2n + λb2n−1

2n(2n−1)y +K in Ω̄,

σxx(x, y) = a2y2(n−1)σyy(x, y) in Ω̄,

σxy(x, y) = σyx(x, y) = λy2n−1

2n−1
(
a
2 − x

)
+ λb2n−1

2n(2n−1) (an− x) +H in Ω̄.

(19)

is the unique classical solution of the Reduced Problem 1.

In order to give an explicit example to each one of the results claimed in Theorems

3.1 and 4.1, we analyze Figures 2 and 3. They graphically show the behavior of

the tensor σ, which solves the Reduced Problem 1, once in the hypothesis of such

theorems the same surface z = c1x
2 − c2y2n and the rectangle R = (0, a)× (−b, 0)

are �xed by means of these values: n = 3, c1 = 4 and a = 5 (the surface and the

domain are shown at the top-lefts corners of Figures 2 and 3).

More precisely, for K = 5 in expression (18), Figure 2 represents the case of the

equilibrium between stress and shape of a membrane structure. We can realize that,

the component σxx is positive a.e. in R and it increases for y → −b and constant

values of x (see the below part of the top-right corner of Figure 2); in the limit,

it exactly corresponds to a zone on the membrane with major tension, along the

x-direction, with respect to others (same Figure 2, above part). As to σyy, it is

constant and positive in R so that the corresponding tension along the y-direction

is uniformly distributed on the surface (see the lower-left corner of Figure 2); �nally,

the last Figure 2, at the lower-right corner, highlights the nil contribution of σyx = 0

in R, that is the absence of shear stress on the membrane.

Conversely, if in (19) we set λ = 4,K = 0.5 and H = 2, the features of the solution

σ are summarized in Figure 3 , which models the balance between stress and shape

for a shell structure. By relaxing the assumption on the sign de�niteness of σ, we do

not obtain only positive expressions for the components σxx and σyy on the whole

R, but also regions of the rectangle where they are negative (see the below part of
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the top-right and lower-left corner of Figure 3, respectively); this aspect identi�es

zones of the shell where are present tensions or compressions along both the x- and

y-directions (sames corners of Figure 3, but the above part).

By virtue of all of the above, we stress again that the general solution for the tensor

σ given by relations (18) represents a very particular and simpli�ed case of solution

(19). Such a leap has not to appear surprising since, indeed, it is intimately linked to

the di�erent natures of the problems: in particular, when a membrane is considered

a strong limitation on the state of its stress tensor which exactly balances its shape

is naturally expected and absolutely consistent with the mechanical problem.

5 Conclusions

This paper is devoted to a two dimensional boundary value system described by

a tensorial equation in a bounded domain. Its more general de�nition leads to the

resolution of an overdetermined hyperbolic problem, whose analysis is complex and

represents a challenging open question in the �eld. Indeed, for a simpli�ed version,

whose formulation is given by a degenerate problem on a rectangle, the existence

and uniqueness of a solution under proper assumptions on the data can be proven.

Behind its pure mathematical interest, this research is motivated by its natural

application to real mechanic problems, linked to the equilibrium of membrane and

shell structures. In this sense, the derived solutions achieved throughout the paper

are totally consistent with the expected results.
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Figures

Figure 1 The General Problem. (Left) Representation of the domain and the boundary data.
(Right) The Reduced Problem. Representation of the characteristic curves for the equation

(−y)2(n−1)U,XX − U,yy = 0 in the rectangle (0, 1)× (−b, 0).
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Figure 2 Membrane structure: the case of positive de�niteness and graphical representation of
the solution σ. (Top-Left) Graph of the function z in R. (Top-Right) Above: distribution of the
component σxx on the surface z. Below: representation of the component σxx in the rectangle R.
(Lower-Left) Above: distribution of the component σyy on the surface z. Below: representation of
the component σyy in the rectangle R. (Lower-Right) Above: distribution of the component σxy
on the surface z. Below: representation of the component σxy in the rectangle R.

Figure 3 Shell structure: the case of no restriction on the sign de�niteness and graphical
representation of the solution σ. (Top-Left) Graph of the function z in R. (Top-Right) Above:
distribution of the component σxx on the surface z. Below: representation of the component σxx
in the rectangle R. (Lower-Left) Above: distribution of the component σyy on the surface z.
Below: representation of the component σyy in the rectangle R. (Lower-Right) Above:
distribution of the component σxy on the surface z. Below: representation of the component σxy
in the rectangle R.
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