
1Scientific Reports | 6:37700 | DOI: 10.1038/srep37700

www.nature.com/scientificreports

Temporally-coherent terawatt 
attosecond XFEL synchronized  
with a few cycle laser
Sandeep Kumar1,2, Yong Woon Parc3, Alexandra S. Landsman1,2,4 & Dong Eon Kim1,2

Attosecond metrology using laser-based high-order harmonics has been significantly advanced and 
applied to various studies of electron dynamics in atoms, molecules and solids. Laser-based high-order 
harmonics have a limitation of low power and photon energies. There is, however, a great demand for 
even higher power and photon energy. Here, we propose a scheme for a terawatt attosecond (TW-as) 
X-ray pulse in X-ray free-electron laser controlled by a few cycle IR pulse, where one dominant current 
spike in an electron bunch is used repeatedly to amplify a seeded radiation to a terawatt level. This 
scheme is relatively simple, compact, straightforward, and also produces a temporally and spectrally 
clean pulse. The viability of this scheme is demonstrated in simulations using Pohang accelerator 
laboratory (PAL)-XFEL beam parameters.

Over the past decade, the field of ultrafast laser physics has moved from its infancy to become a major force not 
only in atomic and chemical physics, but also at the interface of multiple areas of fundamental and applied science 
that involve imaging and control of electron dynamics1–3. Its progress was enabled by the creation of isolated 
attosecond pulses utilizing laser-based high-order harmonics (HOH)4–7. Since this attosecond pulse is naturally 
synchronized to a driving few-cycle IR pulse, the delay between the attosecond pulse and its driving laser pulse 
can be controlled with a high degree of precision, leading to a cornucopia of pump-probe experiments that cap-
ture electron dynamics in atoms, molecules and solids on the attosecond time-scale8–11.

Nonetheless, the low conversion efficiency of conventional laser-based HOH is a major limitation, which leads 
to low photon flux for the attosecond pulse and photon energy in extreme ultraviolet (XUV) region. X-ray free 
electron laser (XFEL) sources based on self-amplified spontaneous emission (SASE) scheme, on the other hand, 
offer unprecedented power, high peak brightness and coherence characteristics12–14. In addition, the higher pho-
ton energy (in the soft and hard X-ray range) matches the energy scales of core electrons inside atoms and mole-
cules, giving access to previously unexplored phenomena. Hence, a great deal of theoretical effort has been aimed 
at shortening the duration of the XFEL pulse to sub-femtosecond levels15–24. Most of these theoretical proposals 
rely on only a small portion of electrons in phase space, thereby resulting in relatively low peak power. This limita-
tion was overcome recently by Tanaka25, and Prat et al.26 who proposed a mechanism for a TW-attosecond X-ray 
pulse using a combination of slotted foil15, enhanced SASE (ESASE)18, and optical and/or electron beam delay 
between undulator sections. While these schemes offer power much beyond the conventional laser-based HOH 
sources, they lack synchronization with an external source which is essential for high resolution pump-probe 
experiments. Such a synchronization is necessary to scan the pump-probe delay with high precision, needed to 
capture ultra-fast electron dynamics.

This paper reports the first realization of an isolated TW attosecond X-ray pulse with an excellent temporal 
and spectral structure and synchronization to an external source, which is well suited to high precision ultrafast 
dynamics studies. The controlled interaction of a few cycle IR pulse with an electron bunch under a proper mod-
ulator and a chicane lead to a single, dominant electron spike22. This electron spike is fed into a series of short 
undulators, and tapering and a match between the radiation pulse and the electron spike is introduced for higher 
power and excellent temporal structure. This scheme is relatively simple in terms of implementation, as one has 
to match only one major current spike to one major radiation spike in undulator stages. In a few-cycle current 
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modulation, where only one current spike is dominant, the alignment of the current spike with the seed radiation 
is easier compared to the case of many current-spikes.

Unlike other recent proposals, our set-up does not require a slotted foil which degrades the electron-beam 
quality. Our proposal uses a baseline configuration that could be implemented at PAL-XFEL14 or a similar existing 
XFEL facility. The current spike is well synchronized with the driving laser and hence produces an X-ray pulse 
which is synchronized with the driving few cycle pulse. Our method therefore combines the fine control over 
pump-probe delay with a high power (in the terawatt regime) offered by the XFEL sources.

Method
Basic layout: current modulation and amplification.  Figure 1 shows the basic scheme along with its 
working mechanism. A 10 GeV (relativistic factor γ​ ~ 2 ×​ 104) electron-beam with a total electron bunch charge 
of 0.2 nC and an average current of 6 kilo-ampere (kA) is used. The electron bunch length is 35 fs long with a 
normalized emittance of 0.5 μ​m-rad and an energy spread of 0.5 MeV. Such an electron beam and an optical 
few-cycle laser of wavelength λ​L is injected synchronously inside a modulator, as shown in Fig. 1a. The interaction 
of the electron beam with the laser pulse in the modulator produces an energy modulation, imprinting the shape 
of optical cycles of the laser field on the energy spectrum of the electron beam. The modulator with two wiggler 
periods is used. The FEL resonance condition, λ λ γ= + K/2 (1 )L w w

2 2  is satisfied, where λ​L is the laser wave-
length, λ​w the wiggler period (50 cm in this study), γ​ the electron beam relativistic factor. Kw is the wiggler param-
eter given by eB0λ​w/2π​mc, where, e and m are the charge and mass of the electron, c velocity of light and B0 the 
magnet field. The electron beam enters a dispersive chicane, which induces strong bunching at λL. As a result, the 
current profile contains a few current spikes, the number of which can be varied depending on a laser wavelength, 
a laser pulse duration and the energy spectrum of an electron beam22. The simulations were carried out for differ-
ent laser wavelengths, pulse durations, pulse energies, and chicane dispersion factor R56 to maximize the peak 
current modulation and the contrast ratio of the main peak magnitude to the side peak magnitudes. To generate 
this electron beam distribution, the six-dimensional particle tracking code ELEGANT27 was used.

This density-modulated electron beam is then sent to the first undulator line, consisting of 5 undulator mod-
ules (UMs) (Fig. 1b) for SASE radiation. Due to high-current at the main electron spike, stronger radiation ampli-
fication is achieved in a shorter length of an undulator. For undulator radiation, simulations are performed using 
three-dimensional time-dependent FEL code GENESIS28. The saturation length inversely depends on the electron 
beam current. Therefore, the XFEL output due to the radiation of the major current spike will saturate earlier than 
in the normal SASE operation without the current spike. We choose the first undulator section to be shorter than 
the saturation length for the major spike, in order to avoid the saturation of the radiation from the main current 
spike and to minimize the degradation of the electron beam quality.

Radiation alignment.  In an undulator, the radiation travels ahead of electrons by one radiation wavelength 
λ​r per undulator period (λ​u) and slips ahead by Nλr, where N is the total number of undulator periods passed. To 
compensate this radiation slippage, a chicane-mirror system, consisting of four-dipole magnets and a set of plane 
mirrors (Fig. 1c), is introduced between undulator modules29. The chicane delays the electron bunch and dilutes 
the microbunching developed in undulator modules during SASE radiation while the reflective mirror system 

Figure 1.  A schematic layout and working principle of attosecond-terawatt XFEL. A 10 GeV electron beam 
is modulated in energy and density by (a) modulator (wiggler) and chicane system. A CEP-stabilized few 
cycle, Ti: sapphire laser (1200 nm wavelength and 5 fs pulse-duration) is used for the electron beam energy 
modulation. (b) SASE undulator, consisting of 5 undulator modules, is used for seed radiation generation.  
(c) The chicane-mirror unit for radiation alignment followed by one undulator module for radiation 
amplification. (d) The units similar to (c) are repeated; only difference is that the chicane-mirror system is 
relatively smaller. In the bottom part, relative positions of current-spike (blue) and corresponding radiation-
spike (red) are shown. If a portion of the modulation laser beam is picked up and used in a pump-pulse 
experiment with XEEL pulse, the synchronization between them is ensured.
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gives a temporal delay to the radiation relative to the electron bunch. For the next stage of amplification, a short 
UM is used to minimize the radiation slippage and pulse broadening. This UM can be added several times to get 
a clean single amplified pulse (Fig. 1d). Our simulations show that the amplification can be made even to a TW 
level within a reasonable numbers of UMs (9 UMs in this study).

Results and Discussion
To demonstrate the performance of the proposed scheme, we present simulation results, based on PAL-XFEL 
parameters14, for the case of attosecond-TW XFEL at 12.4 keV or 0.1 nm in the hard X-ray regime.

Figure 2 is the energy and density modulation of the electron bunch by a 1200 nm, 5 fs FWHM and 0.13 mJ 
carrier-envelop-phase (CEP) stabilized laser focusing at the center of the modulator and by a chicane, respec-
tively. Figure 2a,c,e show the electron-beam longitudinal phase-space distribution and Fig. 2b,d,e show the cur-
rent distribution at the entrance of the wiggler, chicane and undulator, respectively. The central part of the current 
distribution has only one single current spike with a peak current of 33 kA (Fig. 2f), almost 6 times larger than the 
background. This large difference in current between the central peak and the background leads to a significant 
difference in the radiation output power at the end between them, as discussed below. To obtain this current 
modulation, the momentum compaction factor R56 of magnet chicane (Fig. 1a) is optimized to be 0.16 mm with 
a bending angle of the dipole 0.320, a drift length of 2.5 m between the first and second dipole magnet and also 
a length of 2.5 m between the third and fourth dipole magnet. Each dipole magnet is 0.3 m long. This electron 
bunch is then sent to a series of UMs. Note that the current enhanced SASE scheme not only enhances the peak 
current but also increases the energy spread at the current peak position, which has been taken into account in 
this FEL simulations.

Figure 3a shows two undulator configurations used in our scheme. The first one is the normal SASE config-
uration and the second is the radiation alignment configuration in which chicane-mirror setups are inserted 
between UMs in the later part of the undulators. Each UM is 6-m long (5-m for the undulator itself and 1-m for 
a drift section). The undulator period is 26 mm. In total, 9 UMs are used in the undulator line. Figure 3b shows 
the temporal profiles of the radiation for the case of normal SASE (blue line) and radiation alignment (red-line) 
taken after the 9th UM (~50 m in total) along with the corresponding spectra (Fig. 3c). Since the radiation always 
slips ahead of the electrons by one radiation wavelength, this net slippage of the radiation results in several spikes, 
leading to broadening of the radiation pulse, as shown by blue-line in Fig. 3b.

To control this radiation slippage, radiation alignment setups are introduced between UMs. It is done only for 
a few UMs in the latter part of the undulators for the sake of simplicity. The idea is to use the main current spike 
repeatedly for a few UMs to keep the excellent temporal profile, control the pulse broadening, and enhance the 
radiation power. The maximum power obtained in the normal SASE configuration is 0.2 TW and the main spike 

Figure 2.  Longitudinal energy distribution and current profile of a 10 GeV electron beam at three different 
locations. (a,b) Before wiggler, (c,d) before chicane, (e,f) before undulator (Fig. 1a for the locations). A single 
current spike of 33 kA with a base current of 6 kA is generated for radiation in UMs.
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width is almost 300 as FWHM with several other radiation spikes. This spiky temporal profile of SASE (blue line) 
is due to the growth of synchrotron side bands generated due to the continuous interaction of the radiation with 
the fresh part of the electron bunch. To assess the importance of radiation alignment, the simulation is repeated. 
The red-line shows the temporal profile when the radiation alignment is used. After 9 UM amplification, the radi-
ation alignment gives a clean attosecond pulse of 100 as FWHM with 0.3 TW power. One can see a big improve-
ment in the temporal structure. The increment in radiation power is marginal. Figure 3c shows the corresponding 
power spectrum. The spectrum also gets cleaner in case of the radiation alignment compared to the normal SASE 
spectrum. In the radiation alignment configuration, the radiation pulse is aligned with the electron beam after the 
first 5 UMs. A magnet chicane similar to the self-seeding chicane at PAL-XFEL30 is chosen. The magnet chicane, 
consisting of 0.1 m long dipole magnets with a magnetic field strength of 1.0T, is able to cover the electron beam 
delay needed in the amplifier section. The drift space between two neighboring UMs is enough to accommodate 
the radiation-delay chicane used for radiation alignment. Note that the radiation-delay after each UM is adjusted 
to align the seed radiation with the main current spike to maximize the peak power and the contrast ratio of the 
main radiation spike with the background in the next UM. The required radiation-delay after each undulator 
module is equivalent to the sum of the net radiation slippage in the undulator module and the electron-beam 
delay. Because of large energy modulation, the high peak current (33 kA) suffers from energy-chirp due to 
space-charge effects. There are two kinds of space charge effects of electron beam: short-range and long-range 

Figure 3.  Two undulator configurations and amplification. (a) Two undulator configurations; the upper 
one is used for normal SASE and the lower-one in case of radiation alignment. For radiation alignment, 
one chicane-mirror unit is inserted between undulator modules. Total 9 UMs are considered for radiation 
generation in both configurations. (b) The temporal profiles of the radiation pulse after 9 UMs; blue-line for the 
normal SASE case, red-line for the radiation alignment case. (c) Corresponding radiation spectra; the spectrum 
in case of radiation alignment (red-line) is clean while that for normal SASE case (blue-line) is noisy.
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space charge effects. The short-range space-charge working against microbunching has been taken care of by the 
GENESIS28 code used in our simulation. However, the longitudinal debunching effect is presently not included in 
GENESIS28 code. The longitudinal debunching causes a reduction in the peak current; however, it is less severe at 
higher electron beam energies (i.e. 10 GeV) where the reduction in peak current is of the order of a few percent 
only31. Additionally, the tapering used in our simulation should help to minimize the space charge effects19,32.

Another concern in this scheme is the degradation of beam quality, such as the energy spread, because 
of repeated use of the major current spike. Figure 4a shows the energy loss (γ​) at the major current spike (in  
blue ‘×​’) along the undulator length. Also, corresponding RMS energy-spread, σ​γ (the root means square value of 
the energy distribution in terms of electron rest mass energy) is shown on the secondary y-axis (red line). At the 
entrance of UM1, σ​γ is 4.5 and increases up to 12 after 5 UMs amplification (~30 m). This degradation of beam 
quality weakens the amplification in the downstream undulator section. Therefore, to compensate the degrada-
tion and to increase the power growth efficiency, a tapering33 to the UMs after the first 5 UMs is introduced, pre-
serving the resonance condition. Figure 4b reveals the tapering applied along the UMs. The first 5 UMs have the 
same undulator parameter K. The tapering is applied to only the last 4 UMs. The values for undulator parameter 
K of the last 4 UMs is optimized to sustain the FEL resonance condition and to maximize the radiation power.

A further simulation for similar parameters with tapering has been carried out. Figure 5 shows the simula-
tion results for radiation power and spectrum at the end of UMs for two cases; (a) tapering only, where the main 
radiation spike power is increased up to 0.56 TW and pulse-width is 300 as FWHM. (b) By adding the radiation 
alignment to the tapering, the radiation power is enhanced up to 1.2 TW and the pulse-width reduced to 100 as 
FWHM. Comparing the tapering only case (blue-line) in Fig. 5a with normal SASE (blue-line) of Fig. 3a, one can 
see that with the tapering, the growth of side bands can be suppressed to a significant degree so that the temporal 
and spectral profile are improved as shown in Fig. 5a,b. They are still spiky. An even more important feature of this 
scheme is the very clean temporal and spectral profile (red line). To check whether the final pulse is Fourier limited 
or not, we calculate the frequency-time bandwidth relation ΔvΔτ =​ cΔλΔτ/λ2 which is ~0.441 for Gaussian pulse. 
For tapering and optical alignment case, the pulse-width is Δ​τ ~ 110 as FWHM. From the spectrum profile, for Δ​
E ~20 eV at λ​ =​ 0.1 nm, the product Δ​vΔ​τ is 0.499 slightly larger than 0.441 that shows that the final pulse is nearly 
Fourier-transform limited.

In a further simulation, we have run 10 different simulations using different seeds due to the shot noise of the 
electron beam. Figure 6 shows the radiation power versus the undulator length with these statistical fluctuations. 
It is clearly demonstrated that the radiation output improves from the normal SASE case to the tapering case to 
tapering with radiation alignment, as more controls added to UMs. The simulation result for the case of the taper-
ing with radiation alignment shows that the average power after 9 UM stage amplification (red-curve) is 1.0 ±​ 0.4 
TW (90 ±​ 36 μ​J), while the average pulse duration 94 ±​ 28 as FWHM. It is worthwhile to mention that in the case 
of tapering with and without radiation alignment, the power is not saturated yet up to 50 meter, implying that if 
more UMs are added, the radiation power is expected to increase further. Therefore, using our scheme; we could 
get ≥​1 TW, 100 as FWHM with an excellent temporal and spectral profile by the combination of tapering and 
radiation alignment. In a conventional SASE FEL (no current spikes), for given similar parameters, only 30 GW 
power at 12.4 keV photon energy is expected at saturation. After UMs, using radiation alignment and tapering 
together, the main radiation-pulse finally evolves into an isolated intense X-ray pulse with a peak power of ≥​1 

Figure 4.  Change of electron beam energy (γ) and its RMS energy spread (σγ) at the major current spike 
and tapering for compensation. (a) γ​ and σ​γ variation along the undulator length. (b) The tapering of magnetic 
field along 9 UMs.
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TW and a pulse duration of 100 as FWHM at the same photon energy. All these considerations indicate that our 
scheme is superior in getting a clean radiation pulse with TW level power in attosecond time scale.

Synchronization and stability.  Synchronization between an X-ray pulse and an optical laser pulse is of vital 
importance to perform well-defined pump-probe experiments. Timing stability between FEL X-ray pulses and inde-
pendent external optical laser pulses is important. In ESASE operation, the arrival of an electron-bunch and an opti-
cal laser pulse at the entrance of a modulator should match properly. Here, since a 40 fs-long electron bunch and 5 
fs-long optical lasers are considered, the relative timing jitter between the electron beam and laser should be controlled 
below ~35 fs. If a longer electron beam is used, this requirement can be relaxed accordingly. An achievable timing jitter 
between the electron beam and the modulation laser is shown at the 20-fs level34. In an ESASE operation, an X-ray pulse 
is generated by the electrons that interact with the laser pulse, and hence are naturally synchronized to it.

However, for the realization of this scheme, only an inherent synchronization is not sufficient. We also need 
to take care of synchronization at each chicane-mirror setup where the electron beam energy jitter and the tim-
ing jitter between the electron beam and the modulation laser could affect the performance of our scheme. The 

Figure 5.  Temporal and spectral profile of attosecond pulse after 9 UM amplification. (a) For tapering case 
(blue-line), radiation pulse duration is 300 as with 0.55 TW power. For the tapering with radiation alignment 
(red-line), the pulse duration is 100 as with 1.2 TW power, the inset shows the enlarged view of 100 as pulse. 
(b) Corresponding radiation spectra; the tapering with radiation alignment (red-line) gives a cleaner spectrum 
compared to the tapering case (blue-line).

Figure 6.  The average radiation power and power fluctuations for 10 different random seeds are shown for 
three cases. The red line relates to the case of the tapering with radiation alignment showing an output power 
of 1.01 ±​ 0.36 TW. The blue line relates to the case of tapering case only with an output power of 0.5 ±​ 0.11 TW. 
The green-line corresponds to normal SASE case with an output power of 0.17 ±​ 0.1 TW.
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electron beam energy jitter mainly affects the timing after passing through chicanes. After first chicane-mirror 
setup, the timing jitter will be converted to current-spike position jitter. Hence, a stable electron beam with an 
energy jitter below 0.02% is desirable for this scheme.

In our scheme, after a 30 m long undulator, the first magnet-chicane (R56 ~ 20 μ​m) changes the electron 
position by s1−​s0 =​ R56 Δ​E/E ~ 10nm for Δ​E/E ~ 0.05%. In the time domain, this corresponds to Δ​t =​ (R56/c)  
Δ​E/E ~ 33 as, which is much smaller than the current spike width 400 as. After the first magnet-chicane, the radi-
ation pulse-width for seeding is around 0.4 fs FWHM. Therefore, the shift of 33 as in current position can be com-
pensated with the fine adjustment of magnet-chicane. This adjustment of magnet chicane is quite small compared 
to the electron beam delay, and should not affect the electron beam current distribution. For the remaining three 
magnet-chicanes which are shorter (R56 =​ 4 μ​m), the change of electron position s1−​s0 is 5 nm, 8 nm, and 11 nm, 
respectively. In the time domain, Δ​t is 16.5 as, 26.5 as, and 36 as, which is quite small compared to current spike 
width 400 as FWHM. In total, four magnet-chicanes are used. The net displacement in current spike position is 
~34 nm (current spike width 120 nm FWHM). Therefore, even though the original shape of the current spike 
is smeared out after 4 magnet-chicanes, this smearing is not significant in our scheme. The change of 10 nm in 
electron’s position is enough to destroy microbunching. However, the microbunching develops rapidly in the next 
undulator section due to high current peak of e-bunch and strong seed pulse power. Hence the good amplification 
is still maintained in each stage.

The schematic layout of X-ray delay system is shown in Fig. 7. The X-ray delay system includes a magnetic-chicane  
and a set of reflected mirrors25. For its practical design, the optical components have to meet various require-
ments such as a high reflectivity, delay with sub-fs resolution, a large delay range, and the wide photon energy 
range of XFEL (1–12 keV). These properties have to be achieved with a minimal disturbance of the beam position 
and direction, a high mechanical stability, making a temporal resolution of 100 as or so feasible. For x-ray delay 
system, instead of a monochromator as in the self-seeding scheme, a set of reflective mirrors is installed to give a 
temporal delay to the radiation to align with the main current peak of the electron bunch.

The first magnet-chicane is used after a 30 m long SASE undulator whose R56 is almost 20 μ​m that gives an 
electron beam delay of around 10 μ​m. While a relatively shorter magnetic chicane is used after a short undulator 
(~ 5m long undulator), the chicane accomplishes three tasks. It creates an offset for the installation of mirrors, 
it removes microbunching developed in the previous undulator and it acts as delay line for electron beam. For 
a given geometry, the total length is ~0.7 m, an e-beam is delayed by 2 μ​m. The net radiation slippage is 0.019 μ​
m (0.063 femtoseconds), and total optical delay is 2.019 μ​m. To create such an optical-delay, the mirror system 
as shown in Fig. 7 is needed. The length of the mirror is estimated by the expression Dsinθ =​ d, where D is the 
mirror’s half-length and d is the radiation beam radius. For a mirror deflection of θ =​ 0.10 and a radiation beam 
size of d =​ 50 μm, D turns out to be 2.73 centimeter. Therefore, a mirror with a length of 5~6 cm (~2D) and a 
deflection angle of 0.10 would be enough in the shorter chicane-mirror system to obtain the required optical 
delay mentioned earlier. Mirror stages with 10 nm resolution are commercially available. Hence, the delay can be 
controlled with a high degree of precision

In pump-probe experiments, the mechanical vibration leads to jittering in the optical path lengths. It is 
demonstrated that at FEL experimental stations, the timing jitter generated due to a free space propagation of 
~100 m and due to folding mirrors can be controlled with 5 fs accuracy via currently available technology34,35. 

By using a feedback loop36 for all the mirrors, i.e. both optical and X-ray mirror, such mechanical vibration 
can be suppressed and the time delay between pump (optical laser) and probe pulse (X-ray) can be controlled 
within 20 attosecond RMS. Thus, if the feedback loop technology36 is added to the mirror-chicane system, then 
an XFEL pulse might even be synchronized with current spike and with optical laser on the attosecond time-scale. 
Combining all of these technologies together, a synchronization in 100 attosecond range between a pump laser 
and an X-ray pulse is achievable with the rapid developing technology in near future.

Figure 7.  Schematic layout for X-ray delay system. 
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The result of this study indicates a feasible method to generate a TW attosecond pulse in XFEL, which is syn-
chronized with a few-cycle IR pulse and can be readily used in pump-probe experiments that capture ultra-fast 
electron dynamics in atoms, molecules, nano materials and bulk solids. To demonstrate the applicability of 
our method in the hard X-ray regime, we produce an isolated 100 attosecond FWHM, 1 TW pulse at 12.4 keV 
(~0.1 nm) within a 50 m long undulator. This attosecond X-ray pulse has excellent temporal and spectral structure 
properties. Our scheme is straight-forward to implement and can be adapted to the existing FEL facilities and also 
leads to a substantial reduction in cost due to the use of a short undulator.
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