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We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a fer-

romagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of

the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane

anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from

in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with

first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics

leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin

zone. The results show that the electron density modulation by doping or an external voltage is more important

for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.

PACS numbers:

I. INTRODUCTION

Recent developments in the design of spintronic devices

favor perpendicular magnetization, increasing the interest in

materials with perpendicular magnetic anisotropy [1–4]. One

advantage is that devices with the same thermal stability can

be switched more easily if the magnetization is perpendicu-

lar than if it is in plane [4–9]. Since magnetostatic interac-

tions favor in-plane magnetization for a thin film geometry,

perpendicular magnetic anisotropy requires materials and in-

terfaces that have strong magnetocrystalline anisotropy. Nu-

merous computational studies [10–17] show the importance

of interfaces on magnetocrystalline anisotropy. The theory

developed by Bruno [18, 19], which provides an insightful ex-

planation of the surface magnetocrystalline anisotropy and its

correlation with orbital moment [20], has been confirmed by

experiments [21, 22]. The cases for which the Bruno’s theory

does not apply [23] require a case by case study through first-

principles calculations, making it difficult to get much insight.

Some insight into perpendicular magnetic anisotropy can

be gained by studying it within a simple model. One such

model is the two-dimensional Rashba model [24]. A two-

dimensional Rashba model includes only minimal terms im-

posed by symmetry breaking. As extensive theoretical stud-

ies have shown, a two-dimensional Rashba model can cap-

ture most of the qualitative physics of spin-orbit coupling with

broken inversion symmetry, such as the intrinsic spin Hall

effect [25, 26], the intrinsic anomalous Hall effect [27], the

fieldlike spin-orbit torque [28, 29], the dampinglike spin-orbit

torque [30–33], the Dzyaloshinskii-Moriya interaction [34–

37], chiral spin motive forces [38, 39], and corrections to the
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magnetic damping [38], each of which has received atten-

tion because of its relevance for efficient device applications.

Despite the extensive studies, exploring magnetocrystalline

anisotropy within the simple model is still limited. Mag-

netocrystalline anisotropy derived from a two-dimensional

Rashba model may clarify the correlations between it and var-

ious physical quantities listed above.

There are recent theoretical and experimental studies on the

possible correlation between the magnetic anisotropy and the

Rashba spin-orbit coupling strength. The theories [40, 41]

report a simple proportionality relation between perpendicu-

lar magnetic anisotropy and square of the Rashba spin-orbit

coupling strength and argued its connection to the voltage-

controlled magnetic anisotropy [16, 42–46]. However, these

experiments require further interpretation. Nistor et al. [47]

report the positive correlation between the Rashba spin-orbit

coupling strength and the perpendicular magnetic anisotropy

while Kim et al. [48] report an enhanced perpendicular mag-

netic anisotropy accompanied by a reduced Dzyaloshinskii-

Moriya interaction in case of Ir/Co. Considering that the

Dzyaloshinskii-Moriya interaction and the Rashba spin-orbit

coupling are correlated according to Ref. [37], the perpendic-

ular magnetic anisotropy and the Rashba spin-orbit coupling

vary opposite ways in the latter experiment. These inconsis-

tent observations imply that the correlation is, even if it exists,

not a simple proportionality. In such conceptually confusing

situations, simple models, like that in this work, may provide

insight into such complicated behavior.

In this paper, we compute the magnetocrystalline

anisotropy within a two-dimensional Rashba model in or-

der to explore the correlation between the magnetocryatalline

anisotropy and the Rashba spin-orbit coupling. We start from

Rashba models added to different kinetic dispersions (Sec. II)

and demonstrate the following core results. First, a two-

dimensional ferromagnetic Rashba model with a free elec-

tron dispersion results in exactly zero anisotropy once the
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Fermi level is above a certain threshold value (Sec. III A).

This behavior suggests that the simple model is not suitable

for studying the magnetic anisotropic energy in that regime.

Second, simple modifications of the model do give a finite

magnetocrystalline anisotropy proportional to the square of

the Rashba parameter (Sec. III B). We illustrate with tight-

binding Hamiltonians that a Rashba system acquires perpen-

dicular magnetic anisotropy for wide parameter ranges once

the Brillouin zone and energy band width being finite in size

is taken into account in the model. This demonstrates that the

absence of magnetic anisotropy is a peculiar feature of the for-

mer free-electron Rashba model and we discuss the similarity

of this behavior to the intrinsic spin Hall conductivity [26].

Third, we show that the magnetocrystalline anisotropy of the

modified Rashba models strongly depends on the band filling

(Sec. III B). The system has in-plane magnetic anisotropy for

low band filling. As the electronic states are occupied, the

anisotropy evolves from in-plane to perpendicular and back

to in-plane for high electron density. This suggests that it

may be possible to see such behavior in systems in which

the interfacial charge density can be modified, for example

through a gate voltage. This also provides a way to recon-

cile mutually contradictory experimental results [47, 48] since

different band filling can result in opposite behaviors of the

magnetocrystalline anisotropy. We make further remarks in

Sec. III C and summarize the paper in Sec. IV. We present the

analytic details in Appendix.

II. MODEL AND FORMALISM

We first present the model and formalism for a quadratic

dispersion and then generalize the model to a tight-binding

dispersion. In this paper, we call a Rashba model with a

quadratic dispersion a “free-electron Rashba model” and call a

Rashba model with a tight-binding dispersion a “tight-binding

Rashba model”. All the models include ferromagnetism in the

same manner.

A ferromagnetic free-electron Rashba model is described

by the following Hamiltonian.

H =
p2

2me

+ Jσ ·m + αR

~
(σ × p) · ẑ, (1)

where p is the momentum operator of itinerant electrons, me

is the effective electron mass, J > 0 is the exchange energy

between conduction electrons and the magnetization, σ is the

vector of the Pauli spin matrices, αR is the Rashba parameter,

ẑ is the interface normal direction perpendicular to the two-

dimensional space, and m is a unit vector along the direction

of magnetization. The terms in Eq. (1) reflect the quadratic

kinetic energy, the exchange interaction, and the Rashba spin-

orbit coupling, respectively. The second and third term orig-

inate respectively from the time-reversal symmetry breaking

(magnetism) and the space-inversion symmetry breaking (in-

terface). Thus, the Rashba model is a minimal model tak-

ing account of the symmetry breaking features of the sys-

tem. There are various types of Rashba models depending

ky

kx

E-(kx,ky)=E

E+(kx,ky)=E

(2π)2N+(E)

FIG. 1: Geometrical meaning of N+(E), the number of minority elec-

trons per unit area that satisfies E+(kx, ky) ≤ E. N+(E) is given by

the area enclosed by the constant energy contour of E+(kx, ky) = E.

N−(E), the number of majority electrons per unit area that satisfies

E−(kx, ky) ≤ E, has the similar meaning (not shown in the figure).

on the momentum dependence of spin-orbit coupling Hamil-

tonian [49]. We confine the scope of the paper to the linear

Rashba model that is linear in p [the last term in Eq. (1)]

and is the most widely used form. We emphasize that the

Rashba model is mainly useful for its pedagogical value rather

than its ability to make quantitative predictions for real mate-

rials [50, 51]. In Ref. [51], the authors find that while it is

possible to extract an effective Rashba parameter for realis-

tic interfaces, it was not possible to connect this parameter

to the calculated magnetocrystalline anisotropy. Still, even

though the simple Rashba model may have only limited di-

rect connection to the electronic structure of most interfaces

of interest, it does provide a qualitative understanding of their

physical properties.

Diagonalization of Eq. (1) gives the single particle energy

spectrum of the free-electron Rashba model. For a homoge-

neous magnetic texture, H commutes with p, thus k = p/~ is

a good quantum number. In terms of k, diagonalization of the

2 × 2 Hamiltonian gives the energy eigenvalues E±(kx, ky) of

H for spin majority and minority bands, where + and − refer

to minority and majority bands respectively.

E±(kx, ky) =
~

2k2

2me

±
√

J2 + 2JαR(kymx − kxmy) + α2
R
k2, (2)

where k = |k|. Since the system has rotational symmetry

around ẑ axis [52], we assume my = 0 from now on.

The total electron energy is given by summing up single

particle energies at all electronic states below the Fermi level.

To do this, we define N±(E), the number of minority/majority

electrons per unit area that satisfies E±(kx, ky) ≤ E. The geo-

metrical meaning of N±(E) is the area enclosed by the constant

energy contour E±(kx, ky) = E (Fig. 1). With this definition,
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the density of states for each band is given by dN±/dE. There-

fore, the expression of the total energy per unit area is given

by

Etot(EF) =

∫ EF

E−
min

E
dN−
dE

dE + η

∫ EF

E+
min

E
dN+

dE
dE, (3)

where E±
min

is the band bottom energy of each band, below

which N±(E) = 0. η = 0 if EF < E+
min

so that there is no occu-

pied minority state, and η = 1 otherwise. Such a factor is ab-

sent for the first term because we only consider the Fermi level

EF above E−
min

. Otherwise, the magnetocrystalline anisotropy

is trivially zero since there is no occupied state. The total

energy density depends on the direction of magnetization in

general. We then compute the magnetocrystalline anisotropy

by the difference of the total energy density for perpendicular

and in-plane magnetizations; ∆E = Etot|m=x̂ − Etot|m=ẑ.

To compute ∆E from Eq. (3), the Fermi levels for m = x̂

and m = ẑ need to be specified. Since the energy dispersion

[Eq. (2)] is in general dependent on m, the Fermi level also

changes as a function of m, because the total electron density

does not change for an isolated magnetic system. Thus, we

fix the total electron density as a constraint. To fix the total

electron density as a constraint, we define the total electron

density below energy E.

Ne(E) = N−(E) + ηN+(E). (4)

The domain of E is E ≥ E−
min

so that Ne(E) ≥ 0. Since Ne(E)

is a strictly increasing function of E in the domain, it has an

inverse function in Ne ≥ 0. We denote the inverse function

by εF (Ne). εF has the same physical meaning as the Fermi

level EF for a given electron density Ne. However, we use the

different symbols to emphasize that εF is given by a function

of the electron density while EF is just a given constant. With

this definitions, the magnetocrystalline anisotropy is given by

∆E(Ne) = Etot (εF(Ne)) |m=x̂ − Etot (εF (Ne)) |m=ẑ. (5)

This is the central equation of the formalism to compute the

magnetocrystalline anisotropy.

We now compute the magnetic anisotropy for a tight-

binding Rashba model. To construct a tight-binding Hamil-

tonian, we discretize Eq. (1) [53, 54]. In the main text,

we use a tight-binding Hamiltonian for a two-dimensional

square lattice as an example. The construction and the re-

sults of a tight-binding Hamiltonian for a two-dimensional

hexagonal lattice (equivalently a triangular lattice) are pre-

sented in Appendix A. For simplicity, we use a two-band

tight-binding Hamiltonian including spin degrees of freedom

only, but ignoring all orbital degrees of freedom. The tight-

binding Hamiltonian we construct here is given by

H = HK + HJ + HR, (6a)

where HK , HJ, and HR are the discretized versions of the ki-

netic energy, the exchange energy, and the Rashba Hamilto-

nian, respectively. HK is constructed by the hopping terms to

the nearest neightbor sites.

HK = −
~

2

2mea2

∑

pqσ

(C
†
p+1,q,σ

Cp,q,σ+C
†
p,q+1,σ

Cp,q,σ)+h.c., (6b)

where a is the lattice constant, p and q are the site indicies,

and Cp,q,σ is the electron annihilation operator at site (x, y) =

(pa, qa) with spin σ. h.c. refers to hermitian conjugate of all

the terms in front of it. Each term in the summand corresponds

to hopping to x and y directions respectively. The hopping

parameter −(~2/2mea
2) is determined by matching the energy

dispersion with the free electron dispersion ~2k2/2me in the

continuum limit a → 0. HJ is constructed by on-site energy

that mixes the spin degree of freedom.

HJ = J
∑

pqσσ′

[

C†p,q,σ(σ)σ,σ′Cp,q,σ′
]

·m, (6c)

where (σ)σ,σ′ is the matrix element of the Pauli matrices. HR

is constructed as following. We impose a hopping term from

a site to a neighboring site, along a direction û. Since û corre-

sponds to the electron momentum direction, the term acquires

a spin Pauli matrix (σ× û) · ẑ. Then, a hopping term along the

y direction acquiring σx is given by itC
†
p,q+1,σ′ (σx)σ,σ′Cp,q,σ,

where t is a real hopping parameter. After considering all the

neighboring hopping terms satisfying the hermiticity condi-

tion, we determine the hopping parameter by taking contin-

uum limit up toO(a2) and matching the energy dispersion with

Eq. (2). In this way, we end up with

HR = i
αR

2a

∑

pqσσ′

[

C
†
p,q+1,σ

(σx)σ,σ′Cp,q,σ

−C
†
p+1,q,σ

(σy)σ,σ′Cp,q,σ

]

+ h.c.. (6d)

For more details of determining the hopping parameters, see

the example in Appendix A for a two-dimensional hexagonal

lattice.

Now we use the same formalism [Eq. (5)]. We use the dis-

crete translational symmetry of the lattice to use the Bloch

theorem and compute the energy dispersion relation as a func-

tion of the crystal momentum. One difference is that the Bril-

louin zone and the band width for a tight-binding Hamiltonian

are finite (Fig. 2), while these are infinite for the free electron

model Eq. (1). Therefore, the domain of the integration in

Eq. (3) is not only limited by the Fermi contour, but also lim-

ited by the Brillouin zone boundary. We show in Sec. III B

that the finite band width is a crucial feature for emergence of

perpendicular magnetic anisotropy for wide ranges of param-

eters.

III. MAGNETOCRYSTALLINE ANISOTROPY

A. Free-electron Rashba model

Although the free electron model we present above [Eq. (1)]

has a simple form, it still requires complicated mathematics

to assess the magnetocrystalline anisotropy predicted by the

model since a constant energy contour given by Eq. (2) is a

quartic curve. In this section, we first discuss results of a per-

turbative analysis, which assumes αR to be small and keeps

terms only up to O(α2
R
). In this regime, a constant energy con-

tour is a quadratic curve which allows the magnetocrystalline
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Γ

ky
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π/a

π/a

-π/a

-π/a

FIG. 2: Brillouin zone of Eq. (6). We denote the Γ and M points for

later purpose.

anisotropy to be calculated analytically. The analytic results

shall give useful insight into the model. We then go beyond

the perturbative regime and discuss exact results in the non-

perturbative regime with arbitrary αR. In particular, we check

if the conclusions from the perturbative analysis remain valid

in the nonperturbative regime.

1. Perturbation theory: Insights into the model

As we show in Appendix. B 1, expanding Eq. (2) up to

O(α2
R
), we obtain a quadratic equation with respect to (kx, ky).

The contour E±(kx, ky) = E forms an ellipse, by which the

area enclosed is exactly computable. Since N±(E) is exactly

given in a simple way, calculating Eq. (3) is straightforward.

In this perturbative regime, the relation between electron num-

ber density and the Fermi level Eq. (4) is linearly given so

inverting Ne(E) is also straightforward. Then, the magnetic

anisotropy ∆E(Ne) [Eq. (5)] is evaluated after simple algebra.

There are two different regimes; EF < E+
min

and EF ≥ E+
min

.

For the first case, there are no minority electrons. For this

case, η = 0 in Eq. (3). In the second case, the minority band

is also occupied. For this case, η = 1 in Eq. (3). We examine

the cases one by one.

When only majority band is occupied (η = 0), the magne-

tocrystalline anisotropy [Eq. (5)] is

∆E(Ne) = −
Nemeα

2
R

2~2

(

1 − Ne

N−(E+
min

)

)

(majority only). (7)

Here N−(E+
min

) is the electron density when the Fermi level

touches the bottom of the minority band. The result shows

that the magnetocrystalline anisotropy is at least quadratic in

αR. Below we show this is a result of symmetry that the mag-

netocrystalline anisotropy should be an even function of αR.

Equation (7) is valid only when there is no minority elec-

trons 0 < Ne < N−(E+
min

). We show in Appendix B 1 that

N−(E+
min

) = Jme/π~
2+O(α2

R
), which is independent of m [59].

Since Ne < N−(E+
min

), Eq. (7) predicts the magnetocryatalline

anisotropy to be negative. The sign corresponds to in-plane

magnetic anisotropy, which is counter to the naı̈ve expecta-

tion that the Rashba spin-orbit coupling generates the perpen-

dicular magnetic anisotropy. However, this observation does

not contradict experimental observations showing perpendic-

ular magnetic anisotropy since experimental results are usu-

ally obtained when both bands are occupied.

Next we examine the second regime where both bands are

occupied (η = 1). Strikingly, the same formalism leads us

∆E(Ne) = 0 (both bands occupied), (8)

regardless of Ne. There is no magnetocrystalline anisotropy

for this case. An intuitive way to understand this striking be-

havior is observing the absence of angular dependence of Ne

as a function of the Fermi level. In Appendix B 1, we show

that, once both bands are occupied,

(2π)2Ne(EF) =
4πme(meα

2
R
+ EF~

2)

~4
, (9)

which has no m dependence. Therefore, when we increase

the number of electrons slightly by dNe, the contribution

to the additional magnetocrystalline anisotropy is EFdNe =

[(π~2Ne/me)−(meα
2
R
/~2)]dNe. Since this is independent of the

direction of magnetization, adding electrons does not change

the magnetocrystalline anisotropy at all. By noting that Eq. (7)

vanishes Ne = N−(E+
min

), we end up with Eq. (8).

There is a recent theory [40] which predicts perpendicular

magnetic anisotropy with the free-electron Rashba model. In

that work, the magnetocrystalline anisotropy is expressed by a

characteristic energy denoted by T . Here we show that T takes

a value within that model such that the anisotropy is strictly

zero.

To summarize this section, by using a perturbative ap-

proach, we make the following observations. First, the free-

electron Rashba model model gives the magnetocrystalline

anisotropy that is at least quadratic in αR. Second, the model

does not give perpendicular magnetic anisotropy. Third, the

magnetocrystalline anisotropy vanishes unless only a single

band is occupied. We summarize the result in Fig. 3.

2. Beyond perturbation: Extension of validity

So far, we examined the properties of the free-electron

Rashba model in the perturbative regime. The perturbative

approach allows gaining insight into the model easily but it

works only for small αR. In this section, we go beyond the

perturbative regime to see if the conclusions we made in the

previous section change when αR is not small. We prove that

the qualitative results from the perturbative analysis remain

valid for large αR as well.

First we prove that the magnetocrystalline anisotropy is at

least quadratic in αR. For this, we consider the sign reversal
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E(kx,ky)EF

ky

Minority band

No MCA

No MCA

Majority band

IMA∝α
R

2

FIG. 3: Summary of the results of the magnetocrystalline anisotropy

(MCA) from the ferromagnetic free-electron Rashba model. The

lower band and the upper band are respectively majority and mi-

nority band. The horizonal and vertical displacements of each

band are respectively due to Rashba spin-orbit coupling and the ex-

change splitting. The diagram shows behaviors of the magnetocrys-

talline anisotropy for each region. The calculated magnetocrystalline

anisotropy shows in-plane magnetic anisotropy (IMA) when elec-

trons in the ground state occupy only the majority band, and the

magnetic anisotropy energy is at least quadratic in the Rashba pa-

rameter αR. On the other hand, the magnetocrystalline anisotropy

vanishes once both bands are partially occupied in the ground state.

of αR. This does not affect the energy eigenvalue spectrum of

the Hamiltonian at all since the energy eigenvalue satisfies the

property, E(kx, ky;αR) = E(−kx,−ky;−αR) [see Eq. (2)]. Since

the total energy density cannot change by a rotational trans-

formation, it should be invariant under αR → −αR. There-

fore, the magnetocrystalline anisotropy may be expanded as a

power series of α2
R

with the leading order term proportional to

α2
R

[60]. When αR becomes larger, higher order terms in α2
R

can contribute. In Fig. 4, we numerically compute the mag-

netocrystalline anisotropy divided by α2
R
. We see that the first

three curves almost overlap with each other. However, when

αR becomes larger so αRkF is comparable to J, the magne-

tocryatalline anisotropy divided by α2
R

varies as αR changes,

implying the breakdown of the perturbative result [Eq. (7)].

Although the perturbation theory breaks down quantita-

tively, qualitative features remain the same for a wide range

of αR. In particular, Fig. 4 shows that the magnetocrystalline

anisotropy predicted by the free-electron Rashba model is

negative (in-plane magnetic anisotropy) for low electron den-

sity and vanishes (within the numerical error of our calcu-

lation) once the total electron density goes above threshold

value. Perpendicular magnetic anisotropy is never generated.

It turns out that Eq. (8) can be rigourously proven for ar-

bitrary αR. Due to its complexity, here we sketch the proof

only briefly. The detailed proof is presented in Appendix B 2.

The proof proceeds as follows. First, we consider a situation

where both bands are occupied for both m = x̂ and m = ẑ,

which occurs if and only if EF ≥ J [61]. We then use the

Cauchy integral formalism for complex contour integrals to

show that Eq. (9) holds beyond the perturbative regime. As

discussed in the previous section, Eq. (9) implies that the mag-

3010 20 40
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Total Electron Density (nm-2)

M
C

A
 /
 α
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e
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-4
)

2

α
R (eV·nm)

0.01
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0.10

0.50

1.00

FIG. 4: (color online) Numerical computation of the magnetocry-

atalline anisotropy (MCA) divided by α2
R

within the free-electron

Rashba model. The results show in-plane magnetic anisotropy for

wide range of the Rashba parameter and zero anistropy after a cer-

tain threshold within the numerical error. Note that the magnetocrys-

talline anisotropy is proportional to α2
R for small Rashba parameters,

confirming the result of our perturbation approach. We use J = 1 eV

for the simulation.

netocrystalline anisotropy is independent of the Fermi level

when EF ≥ J. Next, we show that ∆E vanishes in the large

EF limit. When combined together these features prove that

∆E should be exactly zero for EF ≥ J, which is nothing but

Eq. (8).

Here we emphasize that although Eq. (8) holds for arbi-

trary αR, it is very unstable with respect to the model variation

since it is crucially dependent on Ne being independent of the

magnetization m [Eq. (9)], which holds only for the idealized

free-electron Rashba model [Eq. (1)]. Various types of modi-

fication of the Rashba model which make it more realistic can

break this independence and result in the violation of Eq. (8).

Possible deformations include the change of dispersion from

strictly quadratic and truncation of the infinite band width to

finite width. In the next section, we consider a tight-binding

Rashba model, which is more realistic than the idealized free-

electron Rashba model in the sense that the former has finite

band width whereas the latter has infinite band width. This

model shows that Eq. (8) is indeed violated and perpendicu-

lar magnetic anisotropy emerges. In passing, we note that not

only the magnetocrystalline anisotropy but also other proper-

ties of the idealized free-electron Rashba model are peculiar.

A well known example is the intrinsic spin Hall conductiv-

ity [25, 26]. For the idealized free-electron Rashba model, it

vanishes identically when both bands are partially filled but

for slightly modified Rashba models [55, 56], it is finite.

B. Tight-binding Rashba model

We consider the tight-binding Rashba model for a square

lattice. From Eq. (6), we use the discrete crystal sym-

metry and the Bloch theorem. We define Ck,σ =

(1/
√

N)
∑

p,q exp(ikx pa + ikyqa)Cp,q,σ, where N is the total

number of sites and k=(kx, ky) is the crystal momentum within
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FIG. 5: (color online) (a) Energy dispersion of the tight-binding

Rashba model [Eq. (10)]. Energies as a function of ky, for kx = 0,

are given by the red and blue curves for majority and minority bands

respectively. The asymmetry between −ky and ky originates from

the Rashba interaction which is taken to be αR = 0.02 eV · nm in

this figure. Near the band minimum, the energy dispersion can be

approximated by a quadratic dispersion [Eq. (2)]. However, near

the Brillouin zone boundary, it differs significantly. The magnetiza-

tion direction is taken to be m = (1/2, 0,
√

3/2). Depending on the

Rashba parameter and the direction of magnetization, the dispersion

can be even more complicated particularly when the two bands ap-

proach each other. (b) The magnetocrystalline anisotropy (MCA) as

a function of the total electron density divided by the electron den-

sity for completely filled bands Nmax = 2.2 × 1019m−2. We use the

Rashba parameters αR = 0.02 eV·nm, 0.05 eV·nm, and 0.08 eV·nm.

The results show in-plane magnetic anisotropy (IMA) for very low

and very high electron occupation. For a wide range of the interme-

diate electron density, it shows perpendicular magneitc anisotropy

(PMA). (c) The peak values of the magnetocrystalline anisotropy as

a function of the Rashba parameter. The blue circles are the simula-

tion results and the solid line is a quadratic fitting result. J = 1 eV,

me = 9.1×10−31 kg, and a = 0.3 nm. The area of the two-dimensional

system in this simulation is L × L where L = 60 nm is the length of

each direction.

the Brillouin zone in Fig. 2, which diagonalizes the Hamil-

tonian. We define the reduced 2 × 2 Hamiltonian h(k) by

H =
∑

k,σ,σ′ C
†
k,σ′ [h(k)]σ′,σCk,σ, where [h(k)]σ′,σ is the ma-

trix element of h(k) in the 2 × 2 spin space. Since h(k) is a

2 × 2 matrix, we compute the eigenvalues exactly.

E±(k) = − ~
2

mea2
(cos kxa + cos kya) ±

[

J2m2
z

+

(

Jmx +
αR

a
sin kya

)2

+

(

Jmy −
αR

a
sin kxa

)2
]1/2

.

(10)

We plot Eq. (10) as a function of ky for kx = 0 in Fig. 5(a).

The formalism given in Eq. (5) provides a way to compute

the magnetocrystalline anisotropy. In this section, we present

the results for a two-dimensional square lattice only. The re-

sult for a two-dimensional hexagonal lattice is presented in

Appendix A.

Figure 5(b) shows the relation between the magnetocrys-

talline anisotropy and the electron density (normalized to one

when both majority and minority bands are completely filled).

For low electron density (Ne . 0.25Nmax), the system ac-

quires in-plane magnetic anisotropy. This is understandable

in that a parabolic approximation of the dispersion relation

[Eq. (10)] is equivalent to that of the free-electron Rashba

model [Eq. (2)]. However, as the electron density increases,

the parabolic approximation breaks down, thus the system

can acquire perpendicular magnetic anisotropy from the point

where the effective mass becomes negative (Ne ≈ 0.25Nmax).

After this point, the perpendicular magnetic anisotropy per-

sist widely, until Ne ≈ 0.75Nmax, covering the whole regime

where the two spin bands overlap, which is in distinct con-

trast to the prediction [Eq. (8)] of the idealized free-electron

Rashba model.

Our computation shows a similar behavior to a first-

principles calculation [10] on the band filling dependence of

the magnetocrystalline anisotropy. Although a simple Rashba

model cannot be exact, it provides much insight into the sys-

tem. Changing the electron density by means of substituting

atoms or an external voltage can change not only the magni-

tude of the magnetocrystalline anisotropy but also its sign.

There are two key differences between the tight-binding

Rashba model and the free-electron Rashba model that give

rise to finite perpendicular magnetic anisotropy. The first dif-

ference is the deviation of the dispersion from a quadratic.

It allows a nonzero magnetocrystalline anisotropy for a wide

range of band filling, due to breakdown of Eq. (9). Once

the relation between Ne and EF has a magnetization depen-

dence, a finite magnetocrystalline anisotropy can arise even if

both bands are occupied. The second difference is finiteness

of band width (or Brillouin zone). It plays a crucial role for

the sign of the magnetocrystalline anisotropy. Since the band

width is finite, there must be both maximum (band top) and

minimum (band bottom) energies. Near the band bottom (the

Γ point in Fig. 2), the dispersion is electron-like with a positive

effective mass. Thus, the theory in Sec. III A is relevant, and

the sign of the magnetocrystalline anisotropy corresponds to

in-plane magnetic anisotropy for low electron density. On the
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FIG. 6: (color online) The magnetocrystalline anisotropy (MCA) for

various the exchange energies J = 0.3 eV, 0.6 eV, and 0.9 eV with a

fixed Rashba parameter αR = 0.05 eV·nm. me = 9.1 × 10−31 kg, and

a = 0.3 nm are used. The stronger the exchange energy is, the higher

the magnetocrystalline anisotropy is. On the other hand, the weaker

the exchange energy is, the wider the range of the electron density

that acquires perpendicular magnetic anisotropy.

other hand, near the band top (the M point in Fig. 2), the dis-

persion is holelike with a negative effective mass. Since the

behavior is opposite to the electron-like part, the sign of the

magnetocrystalline anisotropy can correspond to perpendicu-

lar magnetic anisotropy. As a result, the magnetocrystalline

anisotropy near the band top of the majority band corresponds

to perpendicular magnetic anisotropy [Fig. 5(b)]. We remark

that our analysis is similar to that in Ref. [11], which implies

that most important qualitative features of the anisotropy en-

ergy can be understood by analyzing high symmetry points,

where band maximum and minimum are located.

Figure 5(c) indicates that the magnetocrystalline anisotropy

is proportional to α2
R

in a reasonable range of αR. We argue an-

alytically in Sec. III A that the magnetocryatalline anisotropy

can be expanded in terms of α2
R
. The same argument ap-

plies to this tight-binding Rashba model. We discuss below

in Sec. III C the implication of the sign independence on ex-

perimental observation of the correlation between the mag-

netocrystalline anisotropy and other spin-orbit coupling phe-

nomena.

We now fix the Rashba parameter and compute the magne-

tocrystalline anisotropy for various exchange strengths. Fig-

ure 6 shows the result. The general behaviors discussed above

remain the same. The weaker J is, the wider the range of

the emergence of perpendicular magnetic anisotropy is. This

is because the band overlap between the majority and minor-

ity bands increases as J decreases. On the other hand, the

stronger J is, the stronger the magnetocrystalline anisotropy

is. Therefore, we conclude that materials with strong J are ad-

vantageous to achieve a strong magnetocrystalline anisotropy

with high controllability under an external voltage. On the

other hand, materials with weak J are advantageous for per-

pendicular magnetic anisotropies that stably exists over a wide

range of the electron density.

The mirror symmetry of the magnetocrystalline anisotropy

in Fig. 5(b) originates from the symmetry between electrons

at the Γ point and holes at the M point. From Eq. (10), the

total energy density for completely filled bands is Efilled =

(2π)−2
∫ π/a

−π/a

∫ π/a

−π/a[E+(kx, ky) + E−(kx, ky)]d2k = 0, thus the

magnetocrystalline anisotropy at high electron density can

be computed by hole contributions near the M point. In

other words, ∆E(Nmax − Ne) is the same as the contribu-

tion from Ne number of holes. Equation (10) shows the

symmetry between the electron-like Γ point and holelike M

point, E±(kx, ky) = −E∓(π/a − kx, π/a − ky), which implies

∆E(Nmax − Ne) = ∆E(Ne). This is a model-specific property.

For instance, in Appendix A, we start from a two-dimensional

hexagonal lattice for which the dispersion does not have such

symmetry [Eq. (A3)] and shows that this mirror symmetry

around Ne = 0.5Nmax is not general.

There are four kinks in the magnetocrystalline anisotropy in

Fig. 5(b). We observe that the two kinks around Ne ≈ 0.3Nmax

and Ne ≈ 0.7Nmax correspond to the bottom of the minority

band and the top of the majority band, respectively. Since

the minority band starts to be occupied from Ne ≈ 0.3Nmax,

the behaviors of the magnetocrystalline anisotropy below and

above this value are different. Similarly, the majority band

is no longer occupied above Ne ≈ 0.7Nmax. There are two

more kinks near Ne ≈ 0.25Nmax and Ne ≈ 0.75Nmax. We

see that these occur near the point where each band are half

filled. Near these points, electrons at the Fermi level is near

inflection points of the energy dispersion so the effective mass

changes its sign. The existence of kinks is quite general as

presented in Fig. 6 and Appendix A.

To summarize this section, we perform tight-binding cal-

culations for the magnetocrystalline anisotropy within a dis-

cretized Rashba model. The deviation from a quadratic dis-

persion allows a nonzero magnetocrystalline anisotropy even

when both bands are occupied. The finite band width allows

emergence of perpendicular magnetic anisotropy over a wide

range of the total electron density. The resulting magnetocrys-

talline anisotropy is proportional to α2
R

for a reasonable range

of αR. Even though αR becomes larger than that, the magne-

tocrystalline anisotropy is independent of the sign of αR due to

symmetry, and is constrained by symmetry to be even powers

of αR. The implications of the sign independence and compar-

ison with experiments are discussed in the next section. We

perform similar calculations for a two-dimensional hexagonal

lattice as well as a square lattice discussed here. The results

are present in Appendix A.

C. Remarks

The dependence of the magnetocrystalline anisotropy on αR

differs from the corresponding dependence of many other phe-

nomena of spin-orbit coupling origin. In the previous sections,

we show by symmetry that the magnetocrystalline anisotropy

is independent of the sign of αR. As a result, it is quadratic
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in αR for a reasonable range of αR. On the other hand, other

phenomena of spin-orbit origin such as spin-orbit torque and

Dzyaloshinskii-Moriya interaction have a linear contribution

in αR.

This feature has clear experimental implications. When

a magnetic layer has two interfaces with opposite Rashba

parameters, the total spin-orbit torques and the total

Dzyaloshinskii-Moriya interaction arising from the both inter-

faces are zero since they are odd in αR and the contributions

from the two interfaces mutually cancel each other. How-

ever, such cancellation does not occur for the magnetocrys-

talline anisotropy and the contributions from the two inter-

faces add up since the anisotropy is even in αR. A similar

phenomenon persists even when only one interface of a mag-

netic layer is subject to strong inversion asymmetry, if there

are multiple energy bands. It is demonstrated [57] that multi-

ple bands for a given interface may experience different signs

of the Rashba spin-orbit coupling. In such a situation, it is

possible that contributions of those bands to the magnetocrys-

talline anisotropy can add up whereas their contributions to

the linear spin-orbit phenomena such as spin-orbit torque and

Dzyaloshinskii-Moriya interaction tend to cancel out. This

observation indicates that simple proportionality analysis in

experiments may fail to capture the correlation between the

magnetocrystalline anisotropy and other phenomena of spin-

orbit coupling origin.

In this sense, our observation can be consistent with a

recent experiment [48] reporting the opposite behaviors of

the Dzyaloshinskii-Moriya interaction and the perpendicular

magnetic anisotropy in Ir/Co/AlOx multilayers for various

thickness of Co. According to the work, the Dzyaloshinskii-

Moriya interaction reduces as the thickness of Co increases,

while the perpendicular magnetic anisotropy increases. This

difference may originate from multiple origins of the spin-

orbit coupling phenomena, such as multiple interfaces and

multiple orbital bands. As the thickness of Co increases, the

contributions to the Dzyaloshinskii-Moriya interaction may

cancel out while those to the magnetocrystalline anisotropy

should add up. One remark is in order. Although our the-

ory demonstrate that the positive correlation between the mag-

netocrystalline anisotropy and other spin-orbit coupling phe-

nomena may breakdown, it is not necessarily the explanation

of the breakdown observed in Ref. [48] because there are other

sources of magnetocrystalline anisotropy.

We observe that the magnetocrystalline anisotropy depends

on the total electron density [Fig. 5(b)] and it can even

change its sign. The strong dependence of magnetocrystalline

anisotropy on the total electron density is another feature that

requires a well-controlled experiment to observe the correla-

tion. When one varies the experimental conditions to obtain

systems with various spin-orbit coupling parameters, the total

electron density at the interface may change, which disturbs

clear interpretation of the dependence of the magnetocrys-

talline anisotropy on the spin-orbit coupling parameter.

The density-dependent magnetocrystalline anisotropy

opens another route of the voltage-controlled magnetic

anisotropy [16, 42–46]. The voltage-controlled magnetic

anisotropy received considerable attention due to its signifi-

cant potential to enhance the efficiency of spintronic devices.

There are previous theories [40, 41] suggesting that modulat-

ing the Rashba parameter by applying an external voltage is a

possible route of the voltage-controlled magnetic anisotropy.

However, it is unlikely to be a main mechanism in metallic

ferromagnetic films in which a nominal potential gradient is

not a main mechanism generating Rashba parameters [57].

An external electric field is shielded by electron screening in

the metal, thus it is difficult to change the Rashba parameter

significantly. On the other hand, density variations by doping

or an external voltage can change the electron density at

the interface, changing the interfacial contributions to the

magnetocrystalline anisotropy significantly. The conclusion

from the simple model is consistent with first-principle

studies [43, 58].

IV. CONCLUSION

In conclusion, we compute the magnetoctrystalline

anisotropy for simple ferromagnetic Rashba models. The

properties dramatically change depending on the dispersion

relations. For a free electron (quadratic) dispersion, the sys-

tem does not acquire perpendicular magnetic anisotropy at

all. More interestingly, we analytically show that the mag-

netocrystalline anisotropy is exactly zero regardless of the

Rashba coupling strength if both majority and minority bands

are partially occupied in the ground state. This result is not

consistent with experimental observations, implying that a

free electron dispersion is not suitable for studying perpendic-

ular magnetic anisotropy arising from the Rashba interaction.

We thus generalize the model to have a finite band width,

which necessarily generates deviation from the free electron

dispersion. We start from tight-binding Hamiltonians and

conclude that the system acquires perpendicular magnetic

anisotropy over wide range of parameters, consistent with ex-

perimental observations. A finite band width is a crucial fea-

ture of the tight-binding Hamiltonians that gives rise to per-

pendicular magnetic anisotropy. We also observe that the

magnetocrystalline anisotropy depends on the band filling and

it can even change its sign. We argue that the interface elec-

tron density modulation by voltage is a more important cause

of voltage-controlled magnetic anisotropy than the voltage-

controlled modulation of the Rashba parameter is.

Our results show the possibility of breakdown of positive

correlation between perpendicular magnetic anisotropy and

other spin-orbit coupling phenomena. In particular, if there

are multiple sources of spin-orbit coupling phenomena, such

as multiple interfaces and multiple orbital bands, experimental

observation of the correlation requires careful analysis.
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Appendix A: Tight-binding Rashba model for a

two-dimensional hexagonal lattice

The two-dimensional hexagonal lattice we use here is pre-

sented in Fig. 7. We construct a tight-binding Hamiltonian by

the same way illustrated in Sec. II. First we define the elec-

tron annihilation operator Cp,q,σ at the site (p, q) and spin σ.

The indices of a site are defined by assigning its position to be

paû1 + qaû2 where û = x̂ and û2 = (1/2)x̂ + (
√

3/2)ŷ. Then,

the Hamiltonian is

H = HK + HJ + HR, (A1a)

where

HK = −tk

∑

pqσ

(

C
†
p+1,q,σ

Cp,q,σ +C
†
p,q+1,σ

Cp,q,σ

+C
†
p+1,q−1,σ

Cp,q,σ

)

+ h.c., (A1b)

HJ = J
∑

pqσσ′

[

C†p,q,σ(σ)σ,σ′Cp,q,σ′
]

·m, (A1c)

HR = itR

∑

pqσσ′

[

C
†
p+1,q,σ

[(û1 × ẑ) · σ]Cp,q,σ

+C
†
p,q+1,σ

[(û2 × ẑ) · σ]Cp,q,σ

+C
†
p+1,q−1,σ

[((û1 − û2) × ẑ) · σ]Cp,q,σ

]

+ h.c.,

(A1d)

where tk and tR are hopping parameters to be determined.

By using Bloch theorem, the Hamiltonian can be written by

2×2 matrix, of which the eigenvalues are exactly given.

E±(k) = −2tk















cos kxa + 2 cos
kxa

2
cos

√
3kya

2















± J̃, (A2)

J̃2 = J2m2
z +















Jmx + 2
√

3tR cos
kxa

2
sin

√
3kya

2















2

+















Jmy − 2tR sin
kxa

2
cos

√
3kya

2
− 2tR sin kxa















2

.

(A3)

(p,q)

a

u2

u1 (p+1,q)

(p,q+1)

(p+1,q-1)
x

y

FIG. 7: The model for a two-dimensional hexagonal lattice. Here

a is the lattice constant, p and q are the position indices. There are

two principal directions û1 and û2. Then, the position vector of each

site is paû1 + qaû2. The labeled sites by (p, q + 1), (p + 1, q), and

(p+ 1, q− 1) are the neighboring hopping sites. The other three sites

are captured by adding hermitian conjugates of these.
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FIG. 8: (color online) The magnetocrystalline anisotropy computed

within a tight-binding Rashba model for a two-dimensional hexago-

nal lattice result (Fig. 5). The overall features are the same as a two-

dimensional square lattice, except the absence of the mirror symme-

try around the normalized electron density Ne = 0.5Nmax.

The next step is determining tk and tR. For a continuum

limit up to O(a2),

E± = −6tk +
3

2
tka2k2 ±

√

J2 + 6JtRa(mxky − mykx) + 9t2
R
a2k2.

(A4)

This should coincide with the continuum dispersion Eq. (2)

(up to a constant energy shift). Therefore, we obtain tk =

~
2/3mea

2 and tR = αR/3a.

We now compute the magnetocrystalline anisotropy by

the same way. The result is shown in Fig. 8. The fea-

tures discussed in the main text are valid, except the model-
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specific property of a square lattice that the magnetocrys-

talline anisotropy is mirror symmetric around Ne = 0.5Nmax.

Appendix B: Details of the analytic theories

1. Perturbation theory for a free-electron Rashba model

The aim of this section is to present the mathematical

derivations of Eqs. (7)–(9) from Eq. (2) up toO(α2
R
). Through-

out this section, we discard all terms beyond O(α2
R
).

First we compute N±(E) from the energy dispersion. Ex-

panding Eq. (2) up to O(α2
R
), the dispersion relation is approx-

imated by the following quadratic function.

E±(kx, ky) =
~

2k2
x

2m̃x
±
+
~

2(ky ± k0
y )2

2m̃
y
±

± J −
meα

2
R

sin2 θ

2~2
, (B1)

where θ is defined by m = (sin θ, 0 cos θ), the spin-dependent

band shift is given by k0
y = meαR sin θ/~2, and the renormal-

ized masses are

1

m̃x
±
=

1

me

±
α2

R

J~2
,

1

m̃
y
±
=

1

me

±
α2

R
cos2 θ

J~2
. (B2)

Then, (2π)2N±(E) is given by the area of the contour of E =

E±(kx, ky) in k space (See Fig. 1). Since E = E±(kx, ky) forms

an ellipse, the area is analytically computable.

(2π)2N±(E) =
2π

√

m̃x
±m̃

y
±

~2
(E − E±min). (B3)

From Eq. (B1), we obtain the band bottom energies Emin
± by

substituting k = (0,∓k0
y).

E±min = ±J −
meα

2
R

sin2 θ

2~2
. (B4)

We are now ready to compute Eq. (3).

Equation (7) is derived by putting EF < E+
min

and η = 0.

Then Ne(E) = N−(E). Inverting the function, we obtain the

Fermi level as a function of the total electron density εF (Ne) =

(2π~2/
√

m̃x
−m̃

y
−)Ne + E−

min
. Equation (3) (as a function of Ne)

is

Etot (εF(Ne)) =

∫ εF (Ne)

E−
min

E
dNe

dE
dE =

∫ Ne

0

εF (Ne)dNe

=
π~2

√

m̃x
−m̃

y
−

N2
e + E−minNe. (B5)

Here, at the first line, we change the variable from E to Ne

by Eq. (B3). Keeping in mind that the renormalized masses

and E−
min

have angular dependence, we end up with the mag-

netocrystalline anisotropy

∆E(Ne) = Etot (εF (Ne)) |θ=π/2 − Etot (εF(Ne)) |θ=0

= −
Nemeα

2
R

2~2

(

1 − Ne

N−(E+
min

)

)

, (B6)

where N−(E+
min

) = (Jme/π~
2) + O(α2

R
) from Eqs. (B3) and

(B4). This is Eq. (7).

To derive Eq. (8), we start from taking derivative of

Eq. (B3) with respect to E,

dN±
dE
=

√

m̃x
±m̃

y
±

2π~2
. (B7)

Therefore, Eq. (5) for η = 1 is given by, after some algebra,

Etot(EF) =
2πme(E

2
F
− J2)

~2
, (B8)

which is independent of m. We then combine Eq. (B3) with

Eq. (B4) to end up with

(2π)2[N+(EF) + N−(EF)] =
4πme(meα

2
R
+ EF~

2)

~4
, (B9)

which is nothing but Eq. (9). Inverting the function,

εF(Ne) =
π~2

2me

Ne −
meα

2
R

~2
. (B10)

Combining Eqs. (B8) and (B10), Etot(ε(Ne)) has no angular

dependence. Thus Eq. (5) is

∆E(Ne) = Etot (εF(Ne)) |θ=π/2 − Etot (εF (Ne)) |θ=0 = 0, (B11)

when both bands are occupied. This is Eq. (8).

2. Exact theory for a free-electron Rashba model

The purpose of this section is to show that Eq. (8) holds

regardless of how largeαR is. The flow of the proof is sketched

in Sec. III A. We first show that i) Eq. (9) is exact above the

total electron density at which both bands are occupied. This

implies that the magnetocrystalline anisotropy is independent

of EF in this density range, which amounts to EF ≥ J. Then

we show that ii) limEF→∞ ∆E = 0. We prove this by showing

that ∆E goes O(E−1
F

) at most for large EF limit. Combining i)

and ii), we end up with the result that the magnetocrystalline

anisotropy is exactly zero [Eq. (8)].

a. Proof of Eq. (9) for large αR

We prove Eq. (9) by using the contour integral technique,

mainly, the Cauchy integral theorem. We do not assume that

αR is small.

We assume that both bands are occupied for all m. We first

prove that this is equivalent to EF ≥ J. To show the forward

part of this equivalence, we take m = ẑ. Then, E+
min
= J,

thus EF should be greater than or equal to J for the minority

band to be occupied. To prove the backward part, we assume

EF ≥ J. For k = 0, E±(kx, ky) = ±J ≤ J ≤ EF . Therefore,

k = 0 state is occupied for both bands. One corollary from the

proof is that k = 0 is always occupied when EF ≥ J.



11

We start from Eq. (2) with m = (sin θ, 0, cos θ) for 0 ≤
θ ≤ π/2. We change the variables (kx, ky) to a single complex

variable z = i(kx + iky). In terms of z,

E±(z) =
~

2z∗z

2me

±
√

J2 cos2 θ + α2
R
(z − w)(z∗ − w), (B12)

where w = J sin θ/αR > 0.

For a given EF , N±(EF) is given by the area enclosed by

E±(z) = EF (Fig. 1). By Green’s theorem, the area is given by

(2π)2N± =

∫

D±

dkxdky =

∫

C±

kxdky − kydkx

2
=

1

2i

∫

C±

z∗dz,

(B13)

where D± = {z|E±(z) ≤ EF } is the set of occupied states and

C± = {z|E±(z) = EF } is the boundary of D±, that is, the con-

tour of the Fermi level. To perform the integration, we express

z∗ as a function of z. By equating E±(z) = EF and solving z∗,

z∗± or ∓ =
2me

z2~4

[

meα
2
R(z − w) + EF~

2z ±
√

R(z)
]

, (B14)

R(z) = [meα
2
R(z − w) + EFz~2]2 − z2

~
4(E2

F − J2 + α2
Rwz).

(B15)

Here z∗± are functions of z which satisfy z∗ = z∗±(z) on C±. We

denote the subscript by ± or ∓ since it is ambiguous which

one corresponds to the majority band and the minority band.

However, it does not affect the final result. The total electron

density is then given by

(2π)2Ne(EF ) =
1

2i

∫

C+

z∗+dz +
1

2i

∫

C−

z∗−dz. (B16)

The Cauchy integral theorem implies that the complex con-

tour integrals in Eq. (B16) is equivalent to those around non-

analytical points only. From Eq. (B14), there are two types of

nonanalytic points of z∗±. The first one is the pole at z = 0.

We call this the trivial pole. We show at the beginning of this

section that (kx, ky) = 0 is occupied for both bands. That is,

the trivial pole z = 0 is always in D± (See Fig. 9). The second

type comes from the square root function. Since the square

root function is multivalued in the complex plane, there are

branch cuts which connect the branch points that are defined

by the zeros of R(z). The whole branch cuts are nonanalytic

points. Thus, it is important to see the behavior of the zeros

of R(z). Since R(z) is a cubic polynomial, there are three zeros

of R(z). Below we present three properties of the three zeros

without proofs. The proofs are presented in Appendix C.

The first property is that i) all three zeros of R(z) are real

and nonnegative if EF ≥ J. We call the zeros r1, r2, and r3,

satisfying r1 ≤ r2 ≤ r3. Another important result is that ii)

ri ∈ D− is equivalent to ri ∈ D+. Intuitively, we may say

that, if ri is inside the contour C−, it is also inside the contour

C+ [62]. Since D+ ⊂ D−, one direction of the proof is obvious,

but the other direction is not. The last property is that iii) no

or two zeros of R(z) are in D± (or inside C±). As a result, the

situation is summarized in Fig. 9. We observe that D− − D+
is analytic. Therefore, when we shrink the integral contour by

using the Cauchy integral theorem, we can end up with the

same contour C0 +Cr for both terms in Eq. (B16).

By using the Cauchy integral theorem, both terms in

Eq. (B16) share the same integral contour.

(2π)2Ne(EF) =
1

2i

∫

C0+Cr

(z∗+ + z∗−)dz. (B17)

If no zeros of R(z) is in D±, C0 is the only relevant contour.

However, we below show that contributions from Cr are can-

celled out when we add up z∗+ and z∗−. One remark is in order.

The situation becomes complicated if any of ri is exactly on

C±. For this case, defining C± bypassing ri with an infinites-

imally small radius does not change the result. Another res-

olution is using continuity of Ne(EF). Since one of ri can be

exactly on C± only at particular values of EF , we may exclude

the particular points in the proof and use the continuity to get

Ne(EF) for the whole domain.

The result greatly simplifies the situation. The complicated√
R(z) terms in z∗+ and z∗− are cancelled out when they are

added up.

(2π)2Ne(EF) =
2me

i~4

∫

C0+Cr

α2
R
me(z − w) + EF~

2z

z2
dz

=
4πme

~2
Res
z=z0

α2
R
me(z − w) + EF~

2z

z2

=
4πme(α

2
R
me + EF~

2)

~4
, (B18)

which is exactly Eq. (9). At the second line, we use the

Cauchy’s residue theorem.

The importance of the assumption that both bands are occu-

pied in this proof is twofold. First, the condition is equivalent

to EF ≥ J so that the zeros of R(z) satisfy the properties proven

in Appendix C. The properties guarantee that the integrands

in Eq. (B16) are analytic in D− − D+ so that we can shrink

the integral contours for both bands to the same contour. Sec-

ond and more importantly, the complicated contributions from

±
√

R(z) are cancelled out when we add up the contributions

from both bands. Therefore, we can use the Cauchy’s residue

theorem for the trivial pole z = 0 only.

b. Proof of limEF→∞ ∆E = 0

For extremely large EF , the contour of the Fermi level is

simple. Therefore, we can define Fermi momenta for each

band as a function of the azimuthal angle of the momentum.

We write k = (k cos φ, k sin φ). Then, the Fermi momentum

kF,± is defined by E±(kF cos φ, kF sin φ) = EF . For simplicity

of equations, we assume αR > 0, but the flow of the proof is

the same for general αR. From Eq. (2) and by putting m =

(sin θ, 0, cos θ),

kF,± =

√

2meEF

~2
∓ meαR

~2
+

√

me

8EF

meα
2
R
∓ 2J~2 sin θ sin φ

~3

∓ J2

4αREF

(1 − sin2 θ sin2 φ) + O(E
−3/2

F
). (B19)
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C+

D+

CrC0

C-

D-

Im[z]=kx

Re[z]=-ky

trivial pole

No branch cut in D--D+)
(No branch point in D--D+

Analytic in D--D+

branch cuts

r3  r1  r2  

FIG. 9: (color online) Complex contour integral for Ne. Here C± are the integral contours for N±, and D± are the enclosed region (blue and

red for + an −) respectively. The white X is the trivial pole and the magenta Xs are the branch points of the integrand. The trivial pole is at

z = 0 and the branch points are on the real axis and denoted by r1, r2, and r3. In Appendix C, we show that ri ∈ D+ for no or two of ri and

ri < D− for the others. It is also shown that 0 ∈ D+ if EF ≥ J. Thus, we define the branch cuts (magenta lines) by connecting r1 and r2, and

connecting r3 and a complex infinity. Therefore, the integrands in Eq. (B16) are analytic in D− − D+. We now can shrink the integral contour

C± to C0 +Cr (yellow) by the Cauchy integral theorem, where C0 is a contour surrounding the trivial pole, and Cr is a contour surrounding the

branch cut defined by r1 and r2. If even r1 and r2 are not in D+, C0 is the only relevant contour and Cr is outside D±. Both cases give the same

mathematical results.

By using the polar coordinate, the total energy density below

the Fermi sea is

Etot(EF) =
1

(2π)2

∫ 2π

0

dφ

(∫ kF,+

0

kE+dk +

∫ kF,−

0

kE−dk

)

(B20)

we can expand the integrand with respect to 1/k and integrate

term by term since kF,± is O(E
−1/2

F
). After tedious algebra, we

end up with

Etot(EF) = (θ-independent terms) + O(E−1
F ). (B21)

Therefore, ∆E = O(E−1
F

) at most, which proves that

limEF→∞ ∆E = 0.

Appendix C: Properties of zeros of R(z)

In this section, we prove some important properties of zeros

of R(z) defined by Eq. (B15). Since R(z) is a cubic polynomial,

it has three zeros. We call these ri for i = 1, 2, 3. We below

show that all of ri are real. Therefore, we can denote ri by the

order of its magnitude r1 ≤ r2 ≤ r3. This section consists of

three subsections each of which corresponds to each property

that we mention in the main text.

1. All of ri are real and nonnegative if EF ≥ J

We write down R(z) = az3 + bz2 + cz + d. Then, the coeffi-

cients are

a = −α2
R~

4w < 0, (C1a)

b = m2
eα

4
R + 2mEα

2
REF~

2 + J2
~

4 > 0, (C1b)

c = −2meα
2
Rw(meα

2
R + EF~

2) < 0, (C1c)

d = m2
eα

2
Rw2 > 0. (C1d)

Zeros of a cubic polynomial az3 + bz2 + cz + d are all real

if and only if ∆ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2 is

nonnegative. After some algebra,

∆̃ = 4(E2
F − J2)(α2 + 2αEF + J2)2 − 27α2J4t2

+ 4αJ2(α + EF )[(α + EF)2 − 9(E2
F − J2)]t, (C2)

where ∆̃ = ∆/J2
~

12m2
eα

2
R
t, α = meα

2
R
/~2 and t = cos2 θ. We

treat ∆̃ as a function of t. ∆̃(t) is quadratic and the domain of t

is 0 ≤ t ≤ 1. After some algebra,

∆̃(0) = 4(E2
F − J2)(α2 + 2EFα + J2)2 ≥ 0, (C3)

∆̃(1) = (J2 − 2αEF)2[(α + 2EF)2 − 4J2] ≥ 0, (C4)

∆̃ext =
4

27
[3E2

F − 3J2 + (α + EF )2]3 > 0, (C5)
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if EF ≥ J. Here ∆̃ext is the extremum value of ∆̃(t) evaluated

at the value t satisfying ∆̃′(t) = 0. Since the boundary val-

ues and the extremum value are all nonnegative, ∆̃ (thus ∆) is

nonnegative on 0 ≤ t ≤ 1, proving all of ri are real.

To show ri ≥ 0 for all i, we see the signs of the coefficients

in Eq. (C1). It is easy to see that R(−z) > 0 for any real and

positive z. Therefore, R(z) has no negative real zero.

2. ri ∈ D+ is equivalent to ri ∈ D−

This statement is equivalent to that any branch point of z∗±
cannot be in D−−D+. It is one of the most important properties

that allows us to draw Fig. 9. Since D+ ⊂ D−, r ∈ D+ ⇒ r ∈
D− is straightforward, but the other direction is not.

To prove this, we use the definition of D± that ri ∈ D± is

equivalent to E±(ri) − EF ≤ 0. We start from the following

identity.

[E+(z) − EF][E−(z) − EF] =













meα
2
R

~2

z − w

z
+ EF −

~
2z∗z

2me













2

− R(z)

z2~4
. (C6)

Since R(ri) = 0, the second term in the right-hand side is zero

when z = ri. In addition, we show that ri should be real in the

previous section. Therefore, the first term in the right-hand

side is nonnegative when z = ri.

[E+(ri) − EF][E−(ri) − EF] ≥ 0. (C7)

In the main text, we exclude the case where any ri is exactly

on C±. Thus, we may assume E±(ri) − EF , 0. Under this

assumption, Eq. (C7) implies that E+(ri) < EF is equivalent

to E−(ri) < EF . In other words, ri ∈ D+ is equivalent to

ri ∈ D− for any ri satisfying R(ri) = 0.

3. Only even number of ri are in D±

In the previous section, we show that the branch points of

the integral Eq. (B16) (ri) are not in D− − D+. What is impor-

tant is not only the branch points but also the branch cuts. The

branch cuts are defined by connecting a pair of branch points

(including the complex infinity if the number of branch points

are odd). To show that any branch cut does not have an inter-

section with D− −D+, only even number of ri should be in D±
(See Fig. 9).

The following lemma is useful for the proof: ri ∈ D± is

equivalent to EF ≥ ~2r2
i
/2me. This lemma is a corollary of

the previous section. With this lemma, we do not need to

compute E±(ri) and compare to EF in order to check ri ∈ D±.

Instead, we only compare ri to
√

2meEF/~ [63]. Therefore, it

provides a useful criterion to check ri ∈ D±.

We first prove ri ∈ D± ⇒ EF ≥ ~2r2
i
/2me. Since ri ∈ D±,

EF ≥ E+(r) ≥ ~2r2
i
/2me, which is the desired result. We next

prove EF ≥ ~2r2
i
/2me ⇒ ri ∈ D±. Note that EF ≥ ~2r2/2me >

E−(ri), thus ri ∈ D−. In the previous section, we show that

(a)
None of ri in D±

R(z)

(b)

+∞

-∞

k
F,0 r1

r
2

r
3

z

r1 and r2 in D±

R(z)

+∞

-∞

r
1

r
2

r
3

zk
F,0

FIG. 10: (color online) Two possibilities of the number of ri in D±
satisfying Eq. (C9). Since R(kF,0) > 0, the only possible domains in

which kF,0 can be present are (a) kF,0 < r1 and (b) r2 < kF,0 < r3.

The number of ri less than kF,0 is the number of ri in D±. Therefore,

either no or two of ri are in D±, leading us to Fig. 9.

ri ∈ D− is equivalent to ri ∈ D+. Therefore, ri ∈ D±, which

completes the proof.

As a result, the statement that we want to show is equivalent

to the statement that “only even number of ri satisfy ri ≤ kF,0

where kF,0 =
√

2meEF/~.” After some algebra,

R(kF,0) = 2meEF J2
~

2 cos2 θ+meα
2
R(k f ,0−w)2(meα

2
R+2EF~

2).

(C8)

Therefore, R(kF,0) is positive unless θ = π/2 and EF =

~
2w2/2me. The latter case is not our interest because of the

following argument. Note that R(w) = ~4w2J2 cos2 θ, thus,

w is a zero of R(z) when θ = π/2. Since EF = ~
2w2/2me,

w is exactly at the Fermi level (on C±). In the main text, we

exclude this situation. As a result, we now have

lim
z→∓∞

R(z) = ±∞, R(kF,0) > 0. (C9)

Since R(z) has three real and nonnegative zeros, there are only

two possibilities as presented in Figs. 10(a) and 10(b) respec-

tively. Figure 10 shows that either no or two of ri satisfy

ri ≤ kF,0, which is the desired result.
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