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In the present manuscript, the efforts to control the crystal morphology are carried out aiming
at improving the lubrication of lime-alumina-based mold flux for casting advanced
high-strength steel with high aluminum. Jackson a factors for crystals of melt crystallization
in multi-component mold fluxes are established and reasonably evaluated by applying
thermodynamic databases to understand the crystal morphology control both in
lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson a factor
and supercooling are the most critical factors to determine the crystal morphology in a mold
flux. Crystals precipitating in mold fluxes appear with different morphologies due to their
different Jackson a factors and are likely to be more faceted with higher Jackson a factor. In
addition, there is a critical supercooling degree for crystal morphology dendritic transition.
When the supercooling over the critical value, the crystals transform from faceted shape to
dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical
supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are
evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold
flux can increase the Jackson a factor and decrease the supercooling for cuspidine precipitation;
thus, it is favorable to enhance a faceted cuspidine crystal.
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I. INTRODUCTION

DURING the casting of high-Al advanced high-
strength steel (AHSS), the high Al content in molten
steel can easily reduce SiO2 in mold flux, resulting in the
variation in the chemistry of conventional lime-sil-
ica-based mold fluxes. This variation generally causes
the instability of physical and chemical properties of
mold flux, such as melting point, viscosity, basicity, and
so on, which has been reported as the main reasons for
various problems during casting of high-Al steels such
as breakout, non-uniform heat transfer across mold
flux, inadequate lubrication, and poor as-cast slab
surface quality.[1–4] Consequently, it is in urgent need
to develop sound mold fluxes to meet the requirements

of high-aluminum AHSS casting. Generally speaking,
there are two strategies to attempt to solve this problem
at present. The first is to use the mold flux with low
basicity to inhibit the reduction rate of SiO2 during the
continuous casting (CC) process.[5–7] Obviously, it
cannot overcome the instability of mold flux properties
during CC process completely by this method. Further-
more, it also increases the difficulties to control the
stable silicon content of high-Al AHSS. As a result, to
develop an optimized unreactive CaO-Al2O3-based
mold flux, the second strategy, is increasingly investi-
gated by many researchers.[3,4,8–12] Blazek et al.[3]

worked on lime-alumina-based mold flux for casting
high-Al AHSS steel and showed that the interaction was
markedly reduced and the as-cast slab quality was
improved compared to that of lime-silica-based mold
flux. Cho et al.[8] carried out casting trials of high-Al
TRIP steel by using the newly developed lime-alu-
mina-based mold fluxes, and their results suggested that
mold heat transfer in casting process and surface quality
of slab were improved, compared to that of lime-sil-
ica-based mold fluxes as well. But their experimental
results also demonstrated that lubrication and flux
consumption of lime-alumina-based mold fluxes should
be further improved for industrial applicability. In order
to understand the causes of lubrication differences
between lime-alumina-based mold fluxes and lime-sil-
ica-based mold flux further, more careful researches
concerning on the crystallization behaviors had been
carried out by the present authors,[13–16] which demon-
strated huge differences in crystal morphology between
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the foregoing two kinds of mold fluxes, as shown in
Figure 1. For the CaO-SiO2-based mold fluxes, the
primary crystalline cuspidine (Ca4Si2F2O7) was typically
faceted with moderate size in morphology generally, as
shown in Figure 1(a). While two kinds of different
primary crystals in morphology were observed for
CaO-Al2O3-based mold fluxes, i.e., massive blocky
calcium aluminates and needle-like calcium borates, as
shown in Figures 1(b) and (c), respectively. The latter
two kinds of crystals increase the roughness of the
interface between the mold flux and solidifying steel
shell and between the flux and copper mold that is
speculated as the main cause for poorer lubrication of
CaO-Al2O3-based mold flux than that of conventional
CaO-SiO2-based mold flux. As a matter of fact, the flux
film between the solidifying steel shell and copper mold
consists of a liquid layer and a solid layer. The
properties of the solid layer, thus, would also play a
role on the lubrication of the slag film. In order to
improve the holistic lubrication of flux film, not only the
liquid layer lubrication should be improved by decreas-
ing its viscosity but that of the solid layer should be also
promoted by controlling the crystallization behaviors,
such as crystal fraction, size and morphology, and so on.
For CaO-Al2O3-based mold fluxes, since they are
verified to have very strong crystallization ability, the
lubrication improvement of the solid layer, thus, is more
significant for the purpose of global lubrication
improvement of flux film. Therefore, it is promising to
improve the lubrication of CaO-Al2O3-based mold
fluxes for casting the high-Al AHSS by controlling the
favorable crystal morphology similar to that of cus-
pidine crystal in traditional CaO-SiO2-based mold flux
since the later has been confirmed a relative admirable
lubrication performance.

About the crystal morphology control, Jackson.[17,18]

firstly established a theory to predict and explain the
solid-liquid interface morphology and proposed a
parameter, named Jackson a factor, to predict the metal
crystal morphology, and suggested that an interface
would be faceted if a factor is greater than 2 (the value is
reported as 3 by some other researchers[19,20]) and it
would be non-faceted if the a factor is lower than the
critical value. The classification has been considerably
successful in the binary eutectic and compound metal
solutions.[21,22] In addition, Temkin[23,24] considered the
problem of the roughening transition of an interface in
relation to the driving force as well as the Jackson a
factor, and his results showed that on increasing the
driving force, a smooth interface transformed into a
rough interface: a kinetic roughening transition. Lu
et al.[25] reported the crystal morphology transition
during different supercooling degrees of Ni-Si alloy melt
and their results demonstrated the crystal morphology
of the alpha-Ni phase transformed from non-faceted to
faceted in morphology when the supercooling was larger
than approximating 390 K (390 �C) due to the increase
of Jackson a factor correspondingly, while it tended to
be dendritic again when the surpercooling was greater
than around 500 K (500 �C) due to the kinetic rough-
ening. Heulens et al.[26] observed crystal growth of
wollastonite (CaSiO3) in a CaO-Al2O3-SiO2 melt in situ

using a hot stage confocal laser scanning microscope
(CLSM), and their results suggested that a faceted
growth form was observed at 1643 K (1370 �C), while
dendritic growth occurred at 1593 K (1320 �C). Also,
the effects of constitutional supercooling on the crystal
morphology were also reported.[27–29] However, to
authors’ best knowledge, there are so few available
public results to understand the crystalline morphology
control in multi-component mold fluxes.
In consideration of the great practical significance, the

present investigation was carried out to understand how
to control crystal morphology in mold flux as a
successive work of our previous findings[13–16] on both
the lime-alumina-based and lime-silica-based mold
fluxes. A thermodynamic method was introduced to
estimate Jackson a factor of a crystal in multi-compo-
nent mold fluxes and the parameters were calculated
with the help of the thermodynamic databases of
FactSage 6.4. Furthermore, the combined effects of
Jackson a factor, undercooling and flux composition on
crystal morphology in mold fluxes were discussed. It
provides a very nice guidance of the composition design
for the further development of lime-alumina-based mold
flux for casting AHSS with high Al.

II. THEORIES FOR CRYSTAL MORPHOLOGY
CONTROL

Jackson suggested a system in which the solid and
liquid phases were separated by an interface with
one-layer atom thickness, and he calculated the surface
free energy changes as a function of the ratio of site
occupancy of the constituent unit on the interface, as
shown in Eq. [1]. The detailed derivation is referred to
References 17 and 18

DF
NkT

¼ Xð1� XÞaþ X lnXþ ð1� XÞ lnð1� XÞ; ½1�

where DF is the change in surface free energy, N is the
number of the crystal surface lattice sites, k is the
Boltzmann’s constant, T is the absolute temperature,
and X is fraction of surface sites occupied, respectively.
a is the so-called Jackson roughing factor that is
defined by Eq. [2]. As can be obtained from Eq. [1],
for materials with a< 2, there is only one minimum
value at 50 pct of surface site occupancy, indicating
that the interface energetically prefers to be rough. On
the other hand, in a material with a> 3, there are two
energy minima at site occupancy 0 and 100 pct, sug-
gesting that the interface will be smooth on the atomic
scale[29] and the corresponding crystal turns out
faceted in morphology.

a¼nðhklÞ
DHm

RT
: ½2�

In Eq. [2], DHm is the enthalpy change for the crystal
dissolution into melt bulk; R is the ideal gas constant;
andnðhklÞ is the orientation factor, defined as the ratio
between nearest sites for a growth unit in the surface of
a crystal and the coordination number. It should be

2212—VOLUME 47B, AUGUST 2016 METALLURGICAL AND MATERIALS TRANSACTIONS B



pointed out that it is not easy to obtain the orientation
factor nðhklÞ since structural parameters of many crystals,
in particular for complicated crystals, are not completely

confirmed yet. nðhklÞ is generally considered as a constant
for a specific crystalline,[21,22] and the value of nðhklÞis less
than unity, i.e., 1, and greater or equal to 0.5.[30]

Therefore, DHm

RT is the more critical part of Jackson a
factor to characterize the morphology of crystals. In the
present manuscript, nðhklÞ is considered as 1 for a
simplification in the same manner as done by other
authors.[26] In this case, how to calculate the enthalpy of
dissolution DHm is the key point to obtain the Jackson a
factor as a crystal morphology criterion, which will be
introduced in the following part in detail.
Jackson proposed a factor to evaluate the crystal

morphology only on the basis of a thermodynamic
equilibrium system. In the non-equilibrium melt, the
driving force, such as the thermal supercooling or
constitutional supercooling, also affects the crystalline
morphology, which is the so-called kinetic roughen-
ing.[23,24] The driving force for a crystal nucleation and
growth to take place is the degree of departure from the
equilibrium state. In melt crystallization, the driving
force can be evaluated as the difference between the
equilibrium melting point Tm and growth temperatures
T:[31]

DT = Tm � T supercoolingð Þ: ½3�
To compare the supercooling among different melts,

the supercooling degree is also used in the present
article, defined as DT=Tm.

III. CALCULATION OF ENTHALPY
FOR DISSOLUTION

A methodology was proposed to calculate the
enthalpy for a crystal dissolution in a binary regular
solution in References 21 and 22. The calculation of the
enthalpy of dissolution can be demonstrated as the sum
of ‘‘enthalpy’’ or ‘‘heats’’ involved in the following steps:

a. Separating the components of the solid compound
phase, the heat absorption equals the decomposed
enthalpy of the compound (�DHf, negative forma-
tion enthalpy),

ApBqðsÞ ¼ pAðsÞ þ qBðsÞ ½4�

DH1 ¼ �DHf: ½5�
b. Melting the solid components separately, the heat

change is the sum of fusion enthalpy of pure com-
ponent A (LA) and B (LB):

pAðsÞ ¼ pAðlÞ; qBðsÞ ¼ qBðlÞ ½6�

DH2 ¼ pLA þ qLB: ½7�

Fig. 1—Morphologies of crystals in lime-silica-based (a) and
lime-alumina-based (b) (c) mold fluxes, where P1, P2, and P3 in (b)
represent CaF2, Ca3Si2O7, and CaAl4O7, respectively, and P1 and P2
in (c) denote Ca4Si2F2O7 and Ca3B2O6, respectively. (Reprinted from
Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–1097).
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The fusion enthalpy of pure component A and B at
different temperatures can be calculated by Eqs. [8]
and [9], respectively.

LA ¼ LA
m �

ZTA
m

T

clAp � csAp

� �
dT ½8�

LB ¼ LB
m �

ZTB
m

T

clBp � csBp

� �
dT; ½9�

where LA
mand LB

m are the fusion enthalpy of the pure
component at the equilibrium melting temperature,
i.e., TA

m and TB
m, respectively. c

li
p and csip denote the heat

capacity of liquid and solid phase, respectively.
c. Mixing the liquid components into a large bath of

liquid with the appropriate liquidus composition, the
mixing process can be expressed as Eqs. [10] and [11]
for binary melts and for multi-component melts,
respectively. This part of heat change is the mixing
enthalpy, i.e., the sum of the partial molar heats of
solution of components A (Hi;A) and B (Hi;B):

pAðlÞ þ qBðlÞ ¼ ApBqðmeltÞ ½10�

pAðlÞ þ qBðlÞ ¼ ðpAðlÞ þ qBðlÞÞmelt ½11�

DH3 ¼ pHi;A þ qHi;B: ½12�

The total heat of dissolution is as

DHm;T ¼ DH1þDH2þDH3: ½13�

In order to evaluate the enthalpy of dissolution by this
method, all the thermodynamic parameters for the
foregoing reactions should be obtained, but it is indeed
not an easy task as some of them are not available, in
particular in themulti-component solution. For example,
the mixture enthalpy, i.e., DH3, for the multi-component
solution is usually not available in the public literature.

In the present manuscript, a more convenient method-
ology was established to evaluate the enthalpy of
dissolution in multi-component mold flux by applying
the thermodynamic database FactSage 6.4.[32] Gener-
ally, the Gibbs energy of formation (DG) for a com-
pound or a crystal precipitating from a melt, Eq. [14], is
expressed as Eq. [15]. In fact, Eq. [14] is just the reverse
reaction of an universal formalism if one sums up
Eqs. [4], [6], and [11], i.e., the dissolved reaction.

ðaAðlÞ þ bBðlÞ þ � � � þ nNðlÞÞmelt ¼ AaBb � � �NnðsÞ ½14�

DG ¼ DGh þ RT ln
1

aaAa
b
B � � � anN

� �
; ½15�

where DGhis the standard Gibbs energy and aj is the

activity of component j in the melts related to pure liq-
uid. The enthalpy of precipitate formation, DH, is then
calculated using the Gibbs–Helmholtz equation,[33]

@ G
T

� �
@T

� �
¼ DH

T2
: ½16�

The enthalpy of dissolution for the Jackson a factor
evaluation can be obtained as

DHm¼� DH: ½17�
During the present calculation, the standard Gibbs

energy DGh was calculated in the FactSage ‘‘Reaction’’
module by setting up a reaction similar to Eq. [14]. The
activities of various components in the mold flux were
then calculated using the ‘‘Equilib’’ module. A temper-
ature step of 10 K (10 �C) was applied during the
present calculation.

IV. EXPERIMENTAL

DSC measurements were carried out both on
lime-silica-based and lime-alumina-based mold fluxes.
The chemical compositions of the mold fluxes are
presented in Table I. Mold New 2 to New 6 are
lime-alumina-based mold fluxes with different CaO/
Al2O3 and B2O3 contents. Slag B-D are the lime-sil-
ica-based mold flux with different basicities, and Slag
B-1 is the comparison to Slag B by addition of 1.8
mass pct Li2O. The crystallization behaviors of mold
fluxes were investigated by DSC (Netzsch STA 449C;
Netzsch Instrument Inc., Germany). Pure a-Al2O3

powder was used as reference material in DSC
measurement. The mold flux samples were ground
into powder before DSC measurements. The DSC
measurement was performed at different cooling rates
(5, 10, 15, 20, and 25 K/min) in Ar atmosphere at a
flow rate of 60 mL/min. About 60 mg of sample
powder was heated at a constant heating rate of 20 K/
min from room temperature to 1573 K (1300 �C) in a
platinum crucible with a diameter of 5 mm and a
height of 5 mm, and then held for 3 minutes to
homogenize its chemical composition. Subsequently,
the liquid sample was cooled at a constant cooling
rate to room temperature. In addition, the iso-thermal
DSC experiments for the lime-silica-based Slag B and
D were also carried out at four different temperatures
for a comparison. The microstructure and crystal
compositions of mold flux samples after DSC mea-
surement were determined by FE-SEM/EDS (JSM-
7401F, JEOL, Japan). In addition, a series of non-
iso-thermal treatment experiments in an induction
furnace were carried out in order to identify the
crystalline phases by XRD analyzer, since the mass of
mold flux samples after DSC experiments are too
small to determine crystalline phase by XRD. Table II
shows the crystalline phases of mold fluxes identified
by XRD analysis. More detailed procedures can be
seen in References 13 through 15.
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V. RESULTS AND DISCUSSIONS

A. Jackson a Factor of Typical Crystals in Mold Fluxes

The fusion enthalpy at the melting point of some
typical crystals and their corresponding Jackson a factors
are calculated. The results are as shown in Table III, in
which the asterisked data are cited from a well-known
public database[32,33] for a comparison. It can be seen that
the calculated results by applying FactSage are very close
to those picked up from the thermodynamic data-
base,[34,35] suggesting that the present method can achieve
a reasonable evaluation of enthalpy for crystal dissolu-
tion and Jackson a factor. For many binary crystals, in
particular ternary and higher order system ones, there are
no available thermodynamic data in public literature, and
thus, the application of commercial thermodynamic
databases, such as FactSage, is the only way to obtain
the relative reasonable estimation. It can be seen that
different crystals have varying Jackson a factors that
suggest they should have different morphologies and
anisotropic degrees.

B. Crystal Morphology in Lime-Alumina-Based Mold
Fluxes

Figure 2 shows the typical crystal morphology of the
lime-alumina-based mold fluxes New2 after DSC

measurement at different cooling rates. It is confirmed
by FE-SEM/EDS and XRD that there are three kinds of
crystalline phases in each sample, shown as in Table II,
and they show distinctly different morphologies. Firstly,
a large amount of fine granuliform-shaped CaF2 crystals
with smooth surface, which are marked as P1 in the
figures, are found in each sample, and some of them
possessed a dendritic shape. The second-phase crys-
talline is confirmed as CaAl4O7, which takes up the
largest crystalline fraction in this kind of mold flux and
are marked as P2, and they appear to have coarse blocky
shape. Another type of crystalline phase marked as P3 is
needle-like shape and it is verified as calcium borates in
composition. It should be pointed out that calcium
aluminate crystals (CA2 and C3A) are the dominant
phases in the lime-alumina-based mold fluxes with low
or no B2O3 content, such as in slag New 2 and New 3,
and they appear as a blocky shape usually. In addition,
the calcium borate crystals (Ca3B2O6, Ca2B2O5,
CaB2O4, and Ca9B6F2O17), which are mainly needle-like
in morphology, are the primary crystals in the B2O3-rich
lime-alumina-based mold fluxes, such as in slag New 4,
5, and 6. More detailed composition and morphology
information can be checked in Reference 15.
Figure 3 shows the relations between Jackson a factor

and supercooling for the three types of typical crystals in
slag New 2. The supercooling are estimated by

Table I. Chemical Composition of the Mold Fluxes, Mass Pct

No CaO SiO2 Al2O3 Na2O F MgO Li2O B2O3

New2 30.7 2.2 25.2 12.3 15.1 3.1 5.4
New3 32.0 2.3 26.2 7.4 13.9 6.4
New4 37.9 9.0 11.4 9 8.9 4.9 16.0
New5 42.6 11.9 13 4.8 9.3 4.9 10.8
New6 37.8 8.9 11.5 1.0 8.1 6.2 10.0
B 38.5 41.1 5.0 7.3 7 0.8 – –
B-1 37.5 39.3 5.1 7.5 7.4 0.7 1.8 –
C 41.7 36.7 5.3 7.4 7.2 0.8 – –
D 44.8 33.4 5.4 7.6 7.6 0.8 – –

Table II. XRD Analysis Results of Crystalline Phase in the Mold Fluxes Quenched at the Desired Target Temperatures

Sample No. Target Temperature [K (�C)] Crystalline Phase Identified by XRD

New2 1033 (760) CaF2

938 (665) CaF2+CaOÆ2Al2O3

873 (600) CaF2+CaOÆ2Al2O3+2CaOÆB2O3

New3 1470 (1197) unidentified
1173 (900) CaF2+3CaOÆ2SiO2

673 (400) CaF2+3CaOÆ2SiO2+ 3CaOÆAl2O3

New4 923 (650) Cuspidine
788 (515) Cuspidine+9CaOÆ3B2O3ÆCaF2

New5 923 (650) Cuspidine
793 (520) Cuspidine+CaOÆB2O3

New6 923 (650) Cuspidine
673 (400) Cuspidine+CaOÆB2O3

B 1431 (1158) Cuspidine
1355 (1082) Cuspidine+Wollastonite

B-1 1392 (1119) Cuspidine
C 1496 (1223) Cuspidine
D 1518 (1245) Cuspidine

1204 (931) Cuspidine
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comparing the crystallization temperature and the
equilibrium melting temperature calculated by Fact-
Sage. Ca3B2O6 is chosen as the representative of calcium
borate crystals since it has strongest tendency to
precipitate on the basis of thermodynamic calculation
by FactSage. It can be seen that the three types of
crystals have very different Jackson a factors: they are
between 3.7 and 4.5 for CaF2, between 9.4 and 9.8 for
CaAl4O7, and between 10.6 and 11.2 for Ca3B2O6,
respectively. According to Jackson’s theory,[17,18] the
crystal is faceted in morphology when the a factor is
larger than the critical value and its anisotropy increases
with the a factor increase. The three types of crystals in
Figure 2 are mainly faceted in morphology and, obvi-
ously, the anisotropy increases from CaF2 (fine granuli-
form), CaAl4O7 (blocky) to Ca3B2O6 (needle-like). The
experimental observations are in good agreement with
theoretical prediction. So it well explains why the three
types of crystals show different morphologies. Also, it is
clear that the morphology of CaAl4O7 crystals changes
from large block with clear angularities to the smaller
ones by increasing the cooling rate, and some CaF2

crystals appear with dendritic morphology which means
that superccooling also plays a role on the crystal
morphology.

C. Cuspidine Morphology in Lime-Silica-Based Mold
Fluxes

Since cuspidine crystal in lime-silica-based mold flux
has been verified a relative favorable lubrication perfor-
mance during high-Al AHSS steel CC process, and thus,
it is necessary to understand cuspidine morphology
evolution behaviors in lime-silica-based mold fluxes for
the purpose of crystal morphology modification in
lime-alumina-based mold fluxes.

The dominant crystalline of lime-silica-based Slag B,
B-1, C, and D are all confirmed as cuspidine identified
by XRD analysis as shown in Table II.[13,14] Figure 4
shows the morphology of cuspidine crystal after
iso-thermal DSC measurement at different crystalliza-
tion temperatures for Slag B and D, and Table IV lists
their supercooling, Jackson a factor, and corresponding

crystal morphology. It should be pointed out that only
cuspidine is present at the iso-thermal experimental
temperatures since the second phase, i.e., wollastonite,
precipitates at very low temperature for slag B according
to the XRD identified results as shown in Table II. As
shown in Figures 4(a) and (b), the crystal morphology
of Slag B are dendritic and the dendritic structures are
more developed with crystallization temperature
decrease. In addition, the crystal morphology of Slag
D is mostly faceted as shown in Figures 4(c) and (d),
while there is also a dendritic tendency at the lower
crystallization temperature in Figure 4(d). As can be
seen from Table IV that cuspidine of melt crystallization
in slag B and D have a very similar Jackson a factor, but
the undercooling for crystallization of slag B is much
greater than that of slag D. Therefore, it can be
concluded that the crystal morphology difference
between Slag B and Slag D is mainly due to the
supercooling difference rather than Jackson a factor.
Figure 5 shows the crystal morphology of four

kinds of lime-silica-based mold fluxes after DSC
measurement with continuous cooling at a rate of
20 K/min, and Table V lists the supercooling and the
Jackson a factors correspondingly. It can be seen from
the figure and table that the crystal morphology
evolved from facets to dendritic shape by increasing
supercooling of crystallization that are in agreement
with the foregoing iso-thermal DSC experimental
results. Also, their Jackson a factors are very close
to each other and much larger than the critical value.
It suggests once more that the supercooling or
supercooling degree also considerably affects the
crystal morphology. Additionally, the composition of
Slag B-1 is very similar to that of slag B except for 1.8
mass pct addition of Li2O, while its supercooling for
cuspidine crystallization is obviously lower than that
of slag B, which gives rise to its crystal morphology
much more faceted and less dendritic. This indicates
that the slag composition, such as the Li2O content,
can also influence the crystal morphology by changing
the mold flux properties.
Figure 6 shows the calculated Jackson a factors for

cuspidine in the four types of lime-silica-based mold

Table III. The Jackson a Factors of Some Typical Crystals in Mold Fluxes

Crystal Melting Point [K (�C)] Latent Heat (kJ/mol) a Factor

CaO (lime) 2845 (2572)/2888* 28.50/28.45* 3.36/3.31*
Al2O3 (corundum) 2327 (2054)/2327* 118.41/118.41* 6.12/6.12*
SiO2 (cristobalite) 1996 (1723)/1996* 9.58/9.58* 0.58/0.58*
CaF2 1691 (1418)/1691* 29.71/29.71* 2.11/2.11*
CaSiO3 (wollastonite) 1813 (1540)/1817* 57.00/56.07* 3.7/3.71*
Ca3B2O6 1750 (1477)/1763* 150.50/148.53* 10.33/10.13*
CaAl4O7 2038 (1765) 128.4 7.57
CaAl2O4 1877 (1604) 55.0 3.51
Ca12Al14O33 1709 (1433) 432.0 30.38
Ca3Al2O6 1814 (1541) 72.0 11.18
Ca4Si2F2O7 1677 (1404) 156.1 11.19
Ca12Al14F2O32 1849 (1576) 575 37.4
Ca4Al6F2O12 1781 (1508) 130 8.77

/_ * were the experimental value from the databases.[34,35]
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fluxes including the pure cuspidine melt, i.e., with the
same stoichiometric composition as cuspidine. It can be
seen that the Jackson a factor of cuspidine crystal
increases slightly with the decrease in mold flux basicity
compared to those of Slag B, C, and D and increases
with the addition of a small amount of Li2O compared

to those of Slag B-1 and B. In addition, it increases with
the supercooling increase.

D. Effect of Supercooling Degree on Crystal
Morphology

Figure 7 shows the supercooling degree and their
corresponding Jackson a factors for the cuspidine
crystallization in the four kinds of lime-silica-based
mold fluxes, where the y axis is drawn as the degree of
supercooling degree (DT=Tm) for a more fair compar-
ison. Similar to Temkin’s[23,24] conclusion, a critical line
for cuspidine crystal kinetic roughening can be evalu-
ated as well, shown as the dot line in the figure. When
the supercooling is lower than the critical line (Region
A), the cuspidine morphology is faceted, whereas the
crystal morphology appears with dendritic shape when
the supercooling over the critical value (Region B) as the
kinetic roughening occurs. For the cuspidine precipita-
tion from these lime-silica-based mold fluxes, the critical
degree of supercooling is estimated between 0.05 and
0.06 and increases with the Jackson a factor.
From Figures 6 and 7, one observes that the supercool-

ing has complicated effects on the cuspidine morphology:
by increasing supercooling within the critical line region, it
will increase the Jackson a factor and, thus, enhance

Fig. 2—Morphology of crystals variation for Slag NEW 2 at different cooling rates. (Reprinted from Metall. Mater. Trans. B, 2014, vol. 45B,
pp. 1081–1097).

Fig. 3—Jackson a factor vs undercooling of three typical types of
crystals for Slag New 2 during cooling process.
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faceted cuspidine precipitation, while supercooling over
the critical value, kinetic roughening takes place and it is
likely to precipitate dendritic cuspidine. The supercooling
for crystallization of the slag B is remarkably larger than
that of slag D, and thus, crystal in the slag B is more likely
to be dendritic as shown in Figure 4. Interestingly, the
present findings are in quite good agreement with Lu
et al.[23] andHeulens’[26] experimental results regarding the
alpha-Ni crystal and wollastonite morphology evolution
under different supercooling degrees.

By combining the present results with those of
Temkin, it can be concluded that the crystal with higher
Jackson a factor is more difficult to form dendritic
structure as greater critical supercooling degree is
usually needed. Also, it shows the similar tendency in
lime-alumina-based mold fluxes: some CaF2 crystals
become dendritic under the relatively low supercooling
[<50 K (50 �C)] due to their small Jackson a factor
values, while the calcium aluminate and calcium borate
crystals retain faceted morphology under relatively high

Fig. 4—Cuspidine morphology in Slag B, (a) and (b), and Slag D, (c) and (d), after iso-thermal DSC measurement at the different crystallization
temperatures. (Reprinted from Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2374–2383).

Table IV. Undercooling, Jackson a Factor, and Morphology of Crystal in Slag B and D in Fig. 4

No. a (slagB) b (slagB) c (slagD) d (slag D)

DT [K(�C)] 88[88] 103[103] 53[53] 68[68]
DT=Tm 0.058 0.068 0.034 0.044
a factor 13.52 13.65 12.68 12.57
Crystal morphology dendritic dendritic faceted faceted

Table V. Undercooling, Jackson a Factor, and Morphology of Crystal in Four Lime-Silica-Based Mold Flux at a Cooling Rate of
20 K/min in Fig. 5

No. a (slagB) b (slagB-1) c (slagC) d (slag D)

DT [K((�C)] 101[101] 86[86] 45[45] 40[40]
DT=Tm 0.066 0.058 0.029 0.031
a factor 13.64 13.88 12.80 12.48
Crystal morphology dendritic faceted faceted faceted
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supercooling [100 K and 200 K (100 �C and 200 �C)]
due to their relatively larger Jackson a factor.

Practically, one could control faceted or dendritic
crystal morphology by matching the suitable Jackson a
factor in the manner of the melt composition adjustment
and heat treatment on the basis of the similar crystal
morphology transition diagram like Figure 7; thus,

these kinds of diagrams are very essential for crystal
morphology control. The further work should be
performed to obtain the similar diagrams for the crystals
in lime-alumina-based mold fluxes.
As we know, crystallization is a complex process

governed by nucleation and crystal growth. The crystal
morphology is mostly determined by the crystal growth
process after nucleation.[36] Furthermore, the crystal
growth could be generally divided into the following
two steps: (1) the elements diffuse from the melt bulk
to the crystal-melt interface; and (2) chemical reactions
take place at the interface. The rate at which a crystal
grows can be controlled by any of these two factors. If
the crystal growth is controlled by the chemical
reaction, the crystal morphology would be likely
faceted in the case of its Jackson a factor larger than
the critical value according to its derivation. The
crystal morphology will tend to be dendritic if the
growth is controlled by element diffusion process.[36]

The chemical reaction rate is proportional to the
driving force, and the element diffusion rate is inverse
proportional to the melt viscosity.[32,36] Thus, it could
infer that crystal morphology transition with the
supercooling degree increase, i.e., kinetic roughness, is
high possible due to the crystal growth controlling step
changing from step 2, i.e., chemical reaction at the
interface, to step 1, i.e., element diffusion to the
interface since the melt viscosity would increase largely
with the supercooling increase.

Fig. 5—The crystal morphology of lime-silica-based mold fluxes after DSC measurement at cooling rate of 20 K/min. (Reprinted from Metall.
Mater. Trans. B, 2014, vol. 45B, pp. 1874–1886).

Fig. 6—Jackson a factor for cuspidine precipitation in four kinds of
CaO-SiO2-based mold fluxes under different supercooling degrees.
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E. Effect of Melt Composition on Crystal Morphology

As shown in Figure 6, the melt composition could
affect the Jackson a factor of crystal. The effects of melt
composition on the crystal morphology is much more
complicated since it also plays a role on other param-
eters including Jackson a factor, such as melting point,
viscosity, supercooling degree of crystallization, and so
on.

For slag B, C, and D, Jackson a factor for cuspidine
crystal increases slightly with slag basicity decrease, but
the supercooling of mold flux with lower basicity, such
as slag B, is obviously larger than that of mold fluxes
with higher basicity; thus, crystal in the slag B is more
likely to be dendritic, as shown in Figures 4, 5, and 6. In
addition, the driving forces, i.e., constitutional super-
cooling, for precipitating cuspidine in melt increase with
the slag basicity decrease, and thus the corresponding
Jackson a factor increases. On the other hand, our
previous viscosity measurements have verified that the
melt viscosity increases obviously with the basicity
decrease for slag B, C, and D.[37] Therefore, it suggests
the cuspidine crystal growth in lower basicity mold flux,
slag B, is more likely to be controlled by the element
diffusion, while that in the slag D is likely controlled by
interface chemical reaction. This explains why cuspidine
appears with different morphologies in the foregoing
mold fluxes.

By comparing slag B and slag B-1, one can find that
the addition of even a small amount of Li2O into the
mold flux can not only increase the value of Jackson a
factor for cuspidine crystal as shown in Figure 6 but
also decrease the degree of supercooling of crystalliza-
tion as shown in Figure 6; thus, it can improve the
faceted cuspidine crystal precipitation from the lime-sil-
ica-based mold fluxes. In addition, it was confirmed by
Kim et al.measurement that the melt viscosity decreased
by adding a small amount of Li2O into mold flux.[12]

Also, experimental results of Liu et al.[38] demonstrated
that more faceted crystal precipitated by increasing Li2O
content in mold fluxes within a reasonable amount,
which is in accordance with our present findings.

In addition, it should be pointed out that the melt
composition will change with crystallization process,
and thus, the morphology of the second-phase crystal is
probably somewhat different from the one in the mold
flux of only first-phase crystal precipitation, since the
Jackson a factor, supercooling, melt viscosity, and so on
are perhaps different. Thus, the morphology control of
the second- or third-phase crystal is much more difficult
and further work should be performed.
In brief, it can be concluded that Jackson a factor and

the supercooling of crystallization are the most signif-
icant parameters to determine the crystal morphology
since mold flux composition affects the crystal morphol-
ogy through changing these two factors. In order to
control the faceted crystal morphology in the mold flux,
the favorable Jackson a factor for the primary crystal
should be selected firstly, and then the relative lower
supercooling of crystallization should be taken into
consideration. Many investigations[14,16,39–41] have con-
firmed the supercooling of crystallization is related to
the activation energy of crystallization. Our previous
works have investigated their relations both in lime-sil-
ica-based[16,37] and lime-alumina-based[14] mold fluxes.
Here, it would not be discussed in detail any more.
The present findings suggest that Jackson a factor and

supercooling should be taken into account during the
design of the lime-alumina-based mold flux for casting
high-Al AHSS steel like other slag properties, such as
melting point, viscosity, basicity, and so on. This kind of
work has been carried out by the present authors and
will be introduced soon.

VI. CONCLUSIONS

In the present work, the attempts to control the
crystal morphology are made for the purpose of
lubrication improvement of lime-alumina-based mold
flux for casing high-Al AHSS. The following conclu-
sions can be obtained:
First, Jackson a factor was introduced to understand

the crystal morphology control in a multi-component
mold flux. In addition, the enthalpy of dissolution and
the corresponding Jackson a factors for crystals of melt
crystallization in multi-component mold flux were
established and reasonably evaluated by applying the
databases of FactSage.
Second, CaF2, calcium aluminate, calcium borate,

and cuspidine precipitated in mold fluxes show different
morphologies due to their different Jackson a factors,
and the crystals tend to be more faceted and anisotropic
with their Jackson a factor increase.
Third, there is a critical undercooling degree for

crystal morphology dendritic transition. When the
undercooling degrees locate within the critical value
region, the corresponding crystals appear faceted in
morphology. While the undercooling over the critical
value, the crystals transform to be dendritic. In addition,
the critical supercooling degrees for cuspidine dendritic
transition in the lime-silica-based mold fluxes are
evaluated to be between 0.05 and 0.06.

Fig. 7—Degree of undercooling and Jackson a factor dependence of
cuspidine crystal morphology.
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Finally, addition of a small amount of Li2O in the
mold fluxes can increase the Jackson a factor of
cuspidine crystal and decrease the supercooling for
cuspidine precipitation, and thus, it is favorable to
enhance a faceted cuspidine crystal.
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