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Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway 
regulates aging in many organisms, ranging from simple in-
vertebrates to mammals, including humans. Many seminal dis-
coveries regarding the roles of IIS in aging and longevity have 
been made by using the roundworm Caenorhabditis elegans 
and the fruit fly Drosophila melanogaster. In this review, we 
describe the mechanisms by which various IIS components 
regulate aging in C. elegans and D. melanogaster. We also 
cover systemic and tissue-specific effects of the IIS components 
on the regulation of lifespan. We further discuss IIS-mediated 
physiological processes other than aging and their effects on 
human disease models focusing on C. elegans studies. As both 
C. elegans and D. melanogaster have been essential for key 
findings regarding the effects of IIS on organismal aging in gen-
eral, these invertebrate models will continue to serve as work-
horses to help our understanding of mammalian aging. [BMB 
Reports 2016; 49(2): 81-92]

INTRODUCTION

The roundworm Caenorhabditis elegans and the fruit fly 
Drosophila melanogaster have been used as two most popular 
invertebrate models for studying aging and longevity (1, 2). In 
particular, their short lifespan together with their low cost and 
easy handling has established these invertebrates as excellent 
systems for research on molecular mechanisms regulating 
animal aging. Many important discoveries regarding 
evolutionarily conserved aging-regulatory pathways have been 
made using C. elegans and D. melanogaster. One of such 
pathways is the insulin/insulin-like growth factor (IGF)-1 
signaling (IIS) pathway, which was first shown to regulate 

longevity in C. elegans, and subsequently confirmed by using D. 
melanogaster. Importantly, the findings using these two 
invertebrate model organisms stimulated research on the role of 
IIS in mammalian aging, and led to discoveries showing that IIS 
also regulates aging in mammals, including mice and humans 
(3, 4). In this review, we will describe which components of IIS 
regulate lifespan, and how IIS modulates aging processes in 
these two model organisms. We will also review endocrine 
signaling and the importance of insulin-like peptides (ILPs) for 
systemic longevity regulation. Overall, our review will provide 
useful information regarding the conserved roles of IIS pathway 
in the aging of model organisms, which will eventually pave the 
way for understanding the mystery of human aging.

THE ROLE OF INSULIN/IGF-1 SIGNALING IN C. elegans 
AGING

Insulin/IGF-1 signaling pathway components that regulate the 
lifespan of C. elegans 
The insulin/IGF-1 signaling (IIS) pathway contains many 
evolutionarily conserved components that regulate aging (Fig. 
1). The gerontogenes daf-2 and age-1 encode the sole insulin/ 
IGF-1 receptor and phosphatidylinositol-3-OH kinase (PI3K) (5, 
6), respectively. DAF-2 and AGE-1 are two key upstream 
components of IIS that regulate various physiological aspects, 
including aging and adult lifespan. Two of the most important 
discoveries in the field of aging research were perhaps the 
findings demonstrating that inhibition of daf-2 or age-1 
dramatically extended lifespan in C. elegans (7-9). These 
discoveries stimulated many subsequent studies on the role of 
IIS in lifespan regulation, not only in C. elegans but also in D. 
melanogaster and mammals. 

IIS transduces signals through a combination of well- 
organized sequential events, depending on environmental con-
ditions. Under favorable conditions, IIS is activated and this 
confers normal development and adult lifespan. Specifically, 
agonist insulin-like peptides (ILPs) bind to their receptor, DAF-2, 
which in turn recruits an insulin receptor substrate (IRS)/IST-1 
(10). This leads to the activation of the AGE-1/PI3K, which 
increases the level of phosphatidylinositol (3,4,5)-trisphosphate 
(PIP3) (5, 11); this event is antagonistically balanced by 
DAF-18/PTEN phosphatase that promotes the conversion of PIP3 
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Fig. 1. Conserved longevity-regulatory components of insulin/IGF-1 signaling pathway in C. elegans and D. melanogaster. Insulin-like pep-
tides (ILPs in Caenorhabditis elegans and DILPs in Drosophila melanogaster) bind to insulin/IGF-1 receptor (DAF-2 in C. elegans and dInR 
in D. melanogaster) and lead to its phosphorylation. Inhibition of insulin/IGF-1 receptor results in decreased binding to the insulin receptor 
substrate (IST-1 in C. elegans and CHICO in D. melanogaster), which in turn decreases the activity of phosphoinositide-3 kinase (AGE-1 in 
C. elegans and PI3K in D. melanogaster) that converts PIP2 to PIP3; conversely, the PTEN phosphatase (DAF-18 in C. elegans and dPTEN 
in D. melanogaster) functions to antagonize the activity of the phosphoinositide-3 kinase by converting PIP3 to PIP2. Decreased PIP3 levels 
lead to decreased activities of phosphoinositide-dependent kinase 1 (PDK-1 in C. elegans and dPDK1 in D. melanogaster) and the ser-
ine/threonine-specific protein kinase B (AKT-1/-2 in C. elegans and dAkt1 in D. melanogaster), and the activation of downstream tran-
scription factor FOXO (DAF-16 in C. elegans and dFOXO in D. melanogaster). Reduced insulin/IGF-1 signaling in C. elegans also in-
creases the activities of heat shock transcription factor-1 (HSF-1) and SKN-1 (NRF2). These transcription factors regulate the expression of 
target genes, which contribute to longevity.

to phosphatidylinositol (4,5)-bisphosphate (PIP2) (12-19). The 
signals provided by PIP3 activate the downstream kinase 
cascade, composed of 3-phosphoinositide-dependent protein 
kinase 1 (PDK-1) (20), protein kinase B (AKT-1/-2) (21), and 
serum- and glucocorticoid-inducible kinase-1 (SGK-1) (22; but 
see also 23, 24). This in turn phosphorylates and inactivates 
DAF-16/FOXO transcription factor, by promoting its nucleus- 
to-cytosol translocation (22, 25-30). Conversely, in unfavorable 
conditions, IIS is down-regulated and leads to the activation of 
DAF-16/FOXO via enhancing its translocation from the 
cytoplasm to the nucleus, where it switches on the expression of 
genes that promote longevity. Thus, C. elegans IIS pathway acts 
as a system in which many components transduce signals to 
modulate the aging processes, depending on extracellular 
conditions.

Three most important downstream lifespan-regulatory 
transcription factors of IIS that have been identified so far are 
DAF-16/FOXO, heat shock transcription factor 1 (HSF-1) and 
SKN-1/nuclear factor erythroid 2 (NRF2). DAF-16/FOXO 

regulates aging processes downstream of the canonical IIS 
cascade as described above. In addition, Jun-N-terminal kinase 
(JNK/JNK-1) (31), AMP-activated protein kinase (AMPK/AAK-2) 
(32-34), and Ste20-like protein kinase (MST1/CST-1) (35) 
activate DAF-16/FOXO via phosphorylation. Other non-kinase 
proteins have been shown to regulate C. elegans DAF-16/ 
FOXO. A serine/threonine-protein phosphatase 4-regulatory 
subunit SMK-1 (36), and an RNA helicase HEL-1 (37), extend 
longevity by acting together with DAF-16/FOXO. DAF-16/ 
FOXO is acetylated by an acetyl-transferase CBP-1/CREB 
binding protein (CBP), whose inhibition leads to constitutive 
nuclear localization of DAF-16/FOXO (38). Host cell factor 1 
(HCF-1) and enhancer of akt-1 null 7 (EAK-7) are other 
regulatory factors that inhibit DAF-16/FOXO activity without 
altering its subcellular localization (39-41). DAF-16/FOXO also 
interacts with two highly homologous 14-3-3 protein family 
members, FTT-1/PAR-5 and FTT-2 (42, 43). The 14-3-3 proteins 
modulate the interaction between DAF-16/FOXO and other 
co-factors, such as SIR-2.1/sirtuin 1, an NAD-dependent 
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deacetylase (42, 44). These diverse interactions and post- 
translational modifications may help differentially regulate the 
activity of DAF-16/FOXO upon various environmental changes. 

Downstream targets of DAF-16/FOXO were identified by 
using various approaches such as chromatin immunoprecipita-
tion, bioinformatics, microarray and mRNA sequencing (31, 
45-51). The DAF-16/FOXO target genes collectively contribute 
to longevity by enhancing cellular maintenance in animals with 
reduced IIS. Since many regulatory modes and targets of FOXO 
transcription factors are conserved among species, the 
longevity-regulatory modes of C. elegans DAF-16/FOXO are likely 
to be recapitulated in IIS-medicated longevity in mammals.

SKN-1, an oxidative stress-responsive NRF transcription 
factor, also contributes to the longevity conferred by reduced IIS 
(52, 53). Similar to DAF-16/FOXO, SKN-1 is sequestered in the 
cytoplasm by phosphorylation via the canonical IIS protein 
kinases, including AKT-1/-2 (52). SKN-1 mediates the expression 
of genes involved in detoxification and stress responses (52, 
54-63). Overexpression of constitutively nuclear SKN-1 extends 
lifespan in a DAF-16/FOXO-independent manner (52). SKN-1 
also promotes protein homeostasis through regulating 
proteasome production, which contributes to a longer lifespan 
(55, 57, 64). In addition, SKN-1 promotes longevity of animals 
with reduced IIS through remodeling of extracellular matrix (65).

HSF-1 is another important transcription factor acting 
downstream of IIS, and is essential for the longevity of animals 
with reduced IIS (66-70). The function of HSF-1 in promoting 
longevity and reducing proteotoxicity is closely associated with 
the conserved IIS pathway. Genetic inhibition of hsf-1 
accelerates tissue aging, thereby shortening the lifespan (71). 
Knockdown of hsf-1 also suppresses the longevity phenotype of 
daf-2 and age-1 mutants; conversely, the overexpression of hsf-1 
is sufficient to extend lifespan (51, 66, 67, 69, 72, 73). HSF-1 
binds to specific regions of DNA containing heat shock elements 
(HSEs) (74-76). The binding of HSF-1 to HSEs triggers the 
induction of genes encoding molecular chaperones, such as 
HSP-70 and HSP-16, whose overexpression extends lifespan 
(77, 78). Thus, HSF-1 appears to lead to longevity by up- 
regulating the chaperone network that enhances the proper 
folding of various proteins (66, 67). DDL-1 (the C. elegans 
homolog of human coiled-coil domain-containing protein 53: 
CCDC53), DDL-2 (the C. elegans homolog of human Wiskott- 
Aldrich syndrome protein and SCAR homolog: WASH2), and 
HSB-1 (heat-shock factor binding protein-1), form a complex 
with HSF-1 and regulate lifespan by inhibiting the activity of 
HSF-1 (69). Overall, HSF-1 and SKN-1 appear to promote 
longevity mainly through the induction of target genes that 
increase resistance to various stresses. 

Systemic regulation of insulin/IGF-1 signaling-mediated 
longevity in C. elegans
As the IIS pathway consists of many potential endocrine 
components, it is likely that IIS regulates lifespan in a systemic 
manner. The C. elegans genome encodes 40 ILPs, which 

appear to act as extracellular endocrine signals in C. elegans 
(79, 80). Functional studies on several ILPs, including ins-6 
(81, 82), ins-7 (47, 83, 84) and daf-28 (80, 85, 86), have been 
conducted. However, the majority of the 40 ILPs, which 
potentially regulate longevity and development, are yet to be 
characterized in detail. This is perhaps because many possible 
combinations of the interactions between ILPs and DAF-2/ 
insulin/IGF-1 receptor make it difficult to dissect the specific 
functions of each ILP. A recent study indicates that ILPs can 
function in a combinatorial manner to coordinate various 
physiological processes (87). This finding is different from the 
previous notion that ILPs generally confer a functional 
redundancy due to their structural similarities (79, 80, 88-91). 
Therefore, some individuals or a group of ILPs may have a 
profound effect on longevity.

Most of the ILPs are expressed in neurons, although some 
ILPs are expressed in non-neuronal tissues such as hypodermis 
and intestine (79-83, 88-90, 92-94). Overexpression of ins-7 in 
the intestine decreases the activity of DAF-16/FOXO in 
non-intestinal tissues and shortens lifespan (83), suggesting an 
endocrine tissue-nonautonomous role of INS-7 in longevity. 
The expression of daf-2 in neurons is largely responsible for 
the longevity of daf-2 mutants (95, 96), pointing to the 
endocrine regulation of longevity by neuronal IIS. Together, it 
appears that IIS can systemically regulate lifespan from various 
tissues, via endocrine signaling.

The role of insulin/IGF-1 signaling in C. elegans physiology 
and age-related disease models
C. elegans that is exposed to unfavorable environmental 
conditions such as reduced food availability, extreme 
temperatures and a high population during development, enters 
an alternative diapause stage called dauer (97, 98). IIS is one of 
extensively studied signaling pathways that govern this dauer 
developmental decision (Fig. 2). Genetic inhibition of daf-2 or 
age-1, which extends adult lifespan, can cause constitutive 
dauer formation even under favorable conditions (97, 98). This 
dauer formation requires key downstream effectors in IIS, 
including DAF-18/PTEN and DAF-16/FOXO (97, 98). Reduced 
IIS activates a transcriptional program through DAF-16/FOXO, 
which leads to dauer formation. These findings raise the 
possibility that IIS may regulate dauer decision and lifespan 
using same effectors. However, the regulation of longevity and 
dauer formation by IIS can be uncoupled. Neuronal 
DAF-16/FOXO plays a more important role in the dauer 
decision than in lifespan regulation, whereas intestinal 
DAF-16/FOXO has a more profound effect on the lifespan 
extension than on the dauer decision (99). In addition, IIS 
pathway regulates the lifespan exclusively during adulthood, 
while it regulates the dauer formation during early larval 
development (100). Thus, spatiotemporal regulation of IIS 
differentially influences two separate aspects of animal 
physiology, development and adult lifespan.

IIS also regulates resistance to a variety of stresses. C. elegans 
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Fig. 2. The role of insulin/IGF-1 signaling in C. elegans physiol-
ogy and age-related disease models. Insulin/IGF-1 signaling (IIS) 
regulates dauer formation, stress resistance, and the models of 
age-related diseases in C. elegans. Reduced IIS promotes dauer 
formation and enhances resistance to various external and internal 
stresses, and pathogens. Inhibition of IIS also ameliorates defects 
associated with various human disease models. These protective 
effects of reduced IIS contribute to organismal longevity.

with reduced IIS displays enhanced resistance to environmental 
stresses such as oxidative stress (Fig. 2) (52, 101-103), heat stress 
(104-106), hypoxic stress (107, 108), osmotic stress (109, 110), 
ultraviolet (UV) stress (36, 111), and heavy metal toxicity (112). 
Moreover, reduced IIS promotes better maintenance of internal 
homeostasis against cytosolic proteotoxicity (66, 113) and 
endoplasmic reticulum (ER) stress (114). The key downstream 
transcription factors of IIS that contribute to longevity, including 
DAF-16/FOXO (25, 26, 36, 66, 103, 106-116), HSF-1 (66, 67) 
and SKN-1 (52, 53), regulate these stress resistance phenotypes 
as well. Thus, proper regulation of IIS is crucial for the protection 
of C. elegans from both external and internal stresses.

Bacteria serve as a major food source for C. elegans, and are 
likely to be abundant in the natural habitats of C. elegans, such 
as rotten fruits. Therefore, it seems likely that C. elegans 
constantly comes in contact with various bacterial species, 
which may include pathogenic bacteria. To combat infection by 
pathogens, C. elegans is equipped with an innate immune 
system, and IIS is one of the most prominent innate immune 
signaling pathways (117). C. elegans with reduced IIS displays 
enhanced pathogen resistance, which is mediated by 
DAF-16/FOXO, HSF-1, and SKN-1 (84, 118-122). Reduced IIS 
leads to the induction of several antimicrobial genes (47), and 
reduction in bacterial packing in the intestine (123). 

Interestingly, Pseudomonas aeruginosa, a popular model 
bacterial pathogen in C. elegans, activates IIS to counteract the 
host immunity (124). Therefore, IIS may be located at the front of 
constant battles between the host C. elegans and its bacterial 
pathogens. 

Because of its powerful genetics, C. elegans has also been 
widely used for modeling various human diseases, especially 
neurodegenerative diseases. The disease models of C. elegans 
were established by generating transgenic animals expressing 
various human disease-associated proteins; these include 
-amyloid peptides (A) for Alzheimer’s disease (125-127), 
polyglutamine (polyQ) proteins for Huntington’s disease 
(128-132), -synuclein for Parkinson’s disease (133-137), and a 
mutant superoxide dismutase 1 (SOD1) for amyotrophic lateral 
sclerosis (ALS) (138-141). The Alzheimer’s disease model C. 
elegans, which expresses A1-42 in body wall muscles, is 
paralyzed and displays the accumulation of protein aggregates 
(68, 125, 142). Reduced IIS relieves these phenotypes via 
activating DAF-16/FOXO and HSF-1 (68), and inducing 
autophagic degradation of the protein aggregates (142). 
Reduced IIS also suppresses the short lifespan of 
A1-42-expressing animals (68). The C. elegans model for 
Huntington’s disease has been widely used for studying 
proteotoxicity caused by aggregation of polyQ proteins (113, 
128-131, 143-150). The polyQ-expressing worms display 
progressive neurodegeneration, neuronal dysfunction, retarded 
development, and defective motility (113, 128-131, 143-150). 
The daf-2 and age-1 mutations ameliorate a gradual 
age-dependent increase in toxicity resulting from polyQ 
aggregation through HSF-1 and DAF-16/FOXO (66, 113, 132, 
146, 149). Parkinson’s disease patients suffer from degeneration 
of dopaminergic neurons, which display accumulated protein 
inclusions that contain -synuclein (151). Similarly, the C. 
elegans models for Parkinson’s disease, which express wild-type 
or mutant human -synuclein proteins in neurons, display the 
loss of dopaminergic neurons (133, 134, 137, 152). Reduced IIS 
by daf-2 mutations dramatically suppresses this neurode-
generation phenotype (152). ALS, which is characterized by 
progressive motor neuron degeneration (153), has also been 
studied using a C. elegans model (138-141). Familial ALS is 
associated with mutations in the gene encoding SOD1 (154, 
155). Neuronal expression of a mutant human SOD1 causes 
locomotion defects (140) and paralysis (141) in C. elegans. daf-2 
mutations protect the ALS model worms from the paralysis 
(141). Collectively, the results using C. elegans models indicate 
that IIS plays a crucial role in the pathophysiology of a majority 
of neurodegenerative diseases (Fig. 2). These findings imply that 
IIS modulates protein homeostasis to regulate normal neuronal 
functions, which may be essential for a long and healthy life.
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INSULIN/IGF-1 SIGNALING PATHWAY AND 
Drosophila melanogaster AGING

Insulin/IGF-1 signaling components implicated in the 
longevity of D. melanogaster 
The IIS pathway of Drosophila melanogaster consists of many 
components (Fig. 1), including the insulin/IGF receptor (dInR), 
the insulin receptor substrate (CHICO), the phosphatidylinositol 
3-kinase (PI3K) Dp110/p60, 3-phosphoinositide-dependent 
protein kinase 1 (dPDK1) and the protein kinase B (PKB), also 
known as dAkt1, and the transcription factor Drosophila FOXO 
(dFOXO) (156-171). The activation mechanism of the IIS 
pathway in Drosophila has substantial similarities to that in C. 
elegans. Basically, the activation of dInR leads to up-regulation 
of a cascade of intracellular phosphorylation events, 
subsequently leading to the phosphorylation of dFOXO protein 
(160-162). dInR conveys signals from Drosophila insulin-like 
peptides (DILPs), directly to PI3K or to CHICO, the insulin 
receptor substrate (156, 172). PI3K, which converts PIP2 to PIP3, 
has a catalytic subunit, Dp110, and a regulatory subunit, Dp60 
(158, 159). The action of PI3K is antagonized by the activity of 
dPTEN (173-175), which catalyzes PIP3 to PIP2. PIP3 acts as an 
intracellular second messenger that activates a cascade of 
protein kinases, including dPDK1 and PKB/dAkt, which 
subsequently lead to the phosphorylation and the nuclear 
exclusion of dFOXO (162, 170). Conversely, reduced IIS 
through dInR or CHICO mutations, or overexpression of dPTEN, 
causes the translocation of dFOXO from the cytoplasm to the 
nucleus, where it up-regulates genes involved in longevity and 
stress resistance (160, 162, 176, 177). 

In Drosophila, the IIS pathway regulates various physiological 
processes, including lifespan, stress responses, growth and 
development. Genetic inhibition of negative regulators of 
dFOXO, including several DILPs (178, 179), dInR (180), the 
IRS/CHICO (181, 182), or 14-3-3 epsilon (183), extends the 
lifespan of Drosophila. Conversely, overexpression of 
antagonistic IIS regulators, such as dPTEN or dFOXO, also 
extends the lifespan and/or delay heart aging (177, 184-186; but 
see also 187). Overall, these findings using Drosophila have 
remarkable similarities with those of C. elegans, highlighting the 
evolutionarily conserved nature of lifespan regulation by IIS 
components.

Endocrine regulation of lifespan by Drosophila insulin/IGF-1 
signaling 
The Drosophila melanogaster genome encodes eight DILPs 
(172, 188-190). The dilp genes display distinct temporal 
expression patterns. For example, dilp2 is expressed from 
embryo to adult stages, whereas dilp4 is expressed only during 
development prior to adulthood (172, 179, 191-195). In 
addition, the expression sites of the eight dilp genes are diverse 
(196). Notably, the major site of DILP production is the median 
neurosecretory cells (mNSCs) in the brain, also called 
insulin-producing cells (IPCs), where dilp1, dilp2, dilp3 and 

dilp5 are expressed (172, 179, 191-194).
Cell non-autonomous regulation of lifespan by Drosophila IIS 

was proposed based on findings using tissue-specific 
overexpression of IIS components. Up-regulation of dFOXO in 
the adult head fat body is sufficient to promote longevity and 
oxidative stress resistance (177). Muscle-specific overexpression 
of either dPTEN, dFOXO, or 4E-BP (a dFOXO target), also 
significantly increases lifespan (184). The ablation of IPCs 
lengthens lifespan (179, 197), which corroborates the endocrine 
regulation of lifespan by IIS; this is also reminiscent of lifespan 
extension by the ablation of sensory neurons in C. elegans 
(reviewed in 198). Among the DILPs expressed in the IPCs, 
DILP2 has been extensively explored for its implication in 
lifespan regulation, since it has the highest homology with 
human insulin (172, 177-179, 199-201). The dilp2 null-mutant 
flies live long (178), and the expression of dilp2 in the IPCs is 
reduced by the activation of dFOXO (177, 199). Therefore, 
Drosophila IIS appears to regulate the expression of DILPs and 
longevity via a feedback mechanism. Furthermore, reduced 
dilp2 expression and inhibited IIS in the fat body are associated 
with lifespan extension conferred by transgenic expression of a 
dominant-negative p53 (200). DILP6, which is predominantly 
produced in the fat body, is another endocrine lifespan regulator 
(202-204). Surprisingly, overexpression of dilp6 in the 
abdominal fat body leads to the repression of dilp2 in the brain, 
suggesting synergistic effects on lifespan regulation by a 
potential dInR antagonist DILP6 and an agonist DILP2 (204). 
Collectively, lifespan regulation by IIS is controlled systemically 
by the action of DILPs that transmit signals, at least between the 
brain and fat body.

CONCLUSIONS

In this review, we have described findings regarding 
mechanisms by which IIS influences lifespan in two 
representative invertebrate models, C. elegans and D. 
melanogaster. The roles of many IIS components in aging are 
remarkably well conserved between C. elegans and D. 
melanogaster, and the intervention of the IIS leads to an 
extended lifespan in both animals. This suggests that the role of 
IIS in aging is likely to be conserved across phyla beyond these 
two species. Indeed, many findings using these invertebrate 
models have led to the discoveries demonstrating that changes 
in IIS can extend lifespan in mammals. For example, hetero-
zygous IGF1 receptor- knockout mice (Igf1r＋/−) live longer than 
wild-type (205), and lower circulating IGF1 level correlates with 
mouse longevity (206). In addition, genetic variants of IIS 
components, including IGF1 receptor and FOXO3A, are 
associated with human longevity (4, 207). Thus, the evidence for 
the evolutionarily conserved nature of IIS-mediated longevity is 
extremely strong, ranging from invertebrates to humans.

Both C. elegans and D. melanogaster have been invaluable for 
the identification of IIS components and their roles in aging at 
the organism level. Still, much remains to be discovered 
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regarding the regulatory mechanisms of aging and longevity at 
the molecular level. As we can make new discoveries regarding 
organismal aging using these invertebrate models much faster 
than using vertebrates, C. elegans and D. melanogaster will 
continue to serve as indispensable tools for broadening our 
knowledge in aging. The progresses made by using these 
invertebrate models will eventually lead to the promotion of 
long and healthy human lives, and the prevention of 
age-associated diseases.
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