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1 Introduction

All considered varieties are assumed to be algebraic and defined over an algebraically
closed field of characteristic 0 throughout this article.
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For a positive integer m, a group G is said to act m-transitively on a set X if the
action is transitive on m-tuples of pairwise distinct points of X. Furthermore, an action
is called infinitely transitive on X if it is m-transitive for each positive integer m.

For an algebraic variety X, the subgroup of Aut(X) generated by all algebraic one-
parameter unipotent subgroups of Aut(X) is denoted by SAut (X). The group SAut (X)
is called the special automorphism group of X. Meanwhile, an algebraic variety X is
called flexible if the tangent space of X at each smooth point x € X is spanned by the
tangent vectors to the orbits H - x of one-parameter unipotent subgroups H of Aut(X).

The following theorem from [1] shows the connection between flexibility and infi-
nite transitivity.

Theorem 1.1 Let X be an irreducible affine algebraic variety of dimension at least 2.
Then the following are equivalent:

o X is flexible;
e SAut(X) acts transitively on the smooth locus of X;
e SAut(X) acts infinitely transitively on the smooth locus of X.

In addition, [1] proves that every flexible variety is unirational. On the other hand,
in [4], itis conjectured that every unirational variety is stably birational to an infinitely
transitive variety and it is proved in some cases. Kaliman and Zaidenberg proved that
every hypersurface in A”*? defined by an equation uv = f(x1, ..., x,) for a non-
constant polynomial f has the infinitely transitive property [8]. Moreover, in [3], it is
proved that the suspensions over flexible varieties are also flexible. One can find some
other examples of flexible varieties in [1,2].

In the present paper we consider affine cones over smooth del Pezzo surfaces
polarized by arbitrary ample divisors. For smooth del Pezzo surfaces of degrees less
than or equal to 3, the non-existence of G,-actions on affine cones by their anticanonical
divisors was proved in [5, 10]. In [6], the existence and non-existence of G,-actions on
affine cones over anticanonically polarized del Pezzo surfaces with du Val singularities
were fully established according to their singularities and degrees.

Since smooth del Pezzo surfaces of degrees greater than or equal to 6 are toric,
affine cones over such surfaces are flexible by [3]. In [11], it is also shown that affine
cones over the smooth del Pezzo surface of degree 5 polarized by arbitrary ample
divisors are flexible.

Theorem 1.2 Let S be a smooth del Pezzo surface of degree at least 5. For every
ample divisor H, the affine cone

o
Affconey; (S) = Spec @ HO(S, O5(mH))
m=0
is flexible.

In the case of degree 4 the paper [11] proves the flexibility for certain ample divisors
including anticanonical divisor. In order to complete the case of degree 4, we prove
the following
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Main Theorem Let S be a smooth del Pezzo surface of degree 4. For an arbitrary
ample divisor H on S, the affine cone Affconey (S) is flexible.

2 Cylinder, G,-action and flexibility

Let Y be a projective variety and H be an ample divisor on Y. The following concepts
play central role in the study of the flexibility of affine cones over varieties polarized
by ample divisors.

Definition 2.1 Anopen subset U of Y is called a cylinderif U is isomorphic to Z x Al
for some affine variety Z. A cylinder U is called H-polar if the complement of U is
the support of an effective Q-divisor that is Q-linearly equivalent to H.

Definition 2.2 A subset W of Y is said to be invariant with respect to a cylinder
U=ZxA'if WNU =n""(w(W)), where 7: U — Z is the projection on the first
factor.

Definition 2.3 The variety Y is said to be transversally covered by cylinders U;,i € I,
if

o V= Ui
e there is no proper non-empty subset of Y invariant with respect to all U;.

Let H be an ample divisor on a smooth projective variety Y. Put

o0
Affcone; (Y) = Spec () HO(Y, Oy (mH)).

m=0

The following two theorems show how the concepts above engage in the study of
flexibility of the affine cone Affconey (Y).

Theorem 2.4 ([9, Corollary 2.12]) The affine cone Affconey (Y) admits an effective
Gy-action if and only if Y contains an H -polar cylinder.

Theorem 2.5 ([11, Theorem 5]) If Y has a transversal covering by H -polar cylinders,
then the affine cone Affconey (Y) is flexible.

Before we proceed, we present four basic cylinders on P? and P! x P! that will be
used in our constructions of transversal coverings.

Example 2.6 Let Ly, Ly, L3 be three lines on P2 meeting at a single point. Then
P2\(L1 U Ly U L3) is a cylinder that is isomorphic to an A!-bundle over a two-point-
deleted affine line Al .

Example 2.7 Let C be an irreducible conic on P2 and let L be a line tangent to C. The
divisor C + L defines a cylinder isomorphic to an A!-bundle over a one-point-deleted
affine line Al*, ie.,

PA\(CUL) = Al x Al
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Example 2.8 Let C be a cuspidal cubic with a cusp at a point P on P? and let 7' be the
Zariski tangent line to C at the point P. Then P?\(C U T') is isomorphic to A}k x Al

Example 2.9 Let C be an irreducible curve of bidegree (1, 2) on P! xP!. There is a
curve L of bidegree (1, 0) tangent to the curve C. Let P be the intersection point of C
and L and let H be the curve of bidegree (0, 1) that passes through the point P. Then
the divisor C + L + H defines a cylinder on P! x P! that is isomorphic to AL x Al. To
see this, we take the blow up p: S7 — P! x P! at the point P. Let E be the exceptional
curve of p and C be the proper transform of C by p. The proper transforms H,LofH
and L by p are disjoint (—1)-curves on S7. By contracting these two (—1)-curves, we
obtain a contraction ¥ : §7 — P2 The curve w(é) is an irreducible conic and ¥ (E)
is a line tangent to v (C). Therefore, C 4+ L + H defines a cylinder since

P'xP\(CULUH) = $;\(CULUH UE)
P\ (¢ (C) Uy (E)) = AL x Al

12

3 Ample divisors on smooth del Pezzo surfaces of degree 4

Let S be a smooth del Pezzo surface of degree 4. It can be obtained by blowing up P>
at five points in general position. Let ¢: § — P? be such a blow up and E, ..., Es
be its exceptional curves. Denote the point ¢ (E;) by P;.

Let & be the divisor class of S corresponding to ¢*(Op2(1)) and e; be the class of
the exceptional curves E;, where i = 1, ..., 5. Since the classes A, ey, ..., es form
an orthogonal basis of the Picard group of S, for a divisor A on § we may write
[A] = Bh+ 21'5:1 Biei, where  and B; are constants. It is well known that the divisor
A is ample if and only if the following inequalities hold

B>—p >0 for i =1,2,3,4,5;
B+Bi+B;>0 for i # j;
26+ B1+ B2+ B3+ Pa+ Bs > 0.

In other words, these relations define the ample cone of S. The Mori cone W(S) of
the surface S, the dual of the closure of the ample cone, is polyhedral. Moreover, it is
generated by all (—1)-curves on S [7, Theorem 8.2.23].

From now on, the divisor A is always assumed to be ample, unless otherwise stated.
The following method to express the divisor A in terms of —Kg and (—1)-curves is
adopted from an ongoing joint work of the authors with Cheltsov.

For the log pair (S, A), we define an invariant of (S, A) by

u = inf {A € Q- : the Q-divisor Kg+ 1A is pseudo—effective}.
The invariant w is always attained by a positive rational number. There is the smallest
face A(s, 4y of the boundary of the Mori cone NIE(S) that contains Kg + A.

Let ¢: § — Z be the contraction given by the face A(g 4). Then either ¢ is a
birational morphism or a conic bundle with Z = P! [7, 8.2.6]. In the former case
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308 J. Park, J. Won

A(s, ) 1s generated by r disjoint (—1)-curves contracted by ¢, where r < 5. In the
later case A(s, 4) is generated by the (—1)-curves in the four reducible fibers of ¢.
Each reducible fiber consists of two (—1)-curves that intersect transversally at one
point.

Suppose that ¢ is birational. Let E1, .. ., E, be all (—1)-curves contained in Ag, 4).
These are disjoint and generate the face A s, 4). Therefore,

,
Ks+pA ~q D aiEi
i=1

for some positive rational numbers ay, ..., a, [7, 8.2.6]. We have a; < 1 for every i
because A-E; > 0. Vice versa, for every positive rational numbers ay, ...,a, < 1,
the divisor

-
—Kg+ Za,’Ei.
i=1

is ample.

Suppose that ¢ is a conic bundle. Then there are a O-curve B and four disjoint
(—=1)-curves Ey, E», E3, E4, each of which is contained in a distinct fiber of ¢, such
that

4
KS"'/,LA ~Q aB+ZaiE,-

i=1

for some positive rational number a and non-negative rational numbers ay, az, a3, a4 <
1[7, 8.2.6]. In particular, these curves generate the face A (g 4). Vice versa, for every
positive rational number a and non-negative rational numbers aj, as, a3, as < 1 the
divisor

.
—Ks+aB +ZaiEi
i=1

is ample.

4 Proof of Main Theorem

As before, let S be a smooth del Pezzo surface of degree 4 and A be an ample divisor on
S. For the given log pair (S, A), the contraction of the face A(g 4) is either a birational
morphism or a conic bundle. We prove that S has transversal coverings by A-polar
cylinders in both the cases. We may assume that A ) is a positive dimensional face
since we already know that the affine cone over the polarization (S, —nKy) for every
n > 1is flexible [11].
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Flexible affine cones over del Pezzo surfaces of degree 4 309

4.1 Birational morphism case

We suppose that the contraction ¢p: S — Z by the face A(s, 4) is birational. There are

r disjoint (—1)-curves Eq, ..., E, that generate the face A(g 4), where 1 < r < 5.
In addition, we can find 5 — r disjoint (—1)-curves E,11, ..., E5 on S that intersect
none of the (—1)-curves Eq, ..., E,. We are then able to obtain a birational morphism
7: 8 — P? by contracting the five disjoint (—1)-curves Eq,..., E5 on S to P2

Furthermore, we may write

5
Ks+ pnA ~q ZaiEi,
i=1

where a; are rational numbers with 0 < a; < 1fori = 1,...,r and a; = O for
i=r+1,...,5.

Denote rr(E ) by P;. Let L;; be the line determined by the points P; and P; on P2
and L;; ; be its proper transform by the morphism 7. Consider the three intersection
points

01 = Loy3 N Lys, 02 = L4 N L3s, 03 = L5 N L3a.

We then denote the line determined by the points P; and Q; by L; and its proper
transform on § by Zi. Note that it is possible for two of the lines L, Ly, L3 to
coincide, but not for three of them.

Consider the sets

U = JT_I(Pz\(LB ULysULy),
Up =7 (P*\(L2a U L35 U L)),
Us = 7~ (P*\(Las U L34 U L3)).
These are cylinders isomorphic to Al x Al (Example 2.6).

For a rational number ¢ we have — K]PZ ~Q (I1=2¢) L1+ +¢&)Laz+(1+¢)Lys.
Therefore,

5
—Ks ~q (1 =26)Li + (1+ &) Loz + (1 + &) Lys — 26E1 + & ) _E;.
=2

Thus we have

5
A ~g ((1 —26)L1 + (14 &) Loz + (1 + &) Las + (a1 —28)E1+Z(a,+8)E)
=2

By taking 0 < ¢ < a;/2 we see that U; is an A-polar cylinder since

U =S\(Z23UZ45UZ1UElUEQUE3UE4UE5).
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Similarly U, and U3 are also A-polar cylinders.
Let C be the conic passing through the points Py, ..., Ps and take an arbitrary line
L tangent to the conic C. Consider the set

U=n""(P\(CUL)),

which is a cylinder isomorphic to AL x Al
For a rational number ¢ we have — Kp2 ~q (1 —2¢) L + (1 + &) C. Therefore,

5
~Ks ~q (1=2)L+ (1 +)C+¢ > Ei,

i=1

where L and C are the proper transforms of L and C on S. Thus we have

5
A ~q %((1 —20)L+(1+6)C+ D (@ +8)Ei)-

i=1
By taking 0 < ¢ < 1/2 we see that U is an A-polar cylinder since
U=S\(LUCUE|UE,UE3UE4UEs).
Note that
UUUUU,UU3 =S\(E1UEyUE3UE4UEs).

If the lines Ly, Ly, L3 are distinct, then the three cylinders Uj, Us, U3 can cover
S\(E1 U E, U E3 U E4 U E5) without the cylinder U.

Now consider different blow-downs of S that send some E; onto a line in P2 Note
that for the pair of the disjoint (—1)-curves E; and E, there is a unique (—1)-curve
E;; that intersects E; and E; but none of the other exceptional curves of 7. This is
the proper transform of the line joining P; and P; by 7.

Let {i, j, k} be a subset of three elements in {1, 2, 3,4, 5} and let {«, 8} be its
complement. Let 77 : § — P2 be the contraction of the five mutually disjoint (—1)-
curves Ejj, E i, Eix, Ey, Eg. Then the images of the (—1)-curves E;, E;, Ej by m;j
are lines on P? and

mijk(E) Nk (Ej) = mwije(Eij),  mijk(E;) O (Ex) = ik (Eik),
ik (Ej) N1 (Ex) = 7k (Eji).
There is a unique conic C;j; passing through the points m;x(E;j), mijk (Eir),
7ijk (Ejk), mijk(Eq), mijk (Eg). Now assume that a; > a; > a; and take the line
Lijx C P? tangent to the conic C;jy at the point 7; (E;;). Put

Vijk = ni;ll (PA\(Ciji U Lijn))-
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Flexible affine cones over del Pezzo surfaces of degree 4 311

This is a cylinder isomorphic to AL x A! (Example 2.7).
For an arbitrary rational number &

—Kp2 ~q (I +ai +ar+&)Cijk + (1 —a; —ar +a; —2e)Ljjk
—a;(mijx(E;)) — aj(mijr(E;)) — ax(mwijr (Ex)),

and hence

—Ks~q (I+a ~|—ak+8)6ijk +(—a —ax+aj —28)Zijk
+ (U —ai—e)Eij+(ai —aj+e)Ejk +€Eix
+(a +ap +e)Ey + (a; +ar + ) Eg
—a;Ej —ajE; — agE,

where C ijk and L ijk are the proper transforms of C; jx and L; jx by the morphism ;.
Thus we have

nA ~q (1 +a; +ax +8)5ijk+(1 —a; —a; +aj —28)Zijk
+ (0 —ai —e)Eij + (ai —aj + &) Ejk + €Eix
+(aj +ak +ay +6)Eq + (a; +ar +ag + ¢) Eg.

Since a; < 1, all coefficients in the divisor above are positive for a sufficiently small
positive rational number ¢. This shows that V;j is an A-polar cylinder since

S\(ajk U Zijk UE;;UEjrUEjx UEy U Eﬂ) = PZ\(C,'/‘]( U Liji).
Since E; C V;ji U Vigg, we have
5
EIUE,UE3;UE4UEs C U Vijk.
i k=1

Consequently, we have obtained a covering of S by A-polar cylinders:

3 5
SZUUUUZUUVijk-
=1 i j k=1

Now we suppose that there is a non-empty proper subset W C S invariant with respect
to all cylinders above.

Since the complement S\ W is also a non-empty proper subset invariant with respect
to all cylinders, up to switching the invariant sets W and S\ W, we may assume that
a point w of W is contained in U, for some ¢. Then W must contain the fiber F, of
U, passing through w. Without loss of generality, we may assume that £ = 1. Then
the line L = w(Fy,) C P2 passes through the point Q1. Since Q1, Q> and Q3 are not
colinear, we may assume that L does not pass through Q5. Thus all Al-fibers of the
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312 J. Park, J. Won

cylinder U, intersect L, so that all of them should be contained in W.! Therefore, the
complement S\ W is contained in the support of finitely many curves.

No point of S\ W is contained in U1 UU, UUj3: otherwise, the set W, the complement
of S\ W, would be also contained in the support of finitely many curves for the same
reason. Therefore, a point w’ of S\W is contained either in V; ik for some subset
{i, j, k} of three elements in {1, 2, 3,4, 5} or in U. Either V;j; or U has a fiber F,,
passing through the point w'. If the fiber F, belongs to V; jk» then 7; i (Fy,y) is a conic
passing through 7; (w’) and tangent to Liji at 7w jx (E;j). If the fiber F, belongs to
U, then r (Fy) is a conic passing through 7 (w’) and tangent to L. These show that
S\W and Uy U U, U U3 have a common point. This is a contradiction.

Consequently, the covering of S above is transversal. Therefore, the affine cone
Affcone 4 (§) is flexible by Theorem 2.5.

4.2 Conic bundle case

Suppose that the contraction ¢: § — Z given by the face A(g 4) is a conic bundle,
i.e., Z = P The face A(s, 4) 1s spanned by an irreducible fiber B of ¢ and four disjoint
(—1)-curves Eq, E>, E3, E4. We may then write

4
Ks+ nA ~g aB +Za,~Ei,

i=1

where a is a positive rational number and a; are non-negative rational numbers. Let
¢1: S — R be the birational morphism obtained by contracting the disjoint (—1)-
curves Eq, ..., E4.

Subcase 1: R is isomorphic to the Hirzebruch surface F;.

In this subcase, we have an extra (—1)-curve Es5 which intersects the O-curve B but
none of Ey, ..., E4. Contracting ¢1(Es), the negative section of F{, we obtain a
birational morphism ¢>: R — P2 Put 7w = ¢pro0p1: S — P2 and P, = w(E;).

Let C be a cuspidal cubic, with a cusp at Ps, that passes through Py, ..., Ps. Let
T be the Zariski tangent line to C at Ps. Put

Uc = (PP\(CUT)).

It is a cylinder isomorphic to Al x A (Example 2.8).
From — Kp2 ~q (1 + &) C — 3¢T with an arbitrary rational number ¢, we obtain

4
—Ks ~q (1+a)6-3g?+sZE,~ + (1 — ¢)Es,

i=1

I This idea originates from [11, Subsection 3.1]
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where C and T; are the proper transforms of C and T, respectively. Since B is linearly
equivalent to T,

| N N 4
A ~q ; ((1 +e)C+ (a —38)T+Z(ai +e)E; + (1 —e)E5).
i=1

By taking a sufficiently small positive rational number ¢, we see that the cylinder Uc
is A-polar because

Uc=S\(CUTUE U---UEs).

Let B be the collection of cuspidal cubics that pass through Py, ..., Ps and whose
cusps are located at Ps. Then the cylinders Uc, C € B, cover S except the exceptional
curves Eq, ..., Es.

For each (—1)-curve E;,i = 1, 2, 3, 4, we have another (—1)-curve Et’ in the fiber
of ¢ that contains E;. It intersects both E; and E5. The curve B is of course linearly
equivalent to the divisor E; + E;.

Let {a, B, y} be the complement of the subset {i} in {1, 2,3, 4}. Let r; : § — P?
be the contraction of the five mutually disjoint (—1)-curves Eqg, Egy, Eqy, E;, Es,
where Eyp is a unique (—1)-curve intersecting E,, Eg but none of E,, E;, Es, and
Eg,, Eyy are defined in the same manner.

The images of the (—1)-curves Ey, Eg, E, by 7; are lines on P2 and

7w (Ee) N7i(Eg) = mi(Ewp),  mi(Eg) Nmi(Ey) = mi(Egy),
i (Eg) N jTi(Ey) = ”i(an)~

Moreover 7; (E}) is the conic in P2 passing through the points ; (Eqp), i (Egy),
7 (Egy), mi (E;) and m; (Es). Without loss of generality we may assume that a, >
ag > a,. We then take the line L; C IP? tangent to the conic 7; (E;) at the point
;i (Eqp). Put

Vi = ;7 (PP\(mi (E}) U Ly)).

Then V; is a cylinder on S because ]P’2\(n,~(Elf) UL;) ~ AL x Al (Example 2.7).
As in the birational morphism case, from

—Kp2 ~q (1 +aq +a, —i—s)(m(El{)) + (0 —-ay —ay, +ag—2¢)L;
— aq(7i(Eq)) — ag(mi(Ep)) — ay (mi (Ey))
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with a sufficiently small positive rational number ¢, we obtain

pA~q (I +ag+ay +a+e) E + (1 —ay —ay, +ag —2¢)L;
+ (0 —ay —&e)Egp + (ag —ag +€)Epy
+eEyy + (g +ay +a+a; +€)E;
+ (aq +ay, +¢) Es,

where L; are the proper transforms of L;. This shows that V; is an A-polar cylinder
because

Vi = S\(E; UL; U Eqp U Egy U Eqy U E; U Es).

Moreover, the four cylinders Vi, ..., Vi cover the (—1)-curves Eq, E3, E3 and Ey4.

Let {i, j} be asubset of two elementsin {1, 2, 3, 4} and let {c, B} be its complement.
For a pair of the disjoint (—1)-curves E; and E, there is a unique (—1)-curve E;; that
intersects E; and E; but none of the other exceptional curves of 7. As in the birational
morphism case, E;; is the proper transform of the line joining P; and P; by 7.

Let m;j: § — IP? be the contraction of the five mutually disjoint (—1)-curves
E;j, Eis, Ejs, Ey, Eg. Then the images of the (—1)-curves E;, E;, E5 by m;; are
lines on P2 and

nij(Ei) n nij(Ej) = nij(Eij)’ ﬂij(Ei) N ﬂij(ES) = m;5(E;s),
i (Ej) Nmij(Es) = i (Ejs).

The image of B by m;; is a line passing through the point 7;; (E;;).

Take the conic C;; passing through the five points 7;; (E;;), i (Eis), i (Ejs),
7ij(Eq), mij(Eg). Let L;; be the tangent line to the conic C;; at the point 7r;; (E;;).
Put

Vij = ;! (B2\(Cij U Lij)).
It is isomorphic to A}k x Al (Example 2.7).
The union of V;; covers the (—1)-curves E1, ..., Es except the intersection points
of E; and Ej5,i = 1, 2, 3, 4. In particular, it covers E5 completely.

To show that V;; is A-polar, we may assume a; > a; without loss of generality. For
an arbitrary positive rational number &

—Kp2 ~q (1 +a; +&)Cij + (1 —a; +a; —2¢)Lij — a;(m;;(E;)) — aj(mwij(E;)).
Hence

—Ks~q (1 +a; +&)Cij + (1 —a; +a; —2¢)L;
+ (I —a —e)Ejj+(a —aj+¢&)Ej5s+€kE;s
+ (i +e)Ey + (ai +e)Eg —a;E; —ajEj,
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Flexible affine cones over del Pezzo surfaces of degree 4 315

where 51‘ ; and Zi ; are the proper transforms of C;; and L;;. Since Z,- ;18 linearly
equivalent to B, we have

uA ~q (1 +a; +&)Cij+ (1 —ai +a; +a—2e)L;;
+(—a —e)Eijj+(ai —aj+¢e)Ej5s+ €kEjs
+(ai +ay +¢e)Ey + (a; +ag +¢€) Eg.

Since a; < 1, all coefficients in the divisor above are positive for a sufficiently small
positive rational number ¢. This implies that V;; is an A-polar cylinder because

Vij =S\(Cij UL;j UE;j UE;5sUE;sUEqU Eg).

Consequently, we have constructed a covering of S by A-polar cylinders:

4 4
s=JuculJviu v

CeB i=1 ij=1

Now we claim that the covering above is transversal. Suppose that this is not true. Then
there is a non-empty proper subset W of S invariant to all cylinders in the covering.
Let w be an arbitrary point in W. The image 7 (W) is invariant to the cylinder 7 (U¢)
for every C € B.

Since the complement S\ W is also a non-empty proper subset invariant with respect
to all cylinders, up to switching the invariant sets W and S\ W, we may assume that
w lies in the cylinder Uc for some C € B. There is a cuspidal cubic C,, on P? that
becomes the Al-fiber of 7 (Uc) passing through the point 77 (w). This is a cuspidal
cubic, passing through the point 7 (w) with a cusp at Ps, whose Zariski tangent line
at Ps coincides with that of C. Then the affine curve Cy,\{Ps} is contained in = (W).
Choose a cuspidal cubic C” in B whose Zariski tangent line at Ps is different from that
of C. Then the corresponding cylinder U¢ contains all points on C,, except finitely
many points. This implies that S\ W is contained in the support of finitely many curves.

A point w’ in S\ W must lie either in V;; for some i, j orin V; for some i: otherwise
W, the complement of S\ W, would be contained in the support of finitely many curves
for the same reason. The cylinder V;; is given by the conic C;; passing through the five
points 7;; (E;;), 7ij(E;s), wij (Ej5), mij (Eq), i (Eg) and the tangent line L;; to the
conic C;; at the point 7r;; (E;;). The cylinder V; is defined by the conic 7y (E l/ ) and the
line L; tangent to the conic 7x (E?) at the point 7; (Eqg). Therefore, there is either a
conic F,, that passes through the point 77;; (w’) and tangent to the line L;; at the point
7;j(E;j) or a conic G, that passes through the point 7; (w’) and tangent to the line L;
atthe point 7r; (Eyp). The former (resp. the latter) conic defines the Al-fiber of Vij (resp.
V;) passing through the point w’. Therefore, F,y\{r;; (E;;)} (tesp. G \{7i (Eqp)}) is
contained in m;; (S\W) (resp. 7; (S\W)). Since every cuspidal curve that defines an
Al-fiber of Uc intersects F, and G, at a point other than 7;; (E;;), m; (Eqg), and
Ps, the set W, the complement of S\ W, is contained in the support of finitely many
curves. This is a contradiction.
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Subcase 2: R is isomorphic to P! x P,

Theimage B by ¢; isacurve of bidegree (1, 0) or (0, 1) on P! x PL We may assume that
¢1(B) is a curve of bidegree (0, 1). There is a one-dimensional family € of irreducible
curves of bidegree (1, 2) passing through the four points ¢1(E1), ..., ¢1(E4). For
each curve C in the family C, we take a curve L¢ of bidegree (1, 0) tangent to C at a
point. By H¢ denote the curve of bidegree (0, 1) that passes through the intersection
point of C and L. These three curves C, L¢ and Hc¢ define a cylinder isomorphic to
an Al-bundle over Ai (Example 2.9). Put

Uc = ¢ (P'xP'\(C U Lc U He)).
For an arbitrary rational number &
—Kpiypt ~q (1 +6)C+ (A —¢)Lc + (a —2¢)He — agi(B).
Now let §; be 1 if L¢ passes through ¢ (E;) and O if not. Then we obtain
~Ks~g(1+&)C+ (1 —e)Lc+(a—2¢)He —aB

4
+ D (e 4+ (1 +a—36)8) Er.
i=1

where C, L¢ and Hc are the proper transforms of C, L¢ and Hc, respectively. Thus
we have

A~ l ((1 +&)C+(1—e)Lc+ (a—2¢)He
"

4
+D (ai+e+(U+a- 38)8i)Ei).
i=1

By taking a sufficiently small positive rational number ¢, we can see that Uc is an
A-polar cylinder since

UC:S\(EUZCUﬁCuElUE2UE3UE4).

The cylinders defined by C in € in this manner cover S except E{, E2, E3, E4.

For each (—1)-curve E;, we have another (—1)-curve E; in the fiber of ¢ that
contains E;. In addition, there is a (—1)-curve Elf’ that intersects E; but none of the
other exceptional curves of ¢;. The curve B is linearly equivalent to the divisor E; 4 E.

Let {«, B, y} be the complement of the subset {i} in {1, 2, 3, 4}. The (—1)-curves
Ey, Eg, E,, E[, E! are mutually disjoint. Let 7;: § — P2 be the contraction of the
five mutually disjoint (—1)-curves Eug, Eg,, Eqy, E;, E!', where Eg is a unique
(—1)-curve intersecting E, Eg but none of E,, E/, E/, and Eg,,, E,, are defined in
the same manner.
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The images of the (—1)-curves E, Eg, E,, by 7; are lines on P2 and

i (Ee) N7 (Eg) = mi(Ewp),  mi(Eg) Nmi(Ey) =mi(Egy),
i (Eg) N ﬂi(Ey) = ﬂi(Eozy)~

Moreover 7;(E;) is the conic in P2 passing through the points ; (Eqp), i (Egy),
7;(Eqy), mi (E}) and 7r; (E]'). Without loss of generality we may assume that a, >
ag > a,. We then take the line L; C P2 tangent to the conic m; (E;) at the point
T (Eaﬁ). Put

Vi = ;7 (PP\ (i (Ei) U Ly)).

Then V; is a cylinder on S because P2\ (7r; (E;) U L;) ~ Al x Al (Example 2.7).
As before, for a sufficiently small positive rational number ¢,

—Kp2 ~q (1 +ag +ay +&)(mi(E) + (1 —aqg —ay, +ag —2¢)L;
—ag (i (Ey)) —ap(mi(Eg)) — ay (7w (Ey))

yields an effective Q-divisor

HA ~q (1+aa+ay+a+ai—}—S)Ei—i—(l—aa—ay—l—a,g—28)Zi
+ (1 —ay —&)Eyp + (ag —ag +€)Eg,
+¢Ey, + (ag+ay +a+e)E;
+ (aq +a, +€)E/,

where L; are the proper transforms of L;. This shows that V; is an A-polar cylinder
because

Vi = S\(E; UL; U Eqp U Egy U Eqy, UE| UE]).

Moreover, the four cylinders V; cover the (—1)-curves E1, Eo, E3 and Ej4.
We have obtained a covering of S by A-polar cylinders:

4
s=|JuculJv.

CceC i=1

Finally we claim that the covering above is transversal. Suppose that it is not transver-
sal. Then there is a non-empty proper subset W of S that is invariant with respect to
all cylinders in the covering above. Let w be a point in W.

As in the previous cases, we may assume that w belongs to U¢ for some C € C.
The set (W) C P! x P! is invariant to the cylinder ¢1 (Uc). Let P be the intersection
point of C and Lc. Then there is a curve Cy, of bidegree (1, 2) tangent to L¢ at the
point P and passing through the point ¢;(w). Then the affine curve Cy,\{P} defines
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the A!-fiber in the cylinder U¢ passing through the point w. Therefore, ¢f1 (Cw\{P})
is contained in W. We can choose a curve C’ in C that intersects C,, at four distinct
points. Therefore, every A!-fiber in U except finitely many fibers must be contained
in W. This shows that its complement S\ W is contained in the support of finitely many
curves.

A point in S\W cannot belong to the cylinder U¢ for any C € C: otherwise W
would be contained in the support of finitely many curves. Therefore, a point w’ in
S\W is contained in V; for some i. Then there is a conic C,, on P tangent to L;
at the point 7;(Eqg) and passing through the point 7r; (w’). This conic defines the
Al-fiber of V; passing through the point w’. Therefore, Cy,\{7; (Eqp)} is contained in
7; (S\W). Since every curve of bidegree (1, 2) on P! x P! that defines an A!-fiber of
Uc intersects the curve ¢ (nifl (Cy)) of bidegree (3, 3) outside ¢1(Eqp), the set W,
the complement of S\ W, is contained in the support of finitely many curves. This is
a contradiction.

This completes the proof of Main Theorem.

References

1. Arzhantsev, 1., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Flexible varieties and
automorphism groups. Duke Math. J. 162(4), 767-823 (2013)

2. Arzhantsev, 1., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Infinite transitivity on
affine varieties. In: Bogomolov, F., Hassett, B., Tschinkel, Yu. (eds.) Birational Geometry, Rational
Curves, and Arithmetic, pp. 1-13. Springer, New York (2013)

3. Arzhantsev, 1.V., Kuyumzhiyan, K.G., Zaidenberg, M.G.: Flag varieties, toric varieties, and suspen-
sions: three instances of infinite transitivity. Sb. Math. 203(7), 923-949 (2012)

4. Bogomolov, F., Karzhemanov, I., Kuyumzhiyan, K.: Unirationality and existence of infinitely transitive
models. In: Bogomolov, F., Hassett, B., Tschinkel, Yu. (eds.) Birational Geometry, Rational Curves,
and Arithmetic, pp. 77-92. Springer, New York (2013)

5. Cheltsov, 1., Park, J., Won, J.: Affine cones over smooth cubic surfaces (2013). J. Eur. Math. Soc. (to
appear)

6. Cheltsov, L., Park, J., Won, J.: Cylinders in singular del Pezzo surfaces (2013). arXiv:1311.5257

7. Dolgachev, I.V.: Classical Algebraic Geometry. Cambridge University Press, Cambridge (2012)

8. Kaliman, S., Zaidenberg, M.: Affine modification and affine hypersurfaces with a very transitive auto-
morphism group. Transform. Groups 4(1), 53-95 (1999)

9. Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: G,-actions on affine cones. Transform. Groups 18(4),
1137-1153 (2013)

10. Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: Unipotent group actions on del Pezzo cones. Algebraic
Geom. 1(1), 46-56 (2014)

11. Perepechko, A.Yu.: Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5. Funct. Anal.
Appl. 47(4), 284-289 (2013)

@ Springer


http://arXiv.org/abs/1311.5257

	Flexible affine cones over del Pezzo surfaces of degree 4
	Abstract
	1 Introduction
	2 Cylinder, mathbbGa-action and flexibility
	3 Ample divisors on smooth del Pezzo surfaces of degree 4
	4 Proof of Main Theorem
	4.1 Birational morphism case
	4.2 Conic bundle case

	References




