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Small target detection is very important for infrared search and track (IRST) problems. Grouped targets are difficult to detect
using the conventional constant false alarm rate (CFAR) detection method. In this study, a novel multitarget detection method
was developed to identify adjacent or closely spaced small infrared targets. The neighboring targets decrease the signal-to-clutter
ratio in hysteresis threshold-based constant false alarm rate (H-CFAR) detection, which leads to poor detection performance in
cluttered environments. The proposed adjacent target rejection-based robust background estimation can reduce the effects of the
neighboring targets and enhance the small multitarget detection performance in infrared images by increasing the signal-to-clutter
ratio. The experimental results of the synthetic and real adjacent target sequences showed that the proposed method produces an
upgraded detection rate with the same false alarm rate compared to the recent target detection methods (H-CFAR, Top-hat, and
TDLMS).

1. Introduction

Automatic infrared target recognition (ATR) covers auto-
matic target detection (ATD) and classification. If the target
area is less than 100 pixels, the detection problem is called
infrared small target detection, which is used in air traffic
control, air defense, IR surveillance systems, and visible light
communications (VLC). In particular, the infrared search
and track (IRST) and active protection system (APS) use
infrared small target detection systems to protect ships and
tanks [1]. IRST systems are omnidirectional surveillance
systems for precise infrared target searches, detection and the
recognition of threat targets [2]. APS is a recent technology to
protect tanks from rocket attacks with a physical counterat-
tack [1].

Small infrared target detection has several research
issues, such as dim target detection, reducing the false
detection caused by ground clutter, cloud clutter, and sea-
glint. The dim target detection issue was solved using the
track-before-detect technique (TBD). Previous detection

methods generally focused on how to reduce the false
detections using either spatial filters [3–5] or temporal
filters [6–8]. Cloud clutter can be rejected using the mean
filter [9], least mean square filter [10, 11], median filter [9],
and Top-hat filter [5, 12]. Sun-glint can be removed using
frequency information, such as the 3D-FFT spectrum [13],
wavelet transform [14–16], low pass filter [17], and adaptive
high pass filter [18]. Recently, an improved two-dimensional
least mean square filter (TDLMS) and Top-hat filter were
proposed to increase the detection capability [19–21].

These studies had their own advantages and disadvan-
tages in the specific scenarios and environments to reduce
the rate of false detection assuming a single target or
clearly separated multiple targets. In the practical world, the
adjacent multitarget problem frequently exists in IRST and
APS scenarios due to the long distance imaging process.
The abovementioned approaches generally adopt a fixed
threshold or constant false alarm rate (CFAR) detector after
clutter, rejecting the filters to minimize the number of false
detections. Cao et al. applied a fixed threshold as 0.8𝐼max
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after subtracting the predicted images from the original one,
where 𝐼max denotes the maximum grayscale of an image after
background subtraction [20]. Bai et al. used a CFAR-like
adaptive threshold as 𝑚 + 𝜀 ⋅ 𝜎, where 𝑚 and 𝜎 denote the
average and standard deviation of a gray change map with a
constant 𝜀 [21]. If the same detector is applied to the closely
spaced multiple target scenarios, it fails to detect them. Until
now, no one has proposed a suitable small target detection
method for closely spaced multiple targets in the IRST and
APS problem. Only Fernández attempted to solve a similar
problem using superresolution processing with the order-
statistics [22]. This study examined how to develop a small
target detection method by carefully designing the detector
for the adjacent target scenarios, as shown in Figure 1. Two
small targets exist in Figure 1(a), where the left target is a
decoy and the right target is a true missile. Four neighboring
group targets move in the air, as shown in Figure 1(b).

The conventional CFAR detector uses background statis-
tics to set a detection threshold. In this paper, the adjacent
multiple target detection problem is solved using the pro-
posed hysteresis-multitarget CFAR (HM-CFAR) detection by
inserting an adjacent target rejection block in front of the
estimation of the background statistics.Therefore, the contri-
butions of this paper can be summarized as follows. First, the
mechanism of a target missing in grouped targets is analyzed.
Second, a new closely spaced target detection method is pro-
posed for small infrared target detection applications, such as
IRST and APS, by modifying the statistical estimation of the
background image. Finally, the effects of the proposed HM-
CFAR were found by comparing previous methods for the
synthetic database and real target sequence. Section 2 intro-
duces the baseline detection method (H-CFAR) and its lim-
itations by a comparison with a well-known CFAR detector.
Section 3 presents the proposed adjacent multitarget detec-
tion algorithm. The performance of this method is evaluated
in Section 4 and the conclusions are reported in Section 5.

2. Background of the Small Infrared
Target Detection Method

Baseline detection method (H-CFAR): in highly cluttered
environments, normal infrared small target detection meth-
ods adopt the signal processing of spatial filtering followed
by a constant false alarm rate- (CFAR-) based thresholding
because of its robustness to clutter [19, 24]. Figure 2 summa-
rizes the flow of conventional small target detection. Given
an input image (Figure 2(a)), filtering methods were applied
to reduce the clutter or enhance the targets (Figure 2(b)).
Low thresholding and clustering can produce the candidate
target region, as shown in Figure 2(c). Through background
cell selection and adaptive thresholding (CFAR), the final
targets were detected, as shown in Figures 2(d) and 2(e).
Previous approaches focused on the spatial or temporal
filtering process to remove the background clutter.This paper
focused on the last block, detector, particularly CFAR. The
final target detection was made by a threshold (k). If the
filtered signal intensity of a target (𝐼

𝑆
) is larger than k, the

target is determined to be detected. The CFAR detector uses

the additional information of the background statistics to
maintain or reduce the effects of the background clutter.
Figure 3 summarizes the operational concept of the CFAR
detector by changing the threshold using background statis-
tics (𝜎BG). A new threshold was changed from 𝑘 to 𝑘󸀠 = 𝑘𝜎BG.
If the background level increases, the threshold increases
automatically, which leads to constant false alarms.

Recently, Kim and Lee proposed a hysteresis threshold-
based constant false alarm rate (H-CFAR) detector [23]. As
shown in Figure 4(a), the original CFAR (O-CFAR) detector
probes all the pixels above the noise level [24]. On the
other hand, the H-CFAR uses an adaptive hysteresis thresh-
old consisting of a small threshold for candidate detection
and a CFAR threshold for the final decision, as shown in
Figure 4(b).

The O-CFAR detector searches all the pixels above a
thermal noise level. In contrast, the H-CFAR uses a two-step
thresholding strategy, the hysteresis threshold.The first small
threshold is used for candidate detection and the second
threshold is used for the final decision using background
statistics.

Limitations of H-CFAR in adjacent multitarget detection:
the H-CFAR has a similar target missing problem to the
original CFAR method. Figure 5(b) shows the target detec-
tion results using H-CFAR for a test image, Figure 5(a). The
arrows indicate the ground truth targets and the solid rectan-
gles represent the targets detected by applying the H-CFAR
after a modified mean subtraction filter (M-MSF) [23]. The
target missing problem originates from the adjacent targets
during an estimation of the background statistics (standard
deviation). Figure 5(c) illustrates such a phenomenon for
the second target in Figure 5(b). Neighboring targets (1st
and 3rd) belong to the background cell and increase the
standard deviation of the background, which leads to a
target missing problem. The problem is solved by the pro-
posed hysteresis-multitarget CFAR (HM-CFAR) detection by
inserting a robust target rejection block before estimating the
background statistics. This idea is quite simple but powerful
for detecting adjacent multiple small targets in infrared
images.

3. Proposed Hysteresis-Multitarget CFAR
(HM-CFAR) Detection

The proposed method is based on the H-CFAR detection
given a spatial filter, such as M-MSF. As shown in Figure 6,
an adjacent target pixel rejection block is inserted before the
background statistics estimation in the HM-CFAR detector.
The M-MSF filter (𝐼M-MSF(𝑥, 𝑦)) provides center-surround
enhancement by subtracting the background image from the
prefiltered image given a test image (𝐼(𝑥, 𝑦)) (see Figure 2(b)).
In HM-CFAR, low level thresholding and eight-nearest
neighbor- (8-NN-) based clustering is used to find the
candidate target region, called the target cell (see Figures 2(c)
and 2(d)). The background cell size is determined to be three
to four times the size of the target cell. The guard cell is just
a blank region that is not used in both regions and is set as a
two- or three-pixel gap (see Figure 7(a)).
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Figure 1: Problem images in small infrared target detection: (a) active protection system (APS) scenario and (b) infrared search and track
(IRST) scenario.
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Figure 2: General small target detection flow: (a) input image, (b) result of filtering, (c) candidate target localization, (d) selection of the
background cell to estimate the background statistics, and (e) final detection by CFAR.
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Figure 3: Basic concept of a constant false alarm detector to minimize the effect of clutter.
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Figure 4: Comparison of the detectors: (a) original CFAR (O-CFAR) detector [24] and (b) hysteresis threshold-based CFAR (H-CFAR) [23].
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Figure 5: Limitations of the H-CFAR-based adjacent target detection: (a) a test image with targets indicated by the arrows, (b) detection
results indicated by the solid squares, and (c) enlarged probing region of a missed target: target cell and background cell.
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Figure 7: Adjacent multitarget detection procedure and comparison results: (a) background pixels used in the original H-CFAR (SCR: 5.5),
(b) adjacent target rejected background pixels in the proposed HM-CFAR (SCR: 12.2), and (c) final adjacent target detection results.

The probing region is detected as a target if the signal-to-
clutter ratio (SCR) is greater than the second threshold 𝑡, as
defined in

SCR =
𝐼
𝑆

𝜎BG
> 𝑡, (1)

where 𝐼
𝑆
denotes the maximum target signal obtained using

(2), where 𝑇 represents an index set of the target region. This
is the same as themaximumcontrast between the input signal
and the background clutter:

𝐼
𝑆
= max
(𝑖,𝑗)∈𝑇

(𝐼M-MSF (𝑖, 𝑗)) . (2)

𝜎BG represents the background statistics and the standard
deviation (STD). This is the key parameter in a HM-CFAR
detector because it can control the detection rate and false
alarm rate in the adjacent multitarget scenario. The missed
targets can be detected if the parameter (𝜎BG) is estimated
robustly. As shown in Figure 5(c), the parameter is estimated
using the pixels belonging to the background cell. The

neighboring target pixels affect the erroneous estimation of
the background statistics.

The key idea is to reject the adjacent target pixels in a
background cell (𝐼BGM-MSF(𝑖, 𝑗)) before estimating background
statistics. The adjacent targets normally appear as bright
spots. For example, the dotted square in Figure 5(b) is
regarded as a probing target region. The background cell
includes two adjacent bright targets that distort the back-
ground statistics. Based on this observation, the background
parameter is estimated robustly using the rank method
defined in

𝜎BG = STD
(𝑖,𝑗)∈𝐾

(𝐼
BG
M-MSF (𝑖, 𝑗)) , (3)

where 𝐾 is an index set containing 𝑛% darkest pixels in
the background cell. The percentage of adjacent target pixels
in the background cell can be calculated as 100 − 𝑛. STD
denotes the standard deviation function and calculates the
statistics using background pixels except for the adjacent
target pixels. Figure 7 presents the effect of the proposed
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Figure 8: Performance comparison of O-CFAR with the proposed HM-CFAR: (a) test image and corresponding detection results and (b)
detection time according to the number of targets.

HM-CFAR in adjacent multitarget detection.The original H-
CFAR uses whole background pixels and shows a SCR of 5.5
(Figure 7(a)). In this case, 𝐼

𝑆
= 20 and 𝜎BG = 3.6. On the

other hand, HM-CFAR can reject the adjacent target pixels
using 𝑛 = 90% and showed a SCR of 12.2 for the same target
(Figure 7(b)). In this case, 𝐼

𝑆
= 20 and 𝜎BG = 1.6. Note

that the correct background statistics were obtained using the
proposed new block. As shown in Figure 7(c), the two targets
missed in Figure 7(b) were detected correctly using the
proposed HM-CFAR method. Therefore, the proposed new
block can increase the detection rate by removing the effects
of the adjacent targets when calculating the background
statistics. Because the final threshold (𝑡) in (1) controls the
detection rate and the false alarm rate, it is tuned depending
on the scenarios.

4. Experimental Results

In the first evaluation, the proposed HM-CFAR was com-
pared with the O-CFAR [24] in terms of the detection
performance and processing time, as shown in Figure 8. A
synthetic image was prepared by background modeling and
target modeling. The background image has a sky region
and background region with an intensity difference of 100
gray values without clutter, such as cloud or sun-glint. The
horizontal line is smoothed further column-wise using a
Gaussian filter. A different number of adjacent targets are
generated with different sizes and different SCR values, as
shown in the top image of Figure 8(a). The detection rate
of the proposed HM-CFAR was 100% (17/17) and that of
the O-CFAR was 76.5% (13/17) with the same threshold, as
shown in the middle and bottom of Figure 8(a). In addition,
the processing time was also compared by preparing the test
images with a different number of synthetic targets from

10 to 490. Figure 8(b) shows the comparison results. The
processing time of the O-CFAR detector takes approximately
16.1 seconds and it increases linearly with increasing num-
ber of targets. That of the HM-CFAR detection method
takes approximately 0.65 seconds and increases slightly with
increasing number of targets. The processing speed of the
HM-CFAR is approximately 20 times faster than that of the
O-CFAR.

In the second evaluation, the proposed HM-CFAR was
comparedwith previousmethods, such asH-CFAR [23], Top-
hat [19], and TDLMS [20] formore quantitative comparisons.
The input images were filtered using the same spatial filter,
M-MSF, in the case of H-CFAR. The Top-hat method used
a morphological filter with adaptive thresholding [19]. The
TDLMS used a fixed threshold depending on the maximum
intensity [20]. The two test image sets were prepared to
validate the performance of the proposed method. One is the
real infrared image sequences of the Seoul air show, consist-
ing of four F-15K fighters with an adjacent formation flight
in strong cloud clutter and acquired using a Cedip, LWIR
camera (Set 1). The other was generated using commercial
software called OKTAL-SE (Set 2) [25]. OKTAL-SE is the
only simulator that can synthesize both passive (IR) and
active (Synthetic Aperture Radar).The scenario program can
select the background and target trajectory and the SE-RAY-
IR then synthesizes the IR sequences using the ray tracing
method. For an active protection system (APS) in military
applications, two targets (one is the real target; the other is
a decoy) were inserted and the incoming target distance was
1.23 km at Mach 6.

The detection performance was compared using the
receiver operating characteristic (ROC) curve metric using
the detection rate (DR) and false alarm rate (FAR) by varying
the adaptive threshold (𝑡). The low level threshold was set
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Figure 9: Comparative ROC curve analysis of the HM-CFAR and H-CFAR for the test Set 1 (a) and Set 2 (b).

Table 1: Statistical performance comparisons of the adjacent multi-
target detection methods (DR: detection rate, FAR: # of false alarms
per frame).

DB Method Threshold DR (%) FAR (#/image)

Set 1

HM-CFAR
(proposed) 8.1 100.0 13.2

H-CFAR [23] 5.2 77.7 13.2
Top-hat [19] 6.9 90.3 13.2
TDLMS [20] 6 67.1 13.2

Set 2

HM-CFAR
(proposed) 13.9 100.0 5.0

H-CFAR [23] 7.5 71.0 5.0
Top-hat [19] 18.6 38.0 5.0
TDLMS [20] 6.3 90.0 5.0

to 10 in the HM-CFAR and H-CFAR methods. The adaptive
threshold and fixed threshold were controlled in Top-hat and
TDLMS, respectively. As shown in Figure 9, the proposed
method outperforms the others (H-CFAR, Top-hat, and
TDLMS) in terms of the ROC curve area for test Sets 1 and 2.

Table 1 lists the statistical performance comparisons of
the proposed HM-CFAR and previous H-CFAR [23], Top-
hat [19], and TDLMS [20] given the same FAR indicated by
the arrows in Figure 9. According to the results, the proposed
HM-CFAR produced a much larger number of correct
detections than the other comparison methods. Figures 10
and 11 present the adjacent multitarget detection results of
the cluttered images, where the small rectangles represent
the detection and large rectangles ground truth locations. As
indicated by the arrows, the H-CFAR, Top-hat, and TDLMS
often missed the adjacent multitargets because they regard
the neighboring targets as clutter. Note the superior detection

performance of the HM-CFAR-basedmethod in the adjacent
multitarget detection scenarios.

5. Conclusions

The adaptive threshold-based small target detection method
normally uses background statistics to produce constant
false alarms. Although the conventional method works
well in normal cluttered scenarios, these methods fail to
detect multiple adjacent targets because they regard closely
spaced targets as background clutters. This paper proposed
a new simple but powerful adjacent multitarget detection
method for small infrared targets using a novel target
pixel rejection using a ranking approach in a background
statistics estimation. As validated by a set of experiments,
this method can effectively find the true targets with the
adjacent formation flight compared with recent methods
(Top-hat, TDLMS). The computational overhead introduced
by the new block is 0.04 sec/image (baseline: 0.28 sec/image,
proposed: 0.32 sec/image). If there is sparse strong clutter, it
will increase the number of false detections. Therefore, the
proposed method can be used for real-time applications of
stationary and moving infrared camera platforms because
of the simplicity of the algorithm with powerful detection
capability with a spatial image.
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