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ABSTRACT 

The dynamic system approach in time series has been used in many real problems. Based on Taken’s embedding theo-
rem, we can build the predictive function where input is the time delay coordinates vector which consists of the lagged 
values of the observed series and output is the future values of the observed series. Although the time delay coordi-
nates vector from multivariate time series brings more information than the one from univariate time series, it can ex-
hibit statistical redundancy which disturbs the performance of the prediction function. We apply dimension reduction 
techniques to solve this problem and analyze the effect of this approach for prediction. Our experiment uses delayed 
Lorenz series; least squares support vector regression approximates the predictive function. The result shows that line-
arly preserving projection improves the prediction performance. 
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1.  INTRODUCTION 

A traditional time series approach such as ARIMA 
models interprets the underlying model of series with a 
linear equation. But, many time series can be generated 
from a nonlinear relationship. Thus in prediction of non-
linear time series, it is natural to apply the dynamical 
system approach which is intrinsically nonlinear. The 
dynamic system approach in time series is widely en-
countered in natural systems and social systems. It as-
sumes that time series is observed from the state vector 
in the dynamical system. The system is known to be very 
sensitive to an initial condition. But in the long term, its 
behavior is constrained to a fractal finite region because 
of its invariant topological property. Since Lorenz series 
was discovered, this approach has been applied to many 
areas including meteorology (Harding et al., 1990; Lo-
renz, 1995), medicine (Adeli et al., 2008), economics 

(Das and Das, 2007), signal processing (Kennel et al., 
1992), traffic flow (Shang et al., 2005), climate (Dhanya 
and Kumar, 2011), biology (Mackey and Glass, 1977) 
and so on. For example, Lorenz series is the popular time 
series in a physics system, especially for explaining cli-
mate (Lorenz, 1963); it is the simplified version of the 
Navier Stokes equations and related to various systems 
like Raleigh-Bernard problem and other weather pro-
blems (Dudul, 2005). 

Taken’s embedding theorem (Takens, 1981) estab-
lishes the theoretical background for prediction in the 
dynamical system approach. By this theorem, one can 
build the nonlinear predictive function from a time delay 
coordinates vector to the future value of the observed 
series. Although the theorem is for univariate time series, 
expansion to multivariate time series is natural and showed 
the better prediction performance (Barnard et al., 2001; 
Cao et al., 1998). 
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For approximating the predictive function, several 
machine learning models are frequently used: Neural 
Network (Gholipour et al., 2006), Neuro-fuzzy Network 
(Singh and Borah, 2013), Support Vector Regression 
(Mukherjee et al., 1997), and Least Squares Support 
Vector Regression (LSSVR) (Mei-Ying and Xiao-Dong, 
2004). The time delay coordinates vector from multi-
variate time series, however, can exhibit statistical re-
dundancy which disturbs the performance of a machine 
learning model (Barnard et al., 2001; Han and Wang, 
2009). Several studies apply dimension reduction tech-
niques such as Independent Component Analysis (Bar-
nard et al., 2001) and Principal Component Analysis 
(Han and Wang, 2009) to solve this problem. But there is 
no extensive comparison about the effect of dimension 
reduction. 

Thus, the goal of this paper is to analyze the effect 
of dimension reduction on prediction of multivariate 
nonlinear time series; we select LSSVR to approximate 
the predictive function because of structural risk mini-
mization and computational efficiency. To achieve this, 
the paper is organized as follows. In Section 2, basic 
theories about the dynamic system approach in time se-
ries are introduced. In Section 3, short descriptions about 
dimension reduction methods are shown. In Section 4, 
methodologies for our experiment are described and re-
sults from the experiment are given. A conclusion is 
given in Section 5. 

2.  DYNAMIC SYSTEM APPROACH IN 
TIME SERIES 

2.1 State Space Reconstruction   

A dynamic system consists of a state space S, a set 
of time T, and an evolution rule .× →:F S T S  It is the 
mathematical concept in which the evolution rule de-
scribes how the state vector ( )t ∈s S  evolves over time. 
From the state vector ( ),ts  we have M dimensional ob-
served series { }1 2 1( ), ( ), , ( ) N

M kx k x k x k
=

 as follows: 
 

( )( ) ( ) , 1, , ; 1, ,i i sx k h kt i M k N= = =s  (1) 
 

where st  is the sampling rate, ( )ih ⋅  is the observation 
function, and N is the length of the observed series 

Our problem is to predict the future values of the 
observed series { }1 2 1( ), ( ), , ( ) N

M kx k x k x k
=

 without the 
information of the original state space. For a univariate 
time series { } 1( ) ,N

M kx k
=

 we start by making the time de-
lay coordinates vector that consists of the lagged values 
of the observed series: 

 
{ }( ) ( ), ( ), , ( ( 1) ) ,i i i i i i ik x k x k x k mτ τ= − − −X  (2) 

( 1) 1, ,i ik m Nτ= − +  

where iτ  is the time delay and im  is the embedding di-
mension. By Taken’s embedding theorem (Takens, 1981), 
the time delay coordinates vector can reconstruct a 
manifold topologically equivalent to the unknown origi-
nal manifold in the state space. Under some regularity 
conditions, for almost iτ  and for some 2 [ ] 1im D≥ + (D 
is the dimension of the original manifold in S), there 
exists a predictive function : i im m

if R R→  such that 
 

( )( 1) ( )i i ik f k+ =X X   (3) 
 
Expansion of the theorem to multivariate time se-

ries { }1 2 1( ), ( ), , ( )
=

N
M kx k x k x k  is similar (Cao et al., 1998); 

we make the time delay coordinates vector from the 
multivariate time series as follows: 

 
1 1 1 1 1 1

2 2 2 2 2 2

( ), ( ), , ( ( 1) );
( ), ( ), , ( ( 1) );

( )
;

( ), ( ), , ( ( 1) );M M M M M M

x k x k x k m
x k x k x k m

k

x k x k x k m

τ τ
τ τ

τ τ

− − −⎧ ⎫
⎪ ⎪− − −⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪− − −⎩ ⎭

V  (4) 

{ }0 0 0 1
, 1, , ; max ( 1) 1i ii M

k J J N J m τ
≤ ≤

= + = − +  

 
where im  is the embedding dimensions and iτ  is the 
time delay. If im  or imΣ  is sufficiently large, there exists 
a predictive function 1: ( )Mm m

iig R R m m
=

→ =∑  such that 
 

( )( 1) ( )k g k+ =V V      (5) 
 

Equivalently, there exists a predictive function : m
ig R  

R→  such that 
 

( )( 1) ( )i ix k g k+ = V      (6) 
 

The state space reconstruction from multivariate series 
shows the better prediction performance than those from 
univariate series (Barnard et al., 2001; Cao et al., 1998).  

2.2 Parameter Selection 

As we build the time delay coordinates vector, es-
sential task is selecting the time delay iτ  and embedding 
dimension .im  The time delay iτ  is calculated separa-
tely for each univariate time series with mutual informa-
tion method (Fraser and Swinney, 1986). Mutual infor-
mation measures the dependency between ( )ix k  and 

( )ix k τ+  through a histogram. We select iτ  which shows 
the first minimum of the mutual information. 

We apply False Nearest Neighbor (FNN) method, 
to compute the embedding dimension .im  FNN for uni-
variate time series arises from the topological equiva-
lence between the state space and embedding space 
which is the space of the time delay coordinates vector 
(Kennel et al., 1992). For sufficiently large ,im  the nea-
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rest neighbor of a point on the embedding space with 
dimension im  is also close to the point on those with 
dimension 1.im +  If the distance between these points 
becomes large on the higher dimension embedding space, 
the nearest neighbor is called false nearest neighbor; the 
time delay coordinates vector with embedding dimen-
sion im  fails to preserve the topological property. FNN 
tries to find im  that minimizes the ratio of false nearest 
neighbor. Multivariate version FNN is similar to the 
above except that it minimizes the average ratio of false 
nearest neighbor by increasing im  by one in turn (Su, 
2010). We start from 1 2 1Mm m m= = = =  and increase 
some im  until this average goes to zero.  

3.  DIMENSION REDUCTION 

3.1 Dimension Reduction Techniques 

Suppose that a 0( 1)N J m− + ×  matrix V represents 
a dataset. Assume that this dataset has an intrinsic di-
mension ( );d d m<  the vectors 0 0( ) , , 1,mk R k J J∈ = +V  

, N  are lying near the manifold that has dimension d 
and embedded in the m-dimensional space. Dimension 
reduction techniques find the mapping from the matrix 
V into a new 0( 1)N J d− + ×  matrix Z, while preserving 
some properties of the dataset (Van der Maaten, 2007). 
It is divided into four categories as shown in Table 1; 
linear techniques, global nonlinear techniques, local non-
linear techniques and variants of local nonlinear tech-
niques. Table 1 shows the list of dimension reduction 
techniques which we applied in our experiment.  

3.2 Linear Techniques 

Linear techniques are based on a linear mapping. 
Principal component analysis (PCA) aims to construct 
the low-dimensional representation of the dataset that 
describes as much of its variance as possible (Hotelling, 
1933). Multidimensional scaling (MDS) retains the pair-

wise distance as possible (Torgerson, 1952). 

3.3 Global Nonlinear Techniques 

Global nonlinear techniques construct the low-di-
mensional space which retains a global nonlinear prop-
erty in the dataset. Isomap preserves the pairwise geo-
desic distances between the data points; the geodesic 
distance between two points is measured over the mani-
fold (Tenenbaum et al., 2000). 

3.4 Local Nonlinear Techniques 

Local nonlinear techniques aim to build the map-
ping which preserves a local nonlinear property. Lapla-
cian Eigenmap retains the distances between a high-
dimensional point and its nearest neighbors; in low-
dimensional space, they are weighted by Gaussian ker-
nel function (Belkin and Niyogi, 2002). Local Linear 
Embedding (LLE) expresses a high-dimensional point 
as the linear combination of its nearest neighbor (Roweis 
and Saul, 2000); it tries to preserve the weights in the 
linear combination. Local Tangent Space Analysis (LTSA) 
exploits the tangent space in the neighborhood of a high-
dimensional point; it aligns these local tangent spaces in 
the low- dimensional space mapped from the original 
space (Zhang and Zha, 2004).  

3.5 Variants of Local Nonlinear Techniques 

Variants of local nonlinear techniques solve the 
same problem in local nonlinear techniques, but they are 
based on a linear transformation to solve an out-of-sam-
ple problem. Linearity Preserving Projection (LPP) finds 
the linear mapping that minimizes the cost function of 
Laplacian Eigenmaps (He and Niyogi, 2004). Neighbor-
hood Preserving Embedding (NPE) is based on LLE (He 
et al., 2005). Linear Local Tangent Space Alignment 
(LLTSA) constructs the linear transformation that mini-
mizes the objective function in LTSA (Zhang et al., 2007). 

3.6 Correlation Dimension Estimation 

Correlation dimension is applied to estimate the in-
trinsic dimension d. It is based on the fact that the num-
ber of points in a hypersphere with radius r is propor-
tional to 

dr (Grassberger and Procaccia, 2004). 

4.  EXPERIMENT WITH DELAYED LORENZ 
SERIES 

To analyze the effect of dimension reduction on 
predicting multivariate nonlinear time series, we con-
ducted an experiment with a generated series. Figure 1 
shows a brief procedure. Details for the procedure are as 
follows. 

Table 1. Dimension reduction techniques 

Category Technique Property 
PCA Variance 

Linear 
MDS Pairwise distance 

Global nonlinear Isomap Geodesic distance 
Laplacian
Eigenmaps

Distance to 
nearest neighbors 

LLE Linear combination 
of nearest neighbors 

Local nonlinear 

LTSA Tangent space alignment

LLP Same as Laplacian 
Eigenmaps 

 
Variants of 

Local nonlinear NPE Same as LLE 
 LLTSA Same as LTSA 
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Figure 1. Procedure of the experiment. 

4.1 Series Generation 

We generated a length 4,000 delayed Lorenz series 
from the delayed differential equations in Eq. (7) (Zhi-
Yong et al., 2011). Parameters in Eq. (7) were chosen 
by a = 16, b = 45.92, c = 4, 1 2 31.2, 0.75, 1e e e= = =  and 

3.γ =  The series started with 1 2 3( ) ( ) ( ) 1s t s t s t= = =  for 

.t γ<  The differential equations were solved by the ex-
plicit Runge-Kutta (2, 3) method where the step size of 
integral h is 0.01. The observed series were ( ) (i ix k h s=  
( )) ( ),=s i skt s kt  i = 1, 2, 3; k = 1, …, 4,000 where the sam-
pling rate st  is 0.3. First 1,000 observations were burnt 
to reduce the effect of the initial points. From the re-
maining 3,000 observations, we considered the next 
2,000 observations as a training set and the remainder 
1,000 observations as a test set for an evaluation. Figure 
2 shows the three series for the training and the test sets. 

 

( )1
1 2 1 3

1
3 1 2 2 2

1
1 2 3 3 3

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

ds a s t s t e s t
dt
ds b s s s e s t
dt

ds s t s t cs t e s t
dt

γ

γ

τ γ

⎧ = − − − −⎪
⎪
⎪ = − − − −⎨
⎪
⎪

= − − − −⎪
⎩

 (7) 

4.2 State Space Reconstruction 

To build the time delay coordinates vector from 
multivariate time series, we used mutual information me-
thod and multivariate version FNN to estimate the time 
delay iτ  and embedding dimension ,im  respectively. For 

{ }3000
1 2 3 1001( ), ( ), ( ) ,

=kx k x k x k  we obtained the time delay 1τ  

2 3 1τ τ= = =  and embedding dimension 1 2 36, 1.m m m= = =  
 

1 1 1

2

3

( ), ( 1), , ( 5);
( ) ( );

( )

x k x k x k
k x k

x k

− −⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

V  

 
For comparison purpose, we also built the time de-

lay coordinates vector from univariate time series; the 
only difference from the above is that we used univari-
ate version FNN.  

 
( )1 1 1 1( ) ( ), ( 1), , ( 4)k x k x k x k= − −X  

( )2 2 2 2( ) ( ), ( 1), , ( 5)k x k x k x k= − −X  

( )3 3 3 3( ) ( ), ( 1), , ( 4)k x k x k x k= − −X  

 4.3 Dimension Reduction 

After the correlation dimension of V was estimated, 
we transformed V to Z through the dimension reduction 
techniques in Section 3. For local nonlinear techniques 
and variants of local nonlinear techniques, the number 
of nearest neighbor was set to 12 by trial and error.  

 
7 4( ) ( )x R k R∈ → ∈V Z  

4.4 Evaluation: One-Step-Ahead Prediction 

For each series, we learned the multivariate model 
with ( )kZ  for one-step ahead prediction by LSSVR. 

 
Figure 2. Training and test sets. 
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Simplex methods with the initial points from simulated 
annealing optimized the parameters for LSSVR. The 
univariate model with ( )i kX  and multivariate model with 

( )kV  without dimension reduction for one-step ahead 
prediction were also learned similarly for model com-
parison. The performance of the model was estimated 
through Root Mean Square Error (RMSE) on the test set. 

 

( )24000
3001 ( 1) ( 1)

1000
i ik x k x k

RMSM =
+ − +

= ∑     (8) 

4.5 Results  

Table 2 summarizes the results of the experiment. 
The several models with the different input such as 

( ), ( ),i k kX V  or ( )kZ  yielded the different results. The 
column named ‘Univariate’ represents the results from 
the univariate model with ( )i kX  and the column named 
‘Without dimension reduction’ represents the results from 
the multivariate model with ( )kV  without dimension re-
duction. Similarly, the column named ‘PCA’ represents 
the results from the multivariate model with ( )kZ  trans-
formed from ( )kV  through PCA.  

Analogous to the previous studies (Barnard et al., 
2001; Cao et al., 1998), the multivariate model with 

( )kV  without dimension reduction showed smaller RMSE 
than the univariate model with ( ).i kX  Especially, the de-
crease in RMSE between them was largest for 2( )kx  by 

15.14 12.84
15.14 100% 15.19%.− × =  For 1( )kx  and 3( ),kx  RMSE 

decreased 9.82% and 1.84%, respectively. 
Most of the multivariate models with ( ),kZ  which 

is transformed from ( )kV  through dimension reduction, 
failed to improve the prediction performance of the mul-
tivariate model with ( )kV  without dimension reduction; 
among them, the models that use nonlinear techniques 
showed the worst prediction performance. LPP margin-
ally reduced RMSE for all series; it reduced RMSE by 
less than 1%.  

5.  CONCLUSION 

The effect of dimension reduction on predictability 

of multivariate nonlinear time series is analyzed in this 
paper. The time delay coordinates vector from multiva-
riate time series can cause statistical redundancy which 
disturbs the ability of a machine learning model. Thus, 
we apply various dimension reduction techniques to 
solve it. From the experiment with delayed Lorenz se-
ries, variants of local nonlinear techniques could im-
prove prediction performance of the multivariate model. 

Our future work should be to extend the work to 
higher dimensional series in which dimension reduction 
could show a better result. 
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