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1 Introduction

Recently there has been much progress on the understanding the Seiberg-like dualities in

lower dimensions than 4. With the help of the recently developed localization results,

substantial evidences were cumulated, especially in 3-dimensions. There’s a close relation

between the dualities in 4-dimensions and 3-dimensions [1], and we also expect the similar

relation holds between 3-dimensions and 2-dimensions. Indeed 2-dimensional Seiberg-like

dualities for N = (2, 2) U(k) gauge theory with fundamental chiral multiplets with/without

anti-fundamental chiral multiplets were studied in [2–7], and the elliptic genus was com-

puted to give the evidences for such dualities. The peculiar feature is that such duality

holds for asymptotically free theories as well, while in higher dimensions the duality holds

for superconformal field theories (SCFT). Other aspects of 2-dimensional dualities were

explored in [8–11]. In 3 and 4 dimensions, in addition to fundamental/anti-fundamental

matter fields, one can also consider dualities with 2nd rank tensor matter field, so-called

Kutasov-Schwimmer-Seiberg dualities and their 3-dimensional analogues [12–17]. In fact,

there’s conjecture about such dualities for 2-dimensional theories in [6] in the context of

AGT correspondence. The authors of [6] gives the evidences for such dualities by checking
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the S2 partition function. Here we consider the U(k) gauge theory with one adjoint and

with fundamental /(anti-fundamental) chiral fields and show analytically that the elliptic

genus of the dual pair coincides with each other, thereby providing additional evidences.

For theories with adjoint and fundamental matter fields, the theory exhibits the mass gap,

which is similar to U(k) gauge theory with fundamental chiral multiplets, which leads to the

non-linear σ-model with the target space Grassmannian. In fact, the argument for mass gap

for the theory with adjoint and fundamental fields is similar to Grassmannian model [18].

For theories with adjoint and the same number of fundamentals/anti-fundamentals, the

theory flows to SCFT. In this case, we also work out the chiral ring elements. In 3-

dimensions and 4-dimensions, nonperturbative truncation of the chiral ring occurs and we

also check that this also occurs in our 2-dimensional cases as well.

The contents of the paper are as follows. In the section 1, we introduce the basics

of elliptic genera. We mainly work with the elliptic genus with the Ramond-Ramond

boundary conditions. However, to work out the chiral ring elements, we have to use the

elliptic genus with NS-NS boundary conditions. The relation between the R and NS sector

is standard, known as spectral flow, which we summarize. In the section 2, we work out the

elliptic genus and show that the dual pairs have the same elliptic genus. For U(k) theories

with an adjoint and fundamentals, we check it exhibits the mass gap numerically. For U(k)

theories with an adjoint and the same number of fundamentals/anti-fundamentals, the

theory flows to SCFT and we compare their chiral ring structures as well. As occurring in

higher dimensions, nonperturbative truncation of the chiral ring elements is observed. For

U(k) theories with different number of fundamental and anti-fundamental matter fields,

we find that the theories have both discrete vacua and noncompact Higgs branches. This

duality can be also obtained from the theory with the same number of fundamentals and

anti-fundamentals and give the mass to anti-fundamentals. In the section 3, we obtain the

2-dimensional dualities from 3-dimensional dualities via dimensional reduction on a circle.

The 3-dimensional dualities, in turn, can be obtained from the 4-dimensional dualities [19].

As explained in [20], in order to have dualities of U(N) gauge group in 2-dimensions, non-

zero FI-term should be turned on, which we assume in the subsequent discussions. In

the section 4, we argue the existence of the mass gap for theories with an adjoint and

fundamentals. The theory without adjoint leads to the Grassmannian model, and its low

energy theory is described by gauged U(k)/U(k) WZW model. It would be interesting

to work out the analogue for the theory with an adjoint. In the appendix, we provide

the explicit expressions for χy genus and Witten index for the theory with an adjoint and

fundamentals.

2 Elliptic genus of theories

In this section, we review the basic facts about the elliptic genus and chiral primaries in

2d SCFTs. The elliptic genus [2, 21, 22] is computed in the RR sector,

Z(q, y) = TrRR(−1)F qHLyJL (2.1)
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where HL is the left-moving Hamiltonian and JL is the left-moving U(1) R-charge. When

the theory flows to a superconformal field theory (SCFT) in IR, HL and JL are identified as

zero mode generators L0, J0 of the N = 2 superconformal algebra respectively. When the

theory does not flow to SCFT, JL takes discrete values. In later sections, we are interested

in the chiral ring structures of various theories. For this purpose, one had better look for

the elliptic genus defined in the NSNS sector [4],

I(q, y) = TrNSNS(−1)F qL0yJ0 . (2.2)

The R sector and the NS sector are connected by continuously changing the boundary

conditions for fermions. This is known as the spectral flow [23, 24]. The relation of N = 2

superconformal algebras between the R sector and the NS sector is given by

jR = jNS −
c

6
, (2.3)

hR = hNS −
1

2
jNS +

c

24
. (2.4)

Thus the elliptic genus Z(q, y) and the superconformal index I(q, y) are related by

Z(q, y) = −ay−
c
6I
(
q, q−

1
2 y
)

(2.5)

where j is the left-moving U(1) R-charge and h is the left moving conformal dimensions.1

The anti-commutation relation between the two supersymmetry generators in the N =

2 superconformal algebra is

{G−r , G+
s } = 2Lr+s − (r − s)Jr+s + (c/3)

(
r2 − 1/4

)
δr+s,0 (2.6)

where r, s run over half-integral values in the NS sector and over integral values in the R

sector. Chiral and anti-chiral states are states in the NS sector satisfying

G+
−1/2|φ〉 = 0 chiral, (2.7)

G−−1/2|φ〉 = 0 anti-chiral. (2.8)

Chiral (resp. anti-chiral) primary states satisfy, in addition to (2.7) (resp. (2.8))

G−n+1/2|φ〉 = G+
n+1/2|φ〉 = 0 for n ≥ 0. (2.9)

In a unitary theory, G+
−1/2 = (G−1/2)†. The chiral primary states have the dimension h and

left-moving U(1) charge j satisfying h = j/2. Similarly, the anti-chiral primary states have

h = −j/2. The operator algebra of chiral (anti-chiral) primary fields forms a ring [24].

Under the spectral flow, the chiral primary states flow to the ground states of the Ramond

sector which satisfy

{G−0 , G
+
0 }|φ〉 = 0 . (2.10)

The ground states in the Ramond sector satisfy h = c/24.

1The additional factor −a occurs due to the definition of (−1)F in NS and R sectors and the regularization

of the path integral of the elliptic genus.
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The contributions of chiral primary states to the superconformal index can be obtained

by a deformation q → qt and y → yt−1/2 and a limit,

lim
t→0
I(qt, yt−1/2) = lim

t→0
TrNSNS(−1)F (qt)L0(yt−1/2)J0 . (2.11)

Only states satisfying h = j/2 survive in the limit.

For example, the superconformal index for a free chiral superfield Φ is given by

IΦ(q, y, a) = 4(q, y, a) =

∞∏
i=0

(1− ay−1qi+
1
2 )(1− a−1yqi+

1
2 )

(1− aqi)(1− a−1qi+1)
(2.12)

where we assume chiral superfield has a left-moving U(1) R-charge 0. Instead when a

chiral superfield have a left-moving U(1) R-charge r then the superconformal index can be

obtained by

IΦ,r(q, y, a) = 4(q, y, a(yq1/2)r) (2.13)

Contributions from the chiral primary states can be obtained by

lim
t→0
IΦ,r(qt, yt

−1/2, a) = lim
t→0
4(qt, yt−1/2, a(yq1/2)r)

= lim
t→0

∞∏
i=0

(1− a(yq1/2)ry−1qi+
1
2 ti+1)(1− a−1(yq1/2)−ryqi+

1
2 ti)

(1− a(yq1/2)rqiti)(1− a−1(yq1/2)−rqi+1ti+1)

=
1− a−1y1−rq(1−r)/2

1− ayrqr/2
. (2.14)

The denominator and the numerator are the contributions of a scalar φ and a left-moving

fermion ψ− of the chiral multiplet Φ respectively. Because the chiral primary states of

the NS sector flows to the ground states of the Ramond sector the contributions of chiral

primary states can be also seen from the elliptic genus.

2.1 U(1) gauge theory with Nf chiral multiplets

Let’s consider a simple gauge theory, U(1) gauge theory with Nf chiral multiplets of charge

1, CPNf−1 model. For general gauge theories, the elliptic genus is worked out by evaluating

Jeffrey-Kirwan (JK) residues. Elliptic genus of the theory is given by [22]

Z(τ, z, ξα) =
∑

ui∈M+
sing

∮
u=ui

du
iη(q)3

θ1(q, y)

Nf∏
k=1

θ1(τ |u− ξk − z)

θ1(τ |u− ξk)

=

Nf∑
α=1

∏
β 6=α

θ1(τ | − z + ξα − ξβ)

θ1(τ |ξα − ξβ)
(2.15)

where q = e2πiτ , y = e2πiz and τ is the complex structure of a torus and z is a holonomy

for the left-moving U(1) R-symmetry and ξα, α = 1, . . . , Nf are holonomies for the SU(Nf )

flavor symmetry with a constraint
∑

α ξα = 0. M+
sing consists of Nf simple poles at ui = ξi

associated with positive charges.
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Single-valuedness condition requires yNf = 1 so the elliptic genus reduces to

Z(τ, z, ξα)|
y
Nf=1

= y−(Nf−1)/2(1 + y + · · ·+ yNf−1) (2.16)

This has been checked numerically. The elliptic genus gets contributions only from ground

states because the theory develops mass gap in IR. The UV interpretation is that we

have nonlinear σ model whose target space is CPNf−1 and each factor of y represents the

cohomology ring elements of CPNf−1 [25]. The truncation of the elliptic genus implies the

cohomology ring relation yNf = c for a suitable c number. Due to the single-valuedness of

the elliptic genus we set yNf = 1.

2.2 U(k) with Nf fundamentals and one adjoint

In this subsection, we consider a 2d dual pair and show that the elliptic genus coincides

with each other. One theory is U(k) gauge theory with Nf fundamental chiral multiplets

and one adjoint chiral multiplets X with the superpotential

W = TrX l+1 (2.17)

The symmetries and charges of the theory are

U(k) SU(Nf ) U(1)L

Q � � 0

X Ad 1 1
l+1

(2.18)

where U(1)L is the left-moving U(1) R-symmetry.

One-loop determinant is

Z1-loop = (−1)k
1

k!

(
2πη(q)3

θ1(q, y−1)

)k( k∏
i 6=j

θ1(τ |ui − uj)
θ1(τ |ui − uj − z)

)

×
( k∏
i,j=1

θ1(τ |ui − uj + 1
l+1z − z)

θ1(τ |ui − uj + 1
l+1z)

)( k∏
i=1

Nf∏
α=1

θ1(τ |ui − ξα − z)

θ1(τ |ui − ξα)

)
dku . (2.19)

We have introduced gauge holonomies ui, i = 1, . . . , k and flavor holonomies ξα, α =

1, . . . , Nf for SU(Nf ) symmetry with
∑
ξα = 0. The first line of (2.19) comes from the

vector multiplet. In the second line, the first fraction comes from the adjoint chiral multiplet

and the second fraction comes from the fundamental chiral multiplets. The adjoint chiral

multiplet has a left-moving U(1) R-charge 1
l+1 fixed by the superpotential W = TrX l+1.

We have fixed the sign of the one-loop determinant by (−1)k. A sign of an elliptic

genus depends on the number of decoupled massive chiral fields, which can be seen from

ZΦ,r=1/2 = −1 where the left-moving R-charge r is fixed by a superpotential W = Φ2. But

the number of decoupled massive chiral fields can be arbitrary so the sign is ambiguous. It

is reasonable to fix the sign to have positive Witten index or consistent Renormalization

Group (RG)flows to the known theories. With the sign (−1)k, as we will see, the Witten

index obtained by a limit z → 0 is a positive integer. The sign is consistent with that of the
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theory without the adjoint chiral field. When l = 1 the adjoint field become massive and

its contribution in (2.19) becomes (−1)k
2

which can be seen by using θ1(τ |−a) = −θ1(τ |a).

Thus the elliptic genus becomes that of the theory without the adjoint field if we have a

sign factor (−1)k+k2 = 1. Furthermore, it is also consistent with the dual description of

the theory as we will see.

The holonomies ui take values in T 2 and we have

Z1-loop(τ, z, u1 + a+ bτ, u2 . . . , uk) = ybNfZ1-loop(τ, z, u1, u2, . . . , uk) (2.20)

for a, b ∈ Z. Single-valuedness of the one-loop determinant requires yNf = 1, i.e. z ∈ Z/Nf .

It reflects the fact that the left-moving R-symmetry U(1)L of the theory is anomalous, so

that U(1)L is broken to ZNf .

JK residue is evaluated by [2].

Z(τ, z, ξα) =
1

(2πi)k

∑
u∗∈M∗

sing

∮
u=u∗

Z1-loop(τ, z, u, ξα) (2.21)

where M∗sing can be chosen to poles associated with positive charges so it is the set of

solutions of poles

ui = ξα (2.22)

ui = uj −
1

l + 1
z . (2.23)

Note that the poles ui = uj+z from the gauge sector do not have contributions. Suppose a

pole uī = uj̄+z is picked up together with a pole at uj̄ = ξᾱ. Then the numerator uī−ξᾱ−z
vanishes. That is the reason why the poles from gauge sector do not have contributions.

The two types of poles have the charge covector (1, 0) and (1,−1) respectively in an i-j

plane. The JK residue gets contributions only from linearly independent charge covectors.

Thus pole configurations like {u1 = u2 − 1
l+1z, u2 = u3 − 1

l+1z, u3 = u1 − 1
l+1z, · · · } do not

contribute to the JK residue. If all poles are chosen from (2.23) the charge covectors are

linearly dependent so at least one pole should be chosen from (2.22). Furthermore, if any

two of poles are chosen to be the same as in {u1 = ξ1, u2 = ξ1, · · · }, we get a zero from

the numerator of the gauge sector, i.e. ui−uj = 0. Thus one can parametrize contributing

poles by ordered sequences ~n = (n1, n2, . . . , nNf ) with nα ≥ 0 and
∑

α na = k. If nβ = 0 it

means that a pole ui = ξβ is not chosen. If nβ is non-zero it corresponds to a case that nβ
poles have a form of

u∗i1 = ξβ , u
∗
i2 = u∗i1 −

1

l + 1
z, u∗i3 = u∗i2 −

1

l + 1
z, · · · , u∗inβ = u∗inβ−1

− 1

l + 1
z (2.24)

where indices i1, . . . , inβ are in {1, . . . , k} and distinct. It can be written as

u∗imβ+1
= ξβ −mβ

1

l + 1
z for mβ = 0, . . . , nβ − 1 (2.25)

– 6 –



J
H
E
P
1
0
(
2
0
1
7
)
0
3
5

The total number of poles is k so we have
∑

α nα = k. Permutations of k poles lead to the

same residue so it cancels the Weyl group dimension |W | = k!. The form of poles (2.25)

and a replacement
∏k
i=1 →

∏Nf
α=1

∏nα−1
mα=0 lead to

Z(τ, z, ξα) =
1

(2πi)k

∑
~n s.t |~n|=k

∮
u1=u∗1

· · ·
∮
uk=u∗k

Z1-loop(τ, z, u, ξα)

= (−1)k
∑

~n s.t |~n|=k

Nf∏
α,β=1

nα−1∏
mα=0

θ1(τ |ξα − ξβ + (nβ −mα − l − 1) z
l+1)

θ1(τ |ξα − ξβ + (nβ −mα) z
l+1)

. (2.26)

after many cancellations between the gauge sector and matter sector.

The elliptic genus do not get any contribution from configurations of {n1, . . . , nN}
which contains nα such that nα > l. It can be seen from the fact that the numerator

of (2.26) is zero if α = β and mα = nα − l − 1 which can be satisfied for nα > l because

0 ≤ nα− l−1 ≤ nα−1. Thus one can consider only the {n1, . . . , nN} configurations where

nα are restricted by
∑

α nα = k and 0 ≤ nα ≤ l.
One can also see that all contributions from the fundamental fields are canceled out

and only vacuum contributions survive. We have computed the elliptic genus explicitly

and expanded it in powers of q = e2iπτ . We have checked numerically that all higher order

terms of q become zero by the single-valuedness condition yNf = 1 so the elliptic genus

gets contributions only from q0 terms. It implies that the theory is massive because the q0

terms correspond to the ground states of the theory.

Let us compute the Witten index of the theory. The elliptic genus is reduced to the

Witten index in the limit z → 0, i.e. y → 1. In the limit z → 0, the factors of the form,
θ1(τ |ξα−ξβ+(nβ−mα−l−1) z

l+1
)

θ1(τ |ξα−ξβ+(nβ−mα) z
l+1

) becomes 1 if α 6= β. Thus non-trivial contributions arise from

when α = β.

lim
z→0

ZA(τ, z, ξ) = (−1)k lim
z→0

∑
~n s.t |~n|=k

Nf∏
α=1

nα−1∏
mα=0

θ1(τ |(nα −mα − l − 1) z
l+1)

θ1(τ |(nα −mα) z
l+1)

= (−1)k
∑

~n s.t |~n|=k

Nf∏
α=1

nα−1∏
mα=0

nα −mα − l − 1

nα −mα

= (−1)2k
∑

~n s.t |~n|=k

Nf∏
α=1

(
l

nα

)

=

(
Nf l

k

)
(2.27)

where the last line follows from the fact that
(
l
nα

)
is the coefficient of xnα term in a

polynomial (1 + x)l. Thus (2.27) is the coefficient of xn1xn2 · · ·xnNf = xk term of a

polynomial (1 + x)Nf l. Note that the Witten index is always positive due to the sign

(−1)k. This result can also be derived by turning on twisted masses for the fundamental

flavors and counting the discrete vacua of Coulomb branch.

– 7 –
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2.2.1 Dual theory

The Seiberg-like dual theory is a U(lNf − k) gauge theory with matter fields of Nf fun-

damental chiral multiplets q and one adjoint chiral multiplet Y and the superpotential

W = TrY l+1 with the global symmetries,

U(lNf − k) SU(Nf ) U(1)L
q � � 0

Y Ad 1 1
l+1

(2.28)

We would like to rewrite (2.26) in terms of the Seiberg-like dual theory. In order to

obtain an expression for U(lNf − k) gauge group, we change parameters, ñα = l− nα and

rearrange terms as follows.

Z(τ,z,ξα) = (−1)k
∑

~n s.t |~n|=k

Nf∏
α,β=1

nα−1∏
mα=0

θ1(τ |ξα−ξβ+(nβ−mα−l−1) z
l+1)

θ1(τ |ξα−ξβ+(nβ−mα) z
l+1)

(2.29)

= (−1)k
∑

~n s.t |~n|=k

Nf∏
α,β=1

θ1(τ |ξα−ξβ+(nβ−l−1) z
l+1)

θ1(τ |ξα−ξβ+(nβ) z
l+1)

· · ·
θ1(τ |ξα−ξβ+(nβ−nα−l) z

l+1)

θ1(τ |ξα−ξβ+(nβ−nα+1) z
l+1)

= (−1)k
∑

~̃n s.t |~̃n|=lN−k

Nf∏
α,β=1

θ1(τ |ξα−ξβ+(−ñβ−1) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+l) z
l+1)

· · ·
θ1(τ |ξα−ξβ+(−ñβ+ñα−l) z

l+1)

θ1(τ |ξα−ξβ+(−ñβ+ñα+1) z
l+1)

= (−1)k
∑

~̃n s.t |~̃n|=lN−k

Nf∏
α,β=1

−1∏
m̃α=ñα−l

θ1(τ |ξα−ξβ+(−ñβ+m̃α) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+m̃α+l+1) z
l+1)

= (−1)k
∑

~̃n s.t |~̃n|=lN−k

Nf∏
α,β=1

ñα−1∏
m̃α=ñα−l

θ1(τ |ξα−ξβ+(−ñβ+m̃α) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+m̃α+l+1) z
l+1)

×
ñα−1∏
m̃α=0

θ1(τ |ξα−ξβ+(−ñβ+m̃α+l+1) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+m̃α) z
l+1)

The factor in the middle can be simplified as

Nf∏
α,β=1

ñα−1∏
m̃α=ñα−l

θ1(τ |ξα−ξβ+(−ñβ+m̃α) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+m̃α+l+1) z
l+1)

(2.30)

=

Nf∏
α,β=1

θ1(τ |ξα−ξβ+(−ñβ+ñα−l) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+ñα+1) z
l+1)
×·· ·×

θ1(τ |ξα−ξβ+(−ñβ+ñα−1) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+ñα+l) z
l+1)

= (−1)lN
2
f

Nf∏
α,β=1

θ1(τ |−ξα+ξβ+(ñβ−ñα+l) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+ñα+1) z
l+1)
×·· ·×

θ1(τ |−ξα+ξβ+(ñβ−ñα+1) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+ñα+l) z
l+1)

= (−1)lN
2
f

Nf∏
α,β=1

θ1(τ |−ξβ+ξα+(ñα−ñβ+l) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+ñα+1) z
l+1)
×·· ·×

θ1(τ |−ξβ+ξα+(ñα−ñβ+1) z
l+1)

θ1(τ |ξα−ξβ+(−ñβ+ñα+l) z
l+1)

= (−1)lN
2
f
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where we reverse all the signs of theta functions in the numerator using θ1(τ |−a) = −θ1(τ |a)

at the second line and exchange α and β dummy indices in the numerator at the third line,

then all numerators and denominators are canceled against each other. Then the elliptic

genus becomes

Z(τ,z,ξα) = (−1)lNf−k
∑

~̃n s.t |~̃n|=lNf−k

Nf∏
α,β=1

ñα−1∏
m̃α=0

θ1(τ |−ξα+ξβ+(ñβ−m̃α−l−1) z
l+1)

θ1(τ |−ξα+ξβ+(ñβ−m̃α) z
l+1)

(2.31)

where we reversed all the signs of theta functions using θ1(τ | − a) = −θ1(τ |a). This is

nothing but the elliptic genus of the U(lNf − k) gauge theory

2.3 U(k) with Nf fundamentals, Na anti-fundamentals and one adjoint

We consider a U(k) gauge theory with Nf chiral multiplets in fundamental representation,

Na chiral multiplets in anti-fundamental representation and one chiral multiplet in adjoint

representation and the superpotential of the form, W = TrX l+1. The charges of flavor

symmetries and a left-moving R-symmetry U(1)L are

U(k) SU(Nf ) SU(Na) U(1)a U(1)L

Q � � 1 1 0

Q̃ � 1 � 1 0

X Ad 1 1 0 1
l+1

(2.32)

Seiberg-like dual theory is a U(lNf − k) gauge theory with matter fields of Nf fun-

damentals qα, Na anti-fundamentals q̃γ and one adjoint Y , and lNfNa singlets Mαγ
j ,

j = 0, . . . , l − 1, α = 1, . . . , Nf , γ = 1, . . . , Na. It has the superpotential, W = TrY l+1 +

Mj q̃Y
l−1−jq which fixes, together with the identification Mj ↔ QXjQ̃, charges

U(lNf − k) SU(Nf ) SU(Na) U(1)a U(1)L

q � � 1 −1 1
l+1

q̃ � 1 � −1 1
l+1

Mj 1 � � 2 j
l+1

Y Ad 1 1 0 1
l+1

(2.33)

One-loop determinant of the U(k) gauge theory is

Z1-loop = (−1)k
1

k!

(
2πη(q)3

θ1(q,y−1)

)k( k∏
i 6=j

θ1(τ |ui−uj)
θ1(τ |ui−uj−z)

)( k∏
i,j=1

θ1(τ |ui−uj+ 1
l+1z−z)

θ1(τ |ui−uj+ 1
l+1z)

)

×
( k∏
i=1

Nf∏
α=1

θ1(τ |ui−ξα+χ−z)

θ1(τ |ui−ξα+χ)

)( k∏
i=1

Na∏
γ=1

θ1(τ |−ui+ηγ+χ−z)

θ1(τ |−ui+ηγ+χ)

)
dku . (2.34)

where ξα, ηγ , χ are holonomies for the SU(Nf )×SU(Na)×U(1)a flavor symmetry. Single-

valuedness of the one-loop determinant requires yNf−Na = 1.
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Let us assume Nf ≥ Na. The JK residue comes from the same pole configurations

as the case without anti-fundamentals because the JK residue can be evaluated by poles

associated with positive charges so that the poles from anti-fundamentals do not contribute.

Z = (−1)k
∑

~n s.t |~n|=k

Nf∏
α,β=1

nα−1∏
mα=0

θ1(τ |ξα − ξβ + (nβ −mα − l − 1) z
l+1)

θ1(τ |ξα − ξβ + (nβ −mα) z
l+1)

(2.35)

×
Nf∏
α=1

Na∏
γ=1

nα−1∏
mα=0

θ1(τ | − ξα + ηγ + 2χ+ (mα − l − 1) z
l+1))

θ1(τ | − ξα + ηγ + 2χ+mα
z
l+1)

.

The first line of (2.35) is the same as that of the theory without anti-fundamentals

whose contributions appear only in the second line. It can be written as

Nf∏
α=1

Na∏
γ=1

nα−1∏
mα=0

θ1(τ |−ξα+ηγ+2χ+ (mα−l−1)z
l+1 )

θ1(τ |−ξα+ηγ+2χ+mαz
l+1 )

(2.36)

=

 Nf∏
α=1

Na∏
γ=1

l−1∏
mα=0

θ1(τ |−ξα+ηγ+2χ+ (mα−l−1)z
l+1 )

θ1(τ |−ξα+ηγ+2χ+mαz
l+1 )


×

 Nf∏
α=1

Na∏
γ=1

l−1∏
mα=nα

θ1(τ |−ξα+ηγ+2χ+mαz
l+1 )

θ1(τ |−ξα+ηγ+2χ+ (mα−l−1)z
l+1 )


=

 Nf∏
α=1

Na∏
γ=1

l−1∏
j=0

θ1(τ |−ξα+ηγ+2χ+ (j−l−1)z
l+1 )

θ1(τ |−ξα+ηγ+2χ+ jz
l+1)


×

 Nf∏
α=1

Na∏
γ=1

ñα−1∏
m̃α=0

θ1(τ |ξα−ηγ−2χ+ (m̃α−l+1)z
l+1 )

θ1(τ |ξα−ηγ−2χ+ (m̃α+2)z
l+1 )


where ñα = −nα + l, m̃α = −ma + l− 1 and we used θ1(τ | − a) = −θ1(τ |a). Note that the

second line is possible because 0 ≤ nα ≤ l. When nα = l, ñα = 0 the second factors in the

second and third lines of (2.36) are 1. Therefore, the elliptic genus can be written as

Z = (−1)k
∑

~n s.t |~n|=k

Nf∏
α,β=1

nα−1∏
mα=0

θ1

(
τ |ξα−ξβ+

(nβ−mα−l−1)z
l+1

)
θ1

(
τ |ξα−ξβ+

(nβ−mα)z
l+1

)

×
Nf∏
α=1

Na∏
γ=1

nα−1∏
mα=0

θ1

(
τ |−ξα+ηγ+2χ+ (mα−l−1)z

l+1

)
θ1

(
τ |−ξα+ηγ+2χ+mαz

l+1

)

= (−1)lNf−k
∑

~̃n s.t|~̃n|=lNf−k

Nf∏
α,β=1

ñα−1∏
m̃α=0

θ1

(
τ |−ξα+ξβ+

(ñβ−m̃α−l−1)z
l+1

)
θ1

(
τ |−ξα+ξβ+

(ñβ−m̃α)z
l+1

) (2.37)

×
Nf∏
α=1

Na∏
γ=1

ñα−1∏
m̃α=0

θ1

(
τ |ξα−ηγ−2χ+ (m̃α−l+1)z

l+1

)
θ1

(
τ |ξα−ηγ−2χ+ (m̃α+2)z

l+1

) l−1∏
j=0

θ1

(
τ |−ξα+ηγ+2χ+ (j−l−1)z

l+1

)
θ1

(
τ |−ξα+ηγ+2χ+ jz

l+1

)
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The second expression is the elliptic genus of the U(lNf−k) gauge theory. The first fraction

in the third line comes from qαq̃γY
mα , Q(qαq̃γY mα) and their complex conjugates. The

second fraction in the third line comes from Mj , Q(M j) and their complex conjugates. All

contributions coming from qαq̃γY
mα are canceled out. This can be seen from (2.36). The

first and the second fractions in the second line of (2.36) are identified as contributions

from Mj and qαq̃γY
mα respectively. All the second fractions are canceled out with factors

mα = nα, . . . , l − 1 of the first fraction. When k < l we have 0 ≤ nα ≤ k so only Mi,

i = 0, . . . , k − 1 contributions

(∏Nf
α=1

∏Na
γ=1

∏k−1
j=0

θ1(τ |−ξα+ηγ+2χ+
(j−l−1)z
l+1

)

θ1(τ |−ξα+ηγ+2χ+ jz
l+1

)

)
remain. When

k ≥ l the non-trivial contributions are 0 ≤ nα ≤ l so all Mj , j = 0, . . . , l − 1 contribute.

2.3.1 Characteristic of the theory

Interestingly, the elliptic genus has non-trivial q dependence even though the sin-

gle-valuedness condition yNf−Na = 1 is imposed, which is different from Na = 0 case.

The nontrivial q dependence comes from Mj = QXjQ̃, j = 0, . . . ,min(l− 1, k− 1). Due to

Mj , the q0 terms representing ground state contributions also depend on the flavor sym-

metry fugacities, while the elliptic genus of the theories without anti-fundamental matter

fields are independent of the flavor fugacities. This is related to the fact that the theory has

additional Higgs branch, parametrized by Mj as well as discrete vacua. In fact, the special

case of U(1) theory with (Nf , Na) was analyzed at [26]. They considered U(1) gauge theory

with Nf fundamental chiral fields Qα of charge 1 and Na anti-fundamental chiral fields Q̃β

of charge −1 and all chiral fields have twisted masses. When one pair of Qα and Q̃β have

the same twisted mass and the other chiral fields have generic twist masses the theory has

max(Nf − 1, Na − 1) massive, discrete Coulomb vacua and the vacua of a sigma model

on one-dimensional non-compact complex manifold parametrized by Qα and Q̃β for some

α and β. When we turn off the twisted masses, the theory has |Nf − Na| discrete vacua

and NfNa dimensional Higgs branch. This is consistent with the elliptic genus result. As

an example, consider U(1) theory with Nf chiral fields of charge 1 and one chiral field of

charge −1. The elliptic genus is given by

Z =

Nf∑
α=1

∏
β 6=α

θ1(τ |ξα − ξβ − z)

θ1(τ |ξα − ξβ)

 θ1(τ | − ξα + 2χ− z)

θ1(τ | − ξα + 2χ)
(2.38)

The ground states contribution is obtained as

Z(q → 0) = y−(Nf−2)/2(1 + y + · · ·+ yNf−2) +

Nf∏
α=1

y−1/2d2 1− yaαd−2

1− a−1
α d2

(2.39)

where the first term is the contribution of (Nf − 1) massive vacua and the second term

comes from Nf dimensional Higgs vacua. Existence of both discrete vacua and continuous

Higgs branch persists for generic U(n) theory with Nf 6= Na with one adjoint. This can

be confirmed by the effective action analysis similar to [26] and the elliptic genus result is

consistent with it.
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The mesonic fields (Mj)
αβ parameterizing the Higgs branch are not free fields in gen-

eral. If k < Na, this can be easily seen since maximum rank of (Mj)
αβ is constrained by

the gauge group rank. For example, M0 fields can be represented as a Nf ×Na matrix. If

k < Na the rank of M0 matrix is k so that we have the usual rank condition,

εα1...αk+1
εβ1...βk+1

Mα1β1
0 · · ·Mαk+1βk+1

0 = 0 (2.40)

where αi ∈ I, βi ∈ J and I, J are (k + 1)-combinations of {1, . . . , Na}.
The adjoint field is constrained by the characteristic equation of k × k matrix.

Xk − (TrX)Xk−1 + · · ·+ (−1)k(detX)Ik = 0 (2.41)

where Ik is k × k identity matrix. By contracting the equation with Q and Q̃, we have

Mk − (TrX)Mk−1 + · · ·+ (−1)k(detX)M0 = 0 . (2.42)

This shows that if k < l only M0, . . ., Mk−1 are independent. If k ≥ l then Mk = Mk−1 =

· · · = Ml = 0 and remaining fields are constrained by the equation. Also computation of

the elliptic genus shows that the mesonic fields are not free fields generically.2

The exception occurs when lNf = k with Nf ≥ Na > 0. The corresponding theory is

dual to the theory of NfNa free chiral fields.

2.4 U(k) with N pairs of fundamentals/anti-fundamentals and one adjoint

Here we consider the duality of the superconformal field theories. We consider the A

theory, U(k) gauge theory with N chiral multiplets in fundamental representation, N

chiral multiplets in anti-fundamental representation and one chiral multiplet in adjoint

representation and the superpotential of the form, W = TrX l+1. The charges of the flavor

symmetries and a left-moving R-symmetry U(1)L are

U(k) SU(N) SU(N) U(1)a U(1)L

Q � � 1 1 0

Q̃ � 1 � 1 0

X Ad 1 1 0 1
l+1

(2.44)

The dual theory, which is called B theory is U(lN − k) gauge theory with matter fields

of N pairs of fundamental, anti-fundamental and one adjoint, and lN2 singlets Mαβ
j , j =

2As an example, U(1) with Nf = 2, Na = 1 the elliptic genus is given by

Z = 1 +
d4

y

(1− ya1d
−2)(1− ya2d

−2)

(1− a−1
1 d2)(1− a−1

2 d2)

+ q

(
d2(1− y)(a1 + a2)(1− ya1d

−2)(1− ya2d
−2)(1− d2(1− y)(a1 + a2)− yd4)

y2(1− a−1
1 d2)(1− a−1

2 d2)

)
+ O(q2). (2.43)

where O(q) term clearly shows that it is not just contribution of two free chiral fields.
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0, . . . , l − 1. It has the superpotential, W = TrY l+1 +
∑l−1

j=0Mj q̃Y
l−1−jq which fixes,

together with the identification Mj ↔ QXjQ̃, charges

U(lN − k) SU(N) SU(N) U(1)a U(1)L

q � � 1 −1 1
l+1

q̃ � 1 � −1 1
l+1

Mj 1 � � 2 j
l+1

Y Ad 1 1 0 1
l+1

(2.45)

We will see chiral ring generators of the theory by analyzing elliptic genus of the

theories. Chiral ring generators coming from the adjoint field are TrXi / TrY i, i =

1, . . . ,min(l − 1, k, lN − k), which are constrained by F -term condition and the charac-

teristic equations of the adjoint fields. The A and B theories have different gauge groups

so the characteristic equations are different. To have a consistent chiral ring with the du-

ality, a characteristic equation of one theory is a quantum constraint of the dual theory if

the constraint is stronger than the other. Chiral ring generators coming from the mesonic

operators are QXjQ̃ /Mj , j = 0, . . . ,min(l − 1, k − 1). Unlike the adjoint operators, the

mesonic operators are constrained only by the A theory classical equations.

The elliptic genera of A theory and B theory are given by

ZA = (−1)k
∑

~n s.t |~n|=k

N∏
α,β=1

nα−1∏
mα=0

θ1

(
τ |ξα − ξβ +

(nβ−mα−l−1)z
l+1

)
θ1

(
τ |ξα − ξβ +

(nβ−mα)z
l+1

)

×
θ1

(
τ | − ξα + ηβ + 2χ+ (mα−l−1)z

l+1

)
θ1

(
τ | − ξα + ηβ + 2χ+ mαz

l+1

)

= (−1)lN−k
∑

~̃n s.t|~̃n|=lN−k

N∏
α,β=1

ñα−1∏
m̃α=0

θ1

(
τ | − ξα + ξβ +

(ñβ−m̃α−l−1)z
l+1

)
θ1

(
τ | − ξα + ξβ +

(ñβ−m̃α)z
l+1

)

×
θ1

(
τ |ξα − ηβ − 2χ+ (m̃α−l+1)z

l+1

)
θ1

(
τ |ξα − ηβ − 2χ+ (m̃α+2)z

l+1

)
×

l−1∏
j=0

θ1

(
τ | − ξα + ηβ + 2χ+ (j−l−1)z

l+1

)
θ1

(
τ | − ξα + ηβ + 2χ+ jz

l+1

) (2.46)

where ξα, ηβ , χ are holonomies for SU(N)× SU(N)×U(1)a flavor symmetry. The single-

valuedness condition of the one-loop determinant does not require any condition on y and

this is consistent with the fact that the theories have no R-symmetry anomaly.
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2.4.1 Modular property

Let us check the central charge of the theories. The central charge, c, can be obtained from

the modular property of the elliptic genus.

Z

(
−1

τ
,
z

τ
,
ui
τ

)
= e

πi
τ (−2Aiuiz+

c
3
z2)Z(τ, z, ui) (2.47)

where Ai is the t’ Hooft anomaly between the left-moving R-symmetry and flavor symmetry

Ki. It can be computed using the modular property of the theta function,

θ1

(
− 1

τ

∣∣∣z
τ

)
= −i

√
−iτ eπiz2/τ θ1(τ |z) (2.48)

The modular transformation of the elliptic genus of the A-theory is

ZA
(
−1

τ
,
z

τ
,
ξα
τ
,
ηβ
τ
,
χ

τ

)
=

∑
~n s.t |~n|=k

N∏
α,β=1

nα−1∏
mα=0

e
πi
τ

(
−2z(ξα−ξβ)+z2

(
1−

2(nβ−mα)

l+1

))
e
πi
τ (−2z(−ξα+ηβ+2χ)+z2(1− 2mα

l+1 ))

θ1

(
τ |ξα−ξβ+

(nβ−mα−l−1)z
l+1

)
θ1

(
τ |ξα−ξβ+

(nβ−mα)z
l+1

) θ1

(
τ |−ξα+ηβ+2χ+ (mα−l−1)z

l+1

)
θ1

(
τ |−ξα+ηβ+2χ+mαz

l+1

) (2.49)

It can be written as

ZA
(
−1

τ
,
z

τ
,
ξα
τ
,
ηβ
τ
,
χ

τ

)
= e

πi
τ (−4zkNχ+ c

3
z2)ZA(τ, z, ξα, ηβ , χ) (2.50)

where
∑N

β=1 ηβ =
∑N

β=1 ξβ = 0 has been used because they are SU(N) flavor holonomies

and the central charge is

c

3
=

N∑
α,β=1

nα−1∑
mα=0

(
2−

2nβ
l + 1

)
= 2k

(
N − k

l + 1

)
= 2kN − k2 + k2

(
1− 2

l + 1

)
(2.51)

where
∑N

β=1 nβ = k. It is equal to the central charge of the GLSM, i.e. 2kN from chiral

multiplets of (Q, Q̃), −k2 from U(k) vector multiplet and k2
(

1− 2
l+1

)
from adjoint chiral

multiplet. The central charge of the B-theory computed from the elliptic genus is

c

3
= 2(lN−k)N

(
1− 2

l+1

)
−(lN−k)2+(lN−k)2

(
1− 2

l+1

)
+N2

l−1∑
j=0

(
1− 2j

l+1

)
(2.52)

which is equal to the central charge of the A-theory.

Alternatively when a two dimensional theory has at least N = (0, 2) supersymmetry

the central charge can be obtained from the ’t Hooft anomaly of the R-symmetry. Non-

conformal R-symmetry can be mixed with flavor symmetries while the superconformal

R-symmetry is identified by requiring that it does not have a cross anomaly with any
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global symmetry. Furthermore, the superconformal right(left)-moving R-current should

not be mixed with non-(anti-)holomorphic currents of flavor symmetries [27] where (anti-

)holomorphic means right(left)-mover. The flavor symmetries of the theories of interest are

SU(N)× SU(N)×U(1)a which are not purely left-moving or purely right-moving. In this

situation the central charge of N = (2, 2) superconformal theories can be computed as

c

3
=

∑
i: Weyl fermions

γ3RiRi =
∑
i

(
Ri
2
− 1

)2

−
(
Ri
2

)2

=
∑

j: Dirac fermions

(1−Rj) (2.53)

where γ3 is the chirality matrix taking 1 on right-movers and −1 on left-movers, Ri is the

right-moving R-charge of a Weyl fermion ψ±, Rj − 1 is the vector R-charge of a Dirac

fermion
(ψ+

ψ−

)
. The vector R-charge is the linear combination of left-moving R-charge and

right-moving R-charge, which is the same as the usual R-charge of N = (2, 2) multiplets.

For example, a theory of a free chiral multiplet whose fermionic component field has vector

R-charge −1 has the central charge 1. Let us compute the central charge of the theory.

The fundamental and anti-fundamental chiral multiplets have vector R-charge 0 so fermion

fields have vector R-charge -1. The gaugino fields have the vector R-charge 1. The adjoint

chiral multiplet have vector R-charge 2
n+1 so its fermion field has vector R-charge 2

n+1 − 1.

Therefore, the central charge is given by

c

3
= 2kN − k2 + k2

(
1− 2

l + 1

)
, (2.54)

which is the same as the one obtained from the modular property of the elliptic genus.

2.4.2 Chiral primaries

In this subsection, we check the matching of the chiral primaries between the dual theory.

By taking a limit τ → i∞ the elliptic genus becomes

lim
τ→i∞

ZA(τ, z, ξα, ηβ , χ)

= (−1)k
∑

~n s.t |~n|=k

N∏
α,β=1

nα−1∏
mα=0

(−1)y
nβ−mα
l+1

− 1
2 (aαa

−1
β )

1− y
l+1−nβ+mα

l+1 a−1
α aβ

1− y
nβ−mα
l+1 aαa

−1
β

× (−1)y
mα
l+1
− 1

2d2(a−1
α bβ)

1− y
l+1−mα
l+1 d−2aαb

−1
β

1− y
mα
l+1 d2a−1

α bβ
(2.55)

where y = e2iπz, aα = e2iπξα , bα = e2iπηα , d = e2iπχ. It is simplified as

ZA(i∞, z, ξα, ηβ , χ) = (−1)ky
k2

l+1
−kNd2kN

∑
~n s.t |~n|=k

N∏
α,β=1

nα−1∏
mα=0

1− y
l+1−nβ+mα

l+1 a−1
α aβ

1− y
nβ−mα
l+1 aαa

−1
β

×
1− y

l+1−mα
l+1 d−2aαb

−1
β

1− y
mα
l+1 d2a−1

α bβ
(2.56)

where we used
∏N
α=1 aα =

∏N
α=1 bα = 1.
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The spectral flow relation Z(q, y) = −ay−
c
6I(q, q−

1
2 y) and the central charge obtained

in the previous subsection can be used to identify the contributions of chiral primaries

from the ground states contribution (2.56). Up to the factor (−1)kd2kN the chiral primary

contribution is given by

IACR(q, y, aα, bβ , d) =
∑

~n s.t |~n|=k

N∏
α,β=1

nα−1∏
mα=0

1− (yq1/2)
l+1−nβ+mα

l+1 a−1
α aβ

1− (yq1/2)
nβ−mα
l+1 aαa

−1
β

×
1− (yq1/2)

l+1−mα
l+1 d−2aαb

−1
β

1− (yq1/2)
mα
l+1 d2a−1

α bβ
(2.57)

where Z(q → 0, y, aα, bβ , d) = (−1)ky−c/6d2kNICR(q, q−1/2y, aα, bβ , d). (2.57) also can be

obtained directly from the superconformal index with NS-NS boundary conditions [4]. The

factors 1/(1−(yq1/2)
mα
l+1 d2a−1

α bβ) are contributions of operators of the form QαX
mαQ̃β and

1−(yq1/2)
l+1−mα
l+1 d−2aαb

−1
β are contributions ofQ−(QαXmαQ̃β) whereQ− is the left-moving

supercharge.

The denominator of the chiral primary contribution corresponds to bosonic generators

of the chiral ring. We have numerically checked that (2.57) takes the form of

ICR(x, aα, bβ , d) =

 N∏
α,β=1

min(l,k)−1∏
j=0

1

1− x
j
l+1d2a−1

α bβ

N(x, aα, bβ , d) (2.58)

where x = yq1/2 and N(x, aα, bβ , d) is a polynomial in x, which starts with 1. The chiral

ring generators are adjoint operators, TrXj , j = 1, . . . ,min(l − 1, k, lN − k) and mesonic

operators QαX
jQ̃β where j = 0, . . . ,min(l − 1, k − 1). The constraint on the power of

X comes from F -flatness condition, X l = 0 and the characteristic equation of the adjoint

field, which makes QαX
jQ̃β , j ≥ k not linearly independent. The adjoint contribution is

finite because of the superpotential so it appears in the numerator. N(x, aα, bβ , d) consists

of terms corresponding to identity, adjoint contribution, fermion contributions Q−(Mj)

and relations of chiral primaries. Contributions of Q−(Mj) can be distinguished from

that of relations because global charges are different. The relations come from the rank

of mesonic matrices (Mj)αβ = QαX
jQ̃β and F -term condition, X l = 0. One example is

detM = 0 for k < N , which is encoded as −
∏N
α,β=1 a

−1
α bβ in the numerator. For example,

when N = 2, k = 1 the operators (M0)11(M0)22 and (M0)12(M0)21 have the same flavor

symmetry fugacity, a−1
1 a−1

2 b1b2 and are linearly dependent. Thus one linear combination of

the operators is canceled by the term −a−1
1 a−1

2 b1b2 in the numerator. Another example is

(M0)αβ(TrX)2 − (M1)αβ TrX = 0 for U(2) gauge theory with X2 = 0, which corresponds

to −x
2
3a−1

α bβ .
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In the limit τ → i∞, the elliptic genus of the dual theory becomes

lim
τ→i∞

ZB(τ,z,ξα,ηβ ,χ)

= (−1)lN−k
∑

~̃n s.t |~̃n|=lN−k

N∏
α,β=1

 ñα−1∏
m̃α=0

(−1)y
ñβ−m̃α
l+1

− 1
2 (a−1

α aβ)
1−y

l+1−ñβ+m̃α

l+1 aαa
−1
β

1−y
ñβ−m̃α
l+1 a−1

α aβ

×(−1)y
m̃α+2
l+1

− 1
2d−2(aαb

−1
β )

1−y
l−1−m̃α
l+1 d2a−1

α bβ

1−y
m̃α+2
l+1 d−2aαb

−1
β


×
l−1∏
j=0

(−1)y
j
l+1
− 1

2d2(a−1
α bβ)

1−y
l+1−j
l+1 d−2aαb

−1
β

1−y
j
l+1d2a−1

α bβ
(2.59)

It is simplified as

ZB(i∞,z,ξα,ηβ ,χ) = (−1)ky2(lN−k)N(1− 2
l+1)− 2(lN−k)2

l+1
+N2

∑l−1
j=0(1− 2j

l+1)d2kN

∑
~̃n s.t |~̃n|=lN−k

N∏
α,β=1

 ñα−1∏
m̃α=0

1−y
l+1−ñβ+m̃α

l+1 aαa
−1
β

1−y
ñβ−m̃α
l+1 a−1

α aβ

1−y
l−1−m̃α
l+1 d2a−1

α bβ

1−y
m̃α+2
l+1 d−2aαb

−1
β


×
l−1∏
j=0

1−y
l+1−j
l+1 d−2aαb

−1
β

1−y
j
l+1d2a−1

α bβ
(2.60)

The chiral primary contributions are

IBCR =
∑

~̃n s.t |~̃n|=lN−k

N∏
α,β=1

 ñα−1∏
m̃α=0

1−(yq1/2)
l+1−ñβ+m̃α

l+1 aαa
−1
β

1−(yq1/2)
ñβ−m̃α
l+1 a−1

α aβ

1−(yq1/2)
l−1−m̃α
l+1 d2a−1

α bβ

1−(yq1/2)
m̃α+2
l+1 d−2aαb

−1
β


×
l−1∏
j=0

1−(yq1/2)
l+1−j
l+1 d−2aαb

−1
β

1−(yq1/2)
j
l+1d2a−1

α bβ
(2.61)

The factors
1−(yq1/2)

l−1−m̃α
l+1 d2a−1

α bβ

1−(yq1/2)
m̃α+2
l+1 d−2aαb

−1
β

are contributions of operators qαY
m̃α q̃β , Q−(qαY m̃α q̃β)

and the factors
∏l−1
j=0

1−(yq1/2)
l+1−j
l+1 d−2aαb

−1
β

1−(yq1/2)
j
l+1 d2a−1

α bβ

are contributions of singlets Mαβ
j , Q−(Mαβ

j ).

Because IACR = IBCR since this is the τ → ∞ limit of ZA = ZB, the generators should

match. As explained below (2.37) all contributions from qαY
m̃α q̃β are canceled out. When

k ≥ l all singlets of the B theory Mj , j = 0, . . . , l − 1 contribute to the index. However,

when k < l only Mj , j = 0, . . . , k − 1 contribute to the index.

Let us compute the chiral primary contributions for some examples and define x =

yq1/2 for simplicity. For k = lN the B theories become non-gauge theory and consist of

singlet fields, Mj , j = 0, . . . , l − 1. Chiral primary contribution is given by

ICR(q, y, aα, bβ , d) =

N∏
α,β=1

l−1∏
m=0

1− x
l+1−m
l+1 d−2aαb

−1
β

1− x
m
l+1d2a−1

α bβ
(2.62)
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The denominators come from Mj = QXjQ̃ and the numerators come from Q−(Mj) =

Q−(QXjQ̃). The chiral primary operators do not have any non-trivial relation, which is

manifest in the description of the B theory. Terms in the numerators of (2.62) cannot

be interpreted as relations because any product of generators does not have correspond-

ing charges, x
l+1−m
l+1 d−2aαb

−1
β . The elliptic genus of the theory is given by products of

contributions of singlet fields Mj , j = 0, . . . , l − 1,

Z(τ, z, ξα, ηβ , χ) =
N∏

α,β=1

l−1∏
j=0

θ1(τ | − ξα + ηβ + 2χ+ (j−l−1)z
l+1 )

θ1(τ | − ξα + ηβ + 2χ+ jz
l+1)

. (2.63)

Let us consider N = 1 cases. B theory is U(l − k) gauge theory so k ≤ l is the valid

range of the duality. The elliptic genus and chiral primary contribution are given by

Z(τ, z, χ) =
k−1∏
m=0

θ1(τ |k−ml+1 z − z)

θ1(τ |k−ml+1 z)

θ1(τ |2χ+ m
l+1z − z)

θ1(τ |2χ+ m
l+1z)

(2.64)

I(x, d) =
k−1∏
m=0

1− x1− k−m
l+1

1− x
k−m
l+1

1− x
l+1−m
l+1 d−2

1− x
m
l+1d2

(2.65)

where d = e2πiχ is a fugacity for the global U(1) symmetry under which the chiral multiplets

have the same charge. The first factor is the contribution of TrXj , j = 1, . . . ,min(k, l−k).

For l−k < k, contributions of TrXj , j = l−k+1, . . . , k are canceled out. The second factor

comes from the operators Mj = QXjQ̃, j = 0, . . . , k−1. The elliptic genus is the product of

the elliptic genus of chiral fields ui, i = 1, . . . ,min(k, l−k) and vj , j = 0, . . . , k−1 where the

chiral fields are identified as ui = TrXi and vj = Mj . The expression of ui is reminiscent

of the elliptic genus of the minimal models. It would be interesting to find the underlying

CFT for the above theory. The particularly simple case is l = k case. In this case, the B

theory is the theory of k singlets Mj with j = 0 · · · k−1, whose central charge contribution

is (1− 2j
k+1) so that the central charge of the CFT is c

3 =
∑k−1

j=0(1− 2j
k+1) = 2k− 2k2

k+1 . The

chiral ring relation between different Mi and Mj is trivial since MiMj ∼Mn is impossible

since each Mi has U(1)a charge 2.

Now turn into k = 1 case. The elliptic genus is given by

Z(τ,z,aα, bβ ,d) =−
θ1(τ |− l

l+1z)

θ1(τ | 1
l+1z)

N∑
α=1

N∏
β=1,β 6=α

θ1(τ |ξα−ξβ−z)

θ1(τ |ξα−ξβ)

N∏
γ=1

θ1(τ |−ξα+ηβ+2χ−z)

θ1(τ |−ξα+ηβ+2χ)

(2.66)

The first factor comes from the adjoint field and is the same as the elliptic genus of the

l-th minimal model. Since the adjoint field is neutral, the underlying CFT is indeed the

minimal model [21]. In this case, CFT consists of the tensor product of the l-th minimal

model and the CFT of N = (2, 2) U(1) with N flavors. The central charge of k = 1 case

is indeed given by the sum of that of the l-th minimal model and that of the U(1) with

N flavors. This theory has another dual description, which is U(N − 1) gauge theory

with N fundamental/anti-fundamental chiral fields, q, q̃ and decoupled chiral field Y with

superpotential W = Y l+1 +Mqq̃.
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Let us work out the matching of the chiral ring elements for some simple dual pairs. Let

us consider A theory for U(1) gauge with N = 1 pair of fundamental and anti-fundamental

chiral multiplets and an adjoint with superpotential W = TrX4 i.e. l = 3. B theory

is a U(2) gauge theory with additional gauge singlet matter fields Mj , j = 0, 1, 2 with

superpotential W = TrY 4 +M0qY
2q̃ +M1q̃Y q +M2q̃q. Chiral primaries of the A theory

are obtained as

IACR =
1− x3/4

1− x1/4

1− xd−2

1− d2
(2.67)

Because the gauge group is U(1) the linearly independent bosonic chiral ring generators

are X and QQ̃. The first factor 1−x3/4
1−x1/4 = 1 + x1/4 + x2/4 correspond to the identity, X

and X2. It reflects the constraint X3 = 0. Another factor 1−xd−2

1−d2 comes from the mesonic

operator QQ̃ and Q−(QQ̃). Chiral primaries of the B theory are computed as

IBCR =
1− x2/4

1− x2/4

1− x3/4

1− x1/4
· 1− x2/4d2

1− x2/4d−2

1− x1/4d2

1− x3/4d−2
· 1− xd−2

1− d2

1− x3/4d−2

1− x1/4d2

1− x2/4d−2

1− x2/4d2

=
1− x3/4

1− x1/4

1− xd−2

1− d2
(2.68)

At first an operator Tr Y 2 is not constrained by the superpotential or the U(2) B theory

characteristic equation which is

Y 2 − Y TrY +
1

2

(
(TrX)2 − TrX2

)
I2 = 0 (2.69)

where I2 is a 2×2 identity matrix. However it should not be a chiral primary in the IR to be

consistent with the duality. Actually 1−x2/4
1−x2/4 is the contribution of Tr Y 2 and Q−(TrY 2),

which cancel each other. This is consistent with the U(1) A theory in which TrX2 is

not a linearly independent operator. The index also shows pair cancellations, (q̃q,M2) as
1−x2/4d2

1−x2/4d−2
1−x2/4d−2

1−x2/4d2 = 1 and (q̃Y q,M1) as 1−x1/4d2
1−x3/4d−2

1−x3/4d−2

1−x1/4d2 = 1. Due to the characteristic

equation (2.69) q̃Y 2q is not a linearly independent operator so it does not annihilate M0.

Thus M0 operator survives and corresponds to QQ̃ operator of A theory.

Let us consider A theory with U(2) gauge group and N = 1 pair of fundamental and

anti-fundamental chiral multiplets and an adjoint with a superpotential W = TrX4 i.e.

l = 3. B theory is U(1) gauge theory with additional gauge singlet matter fields Mj ,

j = 0, 1, 2 with superpotential W = TrY 4 + M0qY
2q̃ + M1q̃Y q + M2q̃q. Chiral primary

contribution is given by

IACR =
1− x2/4

1− x2/4

1− x3/4

1− x1/4

1− xd−2

1− d2

1− x3/4d−2

1− x1/4d2

=
1− x3/4

1− x1/4

1− xd−2

1− d2

1− x3/4d−2

1− x1/4d2
(2.70)

The first factor 1−x3/4
1−x1/4 = 1+x1/4 +x2/4 correspond to the identity, TrX and (TrX)2. Even

though TrX2 is not constrained by the superpotential or the U(2) characteristic equation

its contribution 1−x2/4
1−x2/4 is canceled out. It is a quantum constraint consistent with the U(1)
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B theory. The second and third factors correspond to QQ̃, QXQ̃, Q−(QQ̃), Q−(QXQ̃).

Chiral primaries computed from the B theory are

IBCR =
1− x3/4

1− x1/4
· 1− x2/4d2

1− x2/4d−2
· 1− xd−2

1− d2

1− x3/4d−2

1− x1/4d2

1− x2/4d−2

1− x2/4d2

=
1− x3/4

1− x1/4

1− xd−2

1− d2

1− x3/4d−2

1− x1/4d2
(2.71)

where q̃q and M2 are canceled out as 1−x2/4d2
1−x2/4d−2

1−x2/4d−2

1−x2/4d2 = 1. Thus the chiral primaries

are TrY , M0, M1 consistent with the duality.

Let us consider A theory with U(2) gauge group and N = 2 flavors and an adjoint with

a superpotential W = TrX3. B theory is also U(2) theory so the characteristic equation

is the same as A theory. The chiral primary contribution is given by

1 + x
1
3

(
1− d4 b1b2

a1a2

)
+ x

2
3

(
1− d2 b1

a1
− d2 b1

a2
− d2 b2

a1
− d2 b2

a2
− d4 b1b2

a1a2

)
+O (x)∏2

α,β=1

(
1− d2 bβ

aα

)(
1− x

1
3d2 bβ

aα

) . (2.72)

The denominator comes from (M0)αβ = QαQ̃β and (M1)αβ = QαXQ̃β . The numerator

contains terms identified as x
1
3 → TrX, x

2
3 → (TrX)2, −x

1
3d4 b1b2

a1a2
→ detM0 TrX +

cεαβεγδ(M1)αγ(M0)βδ = 0 for some c, −x
2
3d2 bβ

aα
→ (M1)αβ TrX− (M0)αβ(TrX)2 = 0. The

rest of terms are the order of x up to x3.

2.5 Summary of the phase structure

We have considered theories with four parameters, k, Nf , Na, l where U(k) gauge group

with Nf fundamental chiral fields and Na anti-fundamental chiral fields and the superpo-

tential W = TrX l+1. We assume twisted masses for the chiral fields are zero. The FI

parameter ξ runs for Nf 6= Na under the RG and does not for Nf = Na. The theta angle

θ is appropriately tuned to minimize the potential energy [28].

We just have to consider Nf ≥ Na cases since Nf < Na cases reduce to those cases un-

der charge conjugation. If k > lNf we expect the supersymmetry is spontaneously broken.

If k ≤ lNf we show that the theory has the dual description, U(lNf − k) gauge theory in

the IR. If Na = 0 we argue that the theory has the mass gap and
(lNf
k

)
isolated vacua. If

0 < Na < Nf we expect that the theory has not only isolated vacua but also non-trivial

non-linear sigma model on the Higgs branch. If Na = Nf the theory is superconformal and

the duality holds for ξ 6= 0 where there are no vacua on the Coulomb branch. See [20], for

related discussion. This phase structure is summarized at table 1.

3 Relation to dualities in 3 and 4 dimensions

In 3 and 4-dimensions, one can find the similar dualities studied in this paper. In 4-

dimensions, one has Kutasov-Schwimmer-Seiberg dualities [12]. In 3-dimensions, the ana-

logue was worked out in [16]. The natural question is if the 2-dimensional dualities con-

sidered in the paper are related to the dualities in 3-dimensions and 4-dimensions via
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lNf < k Nf ≥ Na spontaneous breaking of the supersymmetry

lNf = k
Nf ≥ Na > 0 theory of NfNa free chiral fields

Nf > 0, Na = 0 one massive isolated vacua

lNf > k

Nf = Na > 0 SCFT on Higgs branch, ξ 6= 0

Nf > Na > 0 massive isolated vacua and NLSM on Higgs branch

Nf > 0, Na = 0
(lNf
k

)
massive isolated vacua

Table 1. Phase structure of N = (2, 2) U(k) gauge theory with Nf fundamental, Na anti-

fundamental and one adjoint chiral fields with the superpotential W = TrX l+1.

dimensional reduction. In fact the 3-dimensional dualities of [16] can be obtained from

the Kutasov-Schwimmer-Seiberg dualities [19, 29] following [1]. One can also obtain 2-

dimensional N = (2, 2) gauge theories from 3-dimensional N = 2 gauge theories [30]. In

this section, we briefly summarize the reduction of the 4-dimensional dualities to the 3-

dimensional dualities. After that, we show that the 2-dimensional dualities follow from the

3-dimensional dualities following [30]. Thus we make the relation explicit between dualities

in 2,3 and 4-dimensions.3

3.1 From 4-dimensional dualities to 3-dimensional dualities

4-dimensional Kutasov-Schwimmer dualities consider the following A and B theory and

two theories flow to the same SCFT in the IR.

Theory A: U(Nc) gauge theory with Nf fundamental Qα and anti-fundamental

fields Q̃β , one adjoint field X and with the superpotential

W = TrX l+1. (3.1)

Theory B: U(lNf − Nc) gauge theory with Nf fundamental qα and anti-fundamental

fields q̃β , one adjoint field Y , singlet fields Mj with j = 0 · · · l−1 and with the superpotential

W = TrY l+1 +

l−1∑
j=0

Mj q̃Y
l−1−jq. (3.2)

The 3-dimensional analogue was worked out in [16], where some evidences are presented

that the following A and B theory are equivalent in the IR.

Theory A: U(Nc) gauge theory with Nf fundamental Qα and anti-fundamental

fields Q̃β , one adjoint field X and with the superpotential

W = TrX l+1. (3.3)

3It is known that Seiberg-type dualities in two dimensions follow from similar dualities in four dimensions.

Reducing 4-dimensional N = 1 theories to 2-dimensional (0, 2) theories, some 2-dimensional Seiberg-type

dualities have 4-dimensional origin [7, 31, 32]. One can directly relate the 4d Kutasov-Schwimmer-Seiberg

and 2-dimensional dualities of the paper.
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Theory B: U(lNf − Nc) gauge theory with Nf fundamental qα and anti-fundamental

fields q̃β , one adjoint field Y , singlet fields Mj , vj,± with j = 0 · · · l − 1 and with the

superpotential

WB = TrY l+1 +

l−1∑
j=0

Mj q̃Y
l−1−jq +

l−1∑
j=0

(
vj,+Ṽl−1−j,− + vj,+Ṽl−1−j,−

)
(3.4)

where Ṽj,± are the monopole operators of U(lNf − Nc) while the monopole operators of

U(Nc) are mapped to vj,±.

One can consider 3-dimensional reduction of 4-dimensional Seiberg dual theories on

R3 × S1 with the circle radius r → 0. But this naive dimensional reduction of the 4-

dimensional dual theories results in 3-dimensional theories which are not dual to each

other. This can be understood as follows [1]. The 4-dimensional Seiberg duality is the IR

duality, which implies two theories A and B are identical at energies below their strong

coupling scales, E � ΛA,ΛB. When a 4-dimensional theory is compactified on the circle

the strong coupling scale is given by Λb = exp(−4π/(rg2
3)) where b is the one-loop beta

function coefficient and g2
3 is a 3-dimensional gauge coupling. If we take the limit r → 0

with a fixed g2
3 the strong coupling scale becomes Λ → 0 for a asymptotic free theory. In

this limit, the low-energy limit E � ΛA,ΛB where the duality is valid becomes meaningless.

In order to obtain 3-dimensional dualities from 4-dimensional duailities, we keep r

fixed and look at energies E � ΛA,ΛB, 1/r where the effective low-energy dynamics is

three dimensional and deduces the 3d dualities. The finite radius leads to a compact

Coulomb branch and an additional Affleck-Harvey-Witten (AHW) superpotential. The 4-

dimensional theories of interest on a circle has 2l unlifted Coulomb branch parameterized

by vi,± in theory A and ṽi,± in theory B and the superpotential [19],

WA = TrX l+1 + η

l−1∑
j=0

vj,+vl−1−j,− (3.5)

WB = TrY l+1 +

l−1∑
j=0

Mj q̃Y
l−1−jq + η̃

l−1∑
j=0

ṽj,+ṽl−1−j,− (3.6)

where η ≡ Λb. Due to the AHW superpotential (η term), axial U(1) flavor symmetry is

explicitly broken. Such AHW superpotential can vanish in the theory deformed by a large

real mass of a charged field so that the axial U(1) symmetry is restored. The duality given

in [16] can be obtained from the theory A with Nf + 2 flavors and real masses,

mα = (0, · · · , 0,m,−m), m̃β = (0, · · · , 0,−m,m) (3.7)

where mα and m̃β are real masses for fundamental chiral fields Qα and anti-fundamental

chiral fields Q̃β respectively. If a charged field is integrated out the monopole operators

at high-energy and low-energy are related as vhigh = m
1/2
C · vlow where mC is a complex

mass of the charged field. The flavors have no complex mass but are integrated out due

to the real masses so the AHW superpotential vanishes at low energies since mC = 0 [1].
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Thus the theory A becomes U(Nc) gauge theory with Nf flavors and an adjoint with the

superpotential, WA = TrX l+1, which is nothing but the theory A of [16].

The theory B is U(l(Nf + 2) − Nc) gauge theory with Nf + 2 flavors and an ad-

joint with the superpotential (3.6) in the UV. In [19] this theory is perturbed by W =∑l
j=0

sj
k+1−j TrY k+1−j . The effect of the perturbation is to break the gauge group U(n1)×

· · · × U(nl),
∑

i ni = l(Nf + 2)−Nc and the adjoint field becomes massive. Furthermore,

the real mass deformation leads to a vacuum expectation value of scalar fields in each U(ni)

vector multiplet, σU(ni) = diag(0, . . . , 0,−m,m). This breaks the U(ni) gauge groups to

U(ni−2)×U(1)i,1×U(1)i,2. U(ni−2) gauge group has Nf flavors and each of U(1)i,a with

a = 1, 2 has one flavor. Thus the U(1)i,a sector can be dualized to the XY Z model. Under

this duality, the monopole operators vU(1)i,a,± of U(1)i,a theory are mapped to singlet fields

of XY Z model. These singlet fields interact with the monopole operators of U(ni) through

a superpotential. Thus we have U(n1 − 2)× · · · ×U(nl − 2) gauge theory interacting with

2l XY Z models. It is argued in [19], by turning off the perturbation sj → 0, (j 6= 0) the

gauge group is enhanced to U(lNf −Nc) theory with Nf flavors, one adjoint and monopole

operators, Ṽj,±. 2l singlet fields vU(1)i,1,+, vU(1)i,2,− are identified with the singlet fields vj,±
interacting with the monopole operators of U(lNf−Nc) gauge sector by the superpotential,

WB = TrY l+1 +

l−1∑
j=0

Mj q̃Y
l−1−jq +

l−1∑
j=0

(vj,+Ṽl−1−j,− + vj,+Ṽl−1−j,−) (3.8)

which is the theory B in [16]. Hence one can recover the duality of [16].

3.2 From the 3-dimensional dualities to the 2-dimensional dualities

Here we review the work [30] and apply it to the theory with one adjoint field. Let’s

consider 3-dimensional N = 2 U(Nc) gauge theory with Nf pairs of fundamental and anti-

fundamental chiral fields, (Qα, Q̃β). This theory has the IR dual description, U(Nf −Nc)

gauge theory with Nf pairs of fundamental and anti-fundamental chiral fields (qα, q̃β), N2
f

singlet chiral fields, Mαβ and two singlet chiral fields v± which correspond to bare monopole

fields in the original U(Nc) gauge theory. If the theories are placed on R2×S1
r with radius

r, one finds effective 2-dimensional descriptions at energies below 1/r. However, reducing

the theories on the Coulomb branch (3d FI parameter ζ = 0) is not consistent with the

duality [30]. The Coulomb branch can be lifted by turning on non-zero, finite FI parameter,

which can be seen from the potential,

V =
1

2e2
Tr [σ, σ̄]2 +

e2

2

Nc∑
i,j=1

∣∣∣∣∣∣
Nf∑
α=1

Qαi Q̄
αj −

Nf∑
β=1

¯̃QβjQ̃βi − ζδ
i
j

∣∣∣∣∣∣
2

+
1

2

Nf∑
α=1

Q̄α {σ̄, σ}Qα +
1

2

Nf∑
β=1

Q̃β {σ̄, σ} ¯̃Qβ

=
e2

2

Nc∑
i,j=1

∣∣∣∣∣∣
Nf∑
α=1

Qαi Q̄
αj −

Nf∑
β=1

¯̃QβjQ̃βi − ζδ
i
j

∣∣∣∣∣∣
2

+

Nc∑
i=1

Nf∑
α=1

|σi|2(|Qαi |2 + |Q̃αi |2) (3.9)
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where the second line is obtained by diagonalized σ due to the potential, Tr [σ, σ̄]2. If the

FI parameter ζ is non-zero, σ should vanish, i.e. the Coulomb branch is lifted. Now we

reduce the 3-dimensional theories to the 2-dimensional theories. To be more specific, the

3-dimensional U(Nc) gauge theory is reduced to 2-dimensional N = (2, 2) U(Nc) gauge

theory with Nf pairs of fundamental and anti-fundamental chiral fields and with non-zero

2-dimensional FI parameter t = ζr. On the other hand, the 3-dimensional U(Nf−Nc) gauge

theory has a non-zero FI parameter, which induces a non-zero real mass for the singlet chiral

fields v+, v−. The FI parameter can be understood as a vacuum expectation value(vev) of

the real scalar field in a background vector multiplet for the topological symmetry, U(1)J .

Monopole operators are charged under the topological symmetry. Hence v± picks up a

mass term in the presence of nonzero FI parameter,

S =

∫
dx3d2θd2θv±e

±iζθθv±. (3.10)

Therefore, the singlet chiral fields v± get massive and are integrated out at energies below

1/r where ζ > 1/r. The resulting 2-dimensional N = (2, 2) theory is U(Nf −Nc) with Nf

pairs of fundamental and anti-fundamental chiral fields (qα, q̃β) and the singlet chiral fields

Mαβ , which is the dual description of the 2d U(Nc) gauge theory.

Now let’s consider the 3-dimensional theory with one adjoint chiral field X and the

superpotential, W = TrX l+1 in addition to Nf pairs of fundamental and anti-fundamental

chiral fields (Qα, Q̃β). The dual description [16] is the U(lNf −Nc) gauge theory with Nf

pairs of fundamental and anti-fundamental chiral fields (qα, q̃β), lN2
f singlet chiral fields,

Mαβ
j , 2l singlet chiral fields vj,+, vj,− where j = 0, . . . , l − 1 and an adjoint field Y and

superpotential, W = TrY l+1 +
∑

j(MjqY
l−1−j q̃ + vj,±Ṽl−1−j,∓) where Ṽj,± are monopole

fields in the dual theory and all flavor and gauge indices are contracted. All vj,± are charged

under the topological symmetry with charges ±1, so as before, all of them are integrated

out at energies below 1/r where ζ > 1/r. Then the effective 2-dimensional description is

U(lNf −Nc) gauge theory with Nf pairs of fundamental and anti-fundamental chiral fields

(qα, q̃β), lN2
f singlet chiral fields, Mαβ

j and superpotential,

W = TrY l+1 +
∑
j

MjqY
l−1−j q̃. (3.11)

Therefore, the 2d dualities with Nf = Na can be derived from the 3d dualities. Other

dualities with Nf 6= Na can be obtained by giving twisted masses to some chiral fields by

weakly gauging corresponding U(1) parts of SU(Nf )× SU(Na).

4 Mass gap

In this section, we argue the existence of the mass gap for the U(k) theory with one adjoint

and Nf > k fundamental chiral multiplets. We closely follow the argument in [18]. Let

us consider 2d N = (2, 2) U(k) gauge theory with Nf fundamentals Qi and one adjoint X
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and a superpotential,4

W =

l∑
j=0

sj
l + 1− j

TrX l+1−j (4.1)

For generic coefficients {sj} the superpotential can have l distinct minima as

∂W

∂X
=

l∑
j=0

sjX
l−j ≡ s0

l∏
j=1

(X − λjIk×k) . (4.2)

The classical potential is given by

V =
1

2
Tr[σ, σ]2 +

1

2

k∑
i,j=1

(
N∑
α=1

φiαφ
α
j + [X,X]ij − rδij

)2

(4.3)

+
1

2

N∑
α=1

φ
α
i {σ, σ}

i
j φ

j
α +

1

2
Tr([X,σ])([σ,X]) +

1

2
Tr([X,σ])([σ,X])

+

∣∣∣∣∣∣s0

l∏
j=1

(X − λjIk×k)

∣∣∣∣∣∣
2

Classically to have the zero potential we need X = λjik×kfor some j so that

N∑
α=1

φiαφ
α
j − rδij = 0 (4.4)

Thus some of φiα should be nonzero. Quantum mechanically this is not possible since this

implies the breaking of the global symmetry of U(Nf ), which is forbidden in 2 dimensions.

The resolution of this puzzle is standard. Even though φiα has zero expectation value the

bilinear Oij = φiαφ
α
j can have the nontrivial expectation value. Following [18], we have

< O >= Nf

∫
d2k

(2π)2

1

k2 + {σ, σ̄}
(4.5)

from (4.3). Using the same regularization scheme of [18], we have

< O >= −
Nf

4π
ln({σ, σ̄}/2µ2). (4.6)

The condition for vanishing energy in this approximation is

{σ, σ̄} = 2µ2 exp(−4πr/Nf ) (4.7)

From the classical Lagrangian we have [σ, σ̄] = 0 and X = λjik×k so that σ =

µ exp(−2πr/Nf )g with g being a unitary matrix. The nonzero vev of O gives rise to

masses for the fundamental flavors. The above computation is a typical large Nf compu-

tation. But the result is valid for finite Nf by going to a sufficiently large negative value

of r [18].

4This computation is also valid for the special case W = TrXl+1.
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A χy genus

In the appendix we compute χy genus of the U(k) theory with one adjoint and Nf > k

fundamental chiral multiplets. We call it A theory. The contributions of the ground states

of any N = (2, 2) theory can be obtained by

Z(q, y) = Z(q → 0, y) ≡ χy . (A.1)

In the limit q → 0, equivalently, τ → i∞, the elliptic genus of a free chiral multiplet is

reduced to

lim
τ→i∞

θ1(τ |ξ1)

θ1(τ |ξ2)
=
x

1/2
1 − x−1/2

1

x
1/2
2 − x−1/2

2

(A.2)

where xi = e2iπξi . The elliptic genus of A theory is reduced to χy genus

ZAl,k,Nf (q= 0,y)

= (−1)k
∑

~n s.t |~n|=k

Nf∏
α,β=1

nα−1∏
mα=0

a
1/2
α a

−1/2
β y(nβ−mα−l−1)/2(l+1)−a−1/2

α a
1/2
β y−(nβ−mα−l−1)/2(l+1)

a
1/2
α a

−1/2
β y(nβ−mα)/2(l+1)−a−1/2

α a
1/2
β y−(nβ−mα)/2(l+1)

= (−1)k
∑

~n s.t |~n|=k

Nf∏
α,β=1

nα−1∏
mα=0

aαy
−1/2−mα/(l+1)−aβy1/2−nβ/(l+1)

aαy−mα/(l+1)−aβy−nβ/(l+1)
(A.3)

As in CPN−1 and Grassmannian models the ground state contributions are indepen-

dent of the global symmetry fugacities aα. As a trick to obtain the explicit expressions,

we take limits aα →∞ and aα → 0 to obtain χy genus. We would like to consider Nf + 1

flavors case and take limits on aNf+1. It depends on values of nNf+1,

ZAl,k,Nf (0,y) = (−1)k
k∑

nNf+1=0

 ∑
~n s.t |~n|=k−nNf+1

 Nf∏
α,β=1

nα−1∏
mα=0

aαy
−1/2−mα/(l+1)−aβy1/2−nβ/(l+1)

aαy−mα/(l+1)−aβy−nβ/(l+1)


 Nf∏
α=1

nα−1∏
mα=0

aαy
−1/2−mα/(l+1)−aNf+1y

1/2−nNf+1/(l+1)

aαy−mα/(l+1)−aNf+1y
−nNf+1/(l+1)


 Nf∏
β=1

nNf−1∏
mNf+1=0

aNf+1y
−1/2−mNf+1/(l+1)−aβy1/2−nβ/(l+1)

aNf+1y
−mNf+1/(l+1)−aβy−nβ/(l+1)


nNf+1−1∏
mNf+1=0

aNf+1y
−1/2−mNf+1/(l+1)−aNf+1y

1/2−nNf+1/(l+1)

aNf+1y
−mNf+1/(l+1)−aNf+1y

−nNf+1/(l+1)

 .
(A.4)

The fourth line can be written in terms of q-binomial,(
l

n

)
y

=
n−1∏
m=0

y(l−m)/2 − y−(l−m)/2

y(n−m)/2 − y−(n−m)/2
. (A.5)
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It can be considered as contributions of TrX, · · · ,TrXn where n = min(l − 1, k, l − k).

Note that
(
l
n

)
y

=
(
l

l−n
)
y
. We take limit aNf+1 →∞ or aNf+1 → 0

lim
aNf+1→∞

ZAl,k,Nf+1(0, y) =

k∑
n=0

ZAl,k−n,Nf (0, y) · y(k−n)/2 · y−nNf/2 ·
(
l

n

)
y

1
l+1

(A.6)

lim
aNf+1→0

ZAl,k,Nf+1(0, y) =

k∑
n=0

ZAl,k−n,Nf (0, y) · y−(k−n)/2 · ynNf/2 ·
(
l

n

)
y

1
l+1

(A.7)

Because ZAl,k,Nf (0, y) is independent of aα,

lim
aNf+1→∞

ZAl,k,Nf+1(0, y) = lim
aNf+1→0

ZAl,k,Nf+1(0, y) . (A.8)

Equating (A.6) and (A.7) gives

ZAl,k,Nf (0, y) =

k−1∑
m=0

ZAl,m,Nf (0, y)
[(k −m)Nf −m]y

[k]y

(
l

k −m

)
y

1
l+1

(A.9)

where the summation is rearranged by m = k − n and [k]y is the q-number,

[k]y =
yk/2 − y−k/2

y1/2 − y−1/2
(A.10)

Thus χy genus of U(k) gauge theory can be written as

ZAl,k,Nf (0, y) =

m0−1∑
m1=0

[(m0 −m1)Nf −m1]y
[m0]y

(
l

m0 −m1

)
y

1
l+1

(A.11)

m1−1∑
m2=0

[(m1 −m2)Nf −m2]y
[m1]y

(
l

m1 −m2

)
y

1
l+1

· · ·
mk−1−1∑
mk=0

[(mk−1 −mk)Nf −mk]y
[mk−1]y

(
l

mk−1 −mk

)
y

1
l+1

where we define m0 = k and mj+1 summation exist only when mj 6= 0. We would like to

write down explicitly χy genus for some k. For a trivial theory, k = 0 we set ZAl,0,Nf (0, y) =

1. When A theory is a U(1) gauge theory,

ZAl,1,Nf (0, y) =
yNf/2 − y−Nf/2

y1/2 − y−1/2
· y

l/2(l+1) − y−l/2(l+1)

y1/2(l+1) − y−1/2(l+1)
(A.12)

where the first factor is the χy genus of CPNf−1 model and the other factor comes from

the adjoint field X. χy genus of U(2) gauge theories are

ZAl,2,Nf (0, y) =
[2Nf ]y

[2]y

(
l

2

)
y

1
l+1

+
[Nf ]y[Nf − 1]y

[2]y[1]y

(
l

1

)
y

1
l+1

(
l

1

)
y

1
l+1

(A.13)

=
yNf − y−Nf
y1 − y−1

(y
l

2(l+1) − y−
l

2(l+1) )(y
l−1

2(l+1) − y−
l−1

2(l+1) )

(y
1
l+1 − y−

1
l+1 )(y

1
2(l+1) − y−

1
2(l+1) )

+
(y

Nf
2 − y−

Nf
2 )(y

Nf−1

2 − y−
Nf−1

2 )

(y1 − y−1)(y
1
2 − y−

1
2 )

(
y

l
2(l+1) − y−

l
2(l+1)

y
1

2(l+1) − y−
1

2(l+1)

)2

– 27 –



J
H
E
P
1
0
(
2
0
1
7
)
0
3
5

Acknowledgments

We thank for Seok Kim, Hee-Cheol Kim, Chiung Hwang, Francesco Benini and Cum-

run Vafa for helpful discussions. JP and HK is supported in part by the NRF Grant

2015R1A2A2A01007058. The work of HK is supported in part by the NRF-2013-Fostering

Core Leaders of the Future Basic Science Program and by the Center for Mathematical

Sciences and Applications at Harvard University. The work of KC is supported by the

NRF Grant 2015K1A3A1A21000302 and 2016R1D1A1B0101519.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP

07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

[2] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d N = 2 Gauge

Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].

[3] F. Benini and S. Cremonesi, Partition Functions of N = (2, 2) Gauge Theories on S2 and

Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].

[4] A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP 03 (2014) 080

[arXiv:1305.0266] [INSPIRE].

[5] F. Benini, D.S. Park and P. Zhao, Cluster Algebras from Dualities of 2d N = (2, 2) Quiver

Gauge Theories, Commun. Math. Phys. 340 (2015) 47 [arXiv:1406.2699] [INSPIRE].

[6] J. Gomis and B. Le Floch, M2-brane surface operators and gauge theory dualities in Toda,

JHEP 04 (2016) 183 [arXiv:1407.1852] [INSPIRE].

[7] A. Gadde, S.S. Razamat and B. Willett, On the reduction of 4d N = 1 theories on S2, JHEP

11 (2015) 163 [arXiv:1506.08795] [INSPIRE].

[8] K. Hori, Duality In Two-Dimensional (2,2) Supersymmetric Non-Abelian Gauge Theories,

JHEP 10 (2013) 121 [arXiv:1104.2853] [INSPIRE].

[9] H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Nonabelian 2D Gauge

Theories for Determinantal Calabi-Yau Varieties, JHEP 11 (2012) 166 [arXiv:1205.3192]

[INSPIRE].

[10] B. Jia, E. Sharpe and R. Wu, Notes on nonabelian (0, 2) theories and dualities, JHEP 08

(2014) 017 [arXiv:1401.1511] [INSPIRE].

[11] D. Orlando and S. Reffert, Relating Gauge Theories via Gauge/Bethe Correspondence, JHEP

10 (2010) 071 [arXiv:1005.4445] [INSPIRE].

[12] D. Kutasov and A. Schwimmer, On duality in supersymmetric Yang-Mills theory, Phys. Lett.

B 354 (1995) 315 [hep-th/9505004] [INSPIRE].

[13] D. Kutasov, A. Schwimmer and N. Seiberg, Chiral rings, singularity theory and

electric-magnetic duality, Nucl. Phys. B 459 (1996) 455 [hep-th/9510222] [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP07(2013)149
https://doi.org/10.1007/JHEP07(2013)149
https://arxiv.org/abs/1305.3924
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3924
https://doi.org/10.1007/s00220-014-2210-y
https://arxiv.org/abs/1308.4896
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4896
https://doi.org/10.1007/s00220-014-2112-z
https://arxiv.org/abs/1206.2356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2356
https://doi.org/10.1007/JHEP03(2014)080
https://arxiv.org/abs/1305.0266
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0266
https://doi.org/10.1007/s00220-015-2452-3
https://arxiv.org/abs/1406.2699
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2699
https://doi.org/10.1007/JHEP04(2016)183
https://arxiv.org/abs/1407.1852
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1852
https://doi.org/10.1007/JHEP11(2015)163
https://doi.org/10.1007/JHEP11(2015)163
https://arxiv.org/abs/1506.08795
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08795
https://doi.org/10.1007/JHEP10(2013)121
https://arxiv.org/abs/1104.2853
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2853
https://doi.org/10.1007/JHEP11(2012)166
https://arxiv.org/abs/1205.3192
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3192
https://doi.org/10.1007/JHEP08(2014)017
https://doi.org/10.1007/JHEP08(2014)017
https://arxiv.org/abs/1401.1511
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.1511
https://doi.org/10.1007/JHEP10(2010)071
https://doi.org/10.1007/JHEP10(2010)071
https://arxiv.org/abs/1005.4445
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4445
https://doi.org/10.1016/0370-2693(95)00676-C
https://doi.org/10.1016/0370-2693(95)00676-C
https://arxiv.org/abs/hep-th/9505004
https://inspirehep.net/search?p=find+EPRINT+hep-th/9505004
https://doi.org/10.1016/0550-3213(95)00599-4
https://arxiv.org/abs/hep-th/9510222
https://inspirehep.net/search?p=find+EPRINT+hep-th/9510222


J
H
E
P
1
0
(
2
0
1
7
)
0
3
5

[14] V. Niarchos, Seiberg Duality in Chern-Simons Theories with Fundamental and Adjoint

Matter, JHEP 11 (2008) 001 [arXiv:0808.2771] [INSPIRE].

[15] A. Kapustin, H. Kim and J. Park, Dualities for 3d Theories with Tensor Matter, JHEP 12

(2011) 087 [arXiv:1110.2547] [INSPIRE].

[16] H. Kim and J. Park, Aharony Dualities for 3d Theories with Adjoint Matter, JHEP 06

(2013) 106 [arXiv:1302.3645] [INSPIRE].

[17] C. Hwang and J. Park, Factorization of the 3d superconformal index with an adjoint matter,

JHEP 11 (2015) 028 [arXiv:1506.03951] [INSPIRE].

[18] E. Witten, The Verlinde algebra and the cohomology of the Grassmannian, hep-th/9312104

[INSPIRE].

[19] K. Nii, 3d duality with adjoint matter from 4d duality, JHEP 02 (2015) 024

[arXiv:1409.3230] [INSPIRE].

[20] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, The long flow to freedom, JHEP 02

(2017) 056 [arXiv:1611.02763] [INSPIRE].

[21] E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod.

Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].

[22] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2

gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465

[arXiv:1305.0533] [INSPIRE].

[23] A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 Superconformal

Algebras in Two-Dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].

[24] W. Lerche, C. Vafa and N.P. Warner, Chiral Rings in N = 2 Superconformal Theories, Nucl.

Phys. B 324 (1989) 427 [INSPIRE].

[25] E. Witten, Elliptic Genera and Quantum Field Theory, Commun. Math. Phys. 109 (1987)

525 [INSPIRE].

[26] A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513

(1998) 119 [hep-th/9707192] [INSPIRE].

[27] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,

JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

[28] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042] [INSPIRE].

[29] A. Amariti and C. Klare, A journey to 3d: exact relations for adjoint SQCD from

dimensional reduction, JHEP 05 (2015) 148 [arXiv:1409.8623] [INSPIRE].

[30] O. Aharony, S. Razamat, B. Willett and N. Seiberg, 2d Dualities from 3d Dualities, Talk

given at Strings 2016, Tsinghua University, Beijing, China, 2016,

http://ymsc.tsinghua.edu.cn:8090/strings/slides/parallel/3/Willett.pdf .

[31] D. Kutasov and J. Lin, (0, 2) Dynamics From Four Dimensions, Phys. Rev. D 89 (2014)

085025 [arXiv:1310.6032] [INSPIRE].

[32] D. Kutasov and J. Lin, (0, 2) ADE Models From Four Dimensions, arXiv:1401.5558

[INSPIRE].

– 29 –

https://doi.org/10.1088/1126-6708/2008/11/001
https://arxiv.org/abs/0808.2771
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2771
https://doi.org/10.1007/JHEP12(2011)087
https://doi.org/10.1007/JHEP12(2011)087
https://arxiv.org/abs/1110.2547
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2547
https://doi.org/10.1007/JHEP06(2013)106
https://doi.org/10.1007/JHEP06(2013)106
https://arxiv.org/abs/1302.3645
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.3645
https://doi.org/10.1007/JHEP11(2015)028
https://arxiv.org/abs/1506.03951
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03951
https://arxiv.org/abs/hep-th/9312104
https://inspirehep.net/search?p=find+EPRINT+hep-th/9312104
https://doi.org/10.1007/JHEP02(2015)024
https://arxiv.org/abs/1409.3230
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.3230
https://doi.org/10.1007/JHEP02(2017)056
https://doi.org/10.1007/JHEP02(2017)056
https://arxiv.org/abs/1611.02763
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.02763
https://doi.org/10.1142/S0217751X9400193X
https://doi.org/10.1142/S0217751X9400193X
https://arxiv.org/abs/hep-th/9304026
https://inspirehep.net/search?p=find+EPRINT+hep-th/9304026
https://doi.org/10.1007/s11005-013-0673-y
https://arxiv.org/abs/1305.0533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0533
https://doi.org/10.1016/0370-2693(87)90566-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B184,191%22
https://doi.org/10.1016/0550-3213(89)90474-4
https://doi.org/10.1016/0550-3213(89)90474-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B324,427%22
https://doi.org/10.1007/BF01208956
https://doi.org/10.1007/BF01208956
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,109,525%22
https://doi.org/10.1016/S0550-3213(97)00754-2
https://doi.org/10.1016/S0550-3213(97)00754-2
https://arxiv.org/abs/hep-th/9707192
https://inspirehep.net/search?p=find+EPRINT+hep-th/9707192
https://doi.org/10.1007/JHEP06(2013)005
https://arxiv.org/abs/1302.4451
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4451
https://doi.org/10.1016/0550-3213(93)90033-L
https://arxiv.org/abs/hep-th/9301042
https://inspirehep.net/search?p=find+EPRINT+hep-th/9301042
https://doi.org/10.1007/JHEP05(2015)148
https://arxiv.org/abs/1409.8623
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8623
http://ymsc.tsinghua.edu.cn:8090/strings/slides/parallel/3/Willett.pdf
https://doi.org/10.1103/PhysRevD.89.085025
https://doi.org/10.1103/PhysRevD.89.085025
https://arxiv.org/abs/1310.6032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6032
https://arxiv.org/abs/1401.5558
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5558

	Introduction
	Elliptic genus of theories
	U(1) gauge theory with N(f) chiral multiplets
	U(k) with N(f) fundamentals and one adjoint
	Dual theory

	U(k) with N(f) fundamentals, N(a) anti-fundamentals and one adjoint
	Characteristic of the theory

	U(k) with N pairs of fundamentals/anti-fundamentals and one adjoint
	Modular property
	Chiral primaries

	Summary of the phase structure

	Relation to dualities in 3 and 4 dimensions
	From 4-dimensional dualities to 3-dimensional dualities
	From the 3-dimensional dualities to the 2-dimensional dualities

	Mass gap
	chi(y) genus

