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Interferon-inducible protein SCOTIN interferes
with HCV replication through the autolysosomal
degradation of NS5A
Nari Kim1, Min-Jung Kim1, Pil Soo Sung2, Yong Chul Bae3, Eui-Cheol Shin2 & Joo-Yeon Yoo1

Hepatitis C virus (HCV) utilizes autophagy to promote its propagation. Here we show the

autophagy-mediated suppression of HCV replication via the endoplasmic reticulum (ER)

protein SCOTIN. SCOTIN overexpression inhibits HCV replication and infectious virion

production in cells infected with cell culture-derived HCV. HCV nonstructural 5A (NS5A)

protein, which is a critical factor for HCV RNA replication, interacts with the IFN-b-inducible

protein SCOTIN, which transports NS5A to autophagosomes for degradation. Furthermore,

the suppressive effect of SCOTIN on HCV replication is impaired in both ATG7-silenced cells

and cells treated with autophagy or lysosomal inhibitors. SCOTIN does not affect the overall

flow of autophagy; however, it is a substrate for autophagic degradation. The physical

association between the transmembrane/proline-rich domain (TMPRD) of SCOTIN and

Domain-II of NS5A is essential for autophagosomal trafficking and NS5A degradation.

Altogether, our findings suggest that IFN-b-induced SCOTIN recruits the HCV NS5A protein

to autophagosomes for degradation, thereby restricting HCV replication.
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H
epatitis C virus (HCV), an RNA virus of the Flaviviridae
family, infects more than 180 million people globally1.
Hepatocytes are the primary target cells of HCV infection,

and chronic HCV infection and the associated inflammation
often lead to liver failure2. HCV-infected livers progressively
develop hepatic fibrosis, cirrhosis and hepatocellular carcinoma if
the infection is not properly treated2. HCV infection triggers a
wide range of host cellular responses, including apoptosis, the
unfolded protein response (UPR) in the endoplasmic reticulum
(ER), cell cycle arrest and autophagy3. Although the majority of
these cellular responses are activated by host cells as defenses
against viral infection, these processes are often manipulated by
HCV to facilitate its own survival and propagation.

HCV contains a positive-sense, single-stranded RNA genome
that encodes a single polypeptide. Once the virus enters host cells,
the B9.6-kb HCV RNA genome is translated into an B3,000
amino-acid polypeptide, which is then cleaved by cellular and
viral proteases to produce four viral structural proteins (core, E1,
E2 and p7) and six nonstructural proteins (NS2, NS3, NS4A,
NS4B, NS5A and NS5B)4. In cells, the majority of HCV proteins
are localized within or near the cytoplasmic membrane of the ER,
and replication of the HCV RNA genome occurs on lipid droplets
associated with an altered cytoplasmic membrane structure called
the membranous web5. During HCV assembly, core proteins on
the cytoplasmic side of the ER membrane are transferred to the
luminal side with the aid of viral and cellular proteins that act to
incorporate HCV proteins into virion particles and to promote
their release6. HCV infection or the overproduction of individual
HCV proteins in the ER compartment induces ER stress and the
ER-stress-associated UPR7–10. Activation of the ER–UPR induces
the production of reactive oxygen species and apoptosis in
infected cells7,9. In addition, ER-associated degradation pathways
that are triggered by ER stress control the modulation of viral
protein glycosylation to limit viral production10. However, HCV
uses these ER stress UPR pathways to deceptively modulate
cellular stress responses, resulting in signals that benefit its
persistent genome replication and viral translation11–13.

The ER is thought to be the major source of the autophago-
somal membrane14. Autophagy is mediated by autophagosomes,
which engulf a portion of the cytoplasm along with the target
macromolecules or damaged subcellular organelles for degra-
dation15. During the later stages of autophagy, autophagosomes
fuse with lysosomes to form autolysosomes, in which degradation
occurs15. Although autophagy primarily functions to maintain
energy homeostasis and nutrient balance during stressful
conditions such as nutrient deprivation, it plays additional
diverse roles in the cell, including roles in defense against
invading bacteria and cell death16. In contrast with the initial
description of autophagy as a bulk non-selective process, recent
studies have demonstrated that it uses more selective means to
target and degrade intracellular pathogens beyond the detection
of intrinsic protein aggregates or damaged organelles17,18. For
example, to target intracellular bacteria such as Salmonella
enterica or Listeria monocytogenes, the autophagy receptor
protein p62 (sequestome 1 or SQSTM1) or NDP52 speci-
fically links bacteria to LC3-containing autophagosomal
membranes19,20. The p62 protein also interacts with the SIN
capsid protein of the Sindbis virus, leading to the clearance of
viral proteins, which protects against host cell death21.
Furthermore, deficiencies in autophagy control result in an
increased susceptibility to lethal pathogenic infections in diverse
organisms, from the slime mold (Dictyostelium) to mice,
indicating that the protective role of autophagy in pathogenic
infection is evolutionarily conserved22,23.

HCV has evolved to utilize autophagy to benefit its own
replication, initial translation and viral particle production13,24,25.

HCV RNA transfection blocks lysosomal fusion with
autophagosomes, the membranes of which provide repli-
cation sites for HCV13,26. Moreover, HCV-induced autophagy
is required to suppress the innate antiviral responses that
promote the production of interferon (IFN)-b or of interferon-
stimulated genes (ISGs) and to attenuate apoptosis through
mitophagy12,27,28. These results suggest that HCV has developed
multiple ways to circumvent autophagy. However, it is unclear
how HCV inhibits autolysosome formation or how it evades
degradation by autolysosomes.

In the present study, we demonstrated that SCOTIN represses
HCV replication through autophagy. The IFN-b-inducible ER
transmembrane protein SCOTIN functions as an anti-HCV
cellular factor that recruits the nonstructural 5A (NS5A) viral
protein to the autophagosomal compartment, resulting in
its autolysosomal degradation and the inhibition of HCV
replication.

Results
IFN-b-inducible protein SCOTIN restricts HCV replication.
We used the following criteria to identify an unknown ISG
product that restricts HCV replication: first, its expression is
induced by the antiviral cytokine IFN-b; second, its known
cellular compartment is the ER; and, finally, it has known
biological functions related to the ER–UPR, cell cycle or cell
death, which are cellular responses induced by HCV infection.
Among the cellular genes whose expression is induced by type I
interferon in primary hepatocytes29, we selected SCOTIN, also
known as SHISA5, which encodes an ER membrane protein with
known functions in caspase-dependent cellular apoptosis30, for
further evaluation. Before we examined its role in HCV
replication, we first determined whether its expression is
induced by inflammatory cytokines in cultured hepatocytes. In
Huh-7 cells treated with inflammatory cytokines, such as
interleukin (IL)-1b or IL-6, or with the antiviral cytokine
IFN-b, up to a two- to fivefold induction in SCOTIN expression
was detected (Fig. 1a). However, the level of SCOTIN protein was
noticeably increased only after the IFN-b treatment, indicating that
its cellular protein level might be under tight control during
inflammation in hepatocytes (Fig. 1b). To assess whether SCOTIN
affects HCV replication, Huh-7 cells were infected with cell
culture-derived HCV (HCVcc; genotype 2a) followed by
overexpression of SCOTIN-V5, which encodes a V5 epitope-
tagged SCOTIN protein. HCV replication and the production of
infectious virions were examined by determining the HCV
RNA titre and performing a focus-forming assay. SCOTIN over-
expression inhibited HCV replication and virion production
(Fig. 1c,d). A reduction in the levels of HCV viral proteins was
separately confirmed in SCOTIN-V5-overexpressing cells
(Fig. 1e). In addition, knocking down SCOTIN expression
resulted in a significant degree of induction of the production
of intracellular HCV and infectious virions (Fig. 1f,g). The
intracellular HCV viral protein levels were consistently markedly
increased in these cells (Fig. 1h). These effects of SCOTIN were
examined in both Huh-luc/neo ET replicon cells containing a
partial HCV replicon construct with a luciferase-reporter gene31

and Huh-neo-5-15 subgenomic replicon cells containing a partial
HCV genome32. The HCV RNA level in these replicon cells was
similarly decreased when SCOTIN-V5 was overexpressed and
was significantly enhanced when SCOTIN expression was
silenced (Supplementary Fig. 1a–c). Reduced HCV viral protein
levels were also observed in SCOTIN-overexpressing Huh-neo-5-
15 replicon cells (Supplementary Fig. 1d). These results suggest
that the host factor SCOTIN plays inhibitory roles in the
regulation of HCV replication.
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SCOTIN promotes autophagosomal degradation of NS5A. To
investigate whether SCOTIN targets HCV proteins directly, each
HCV protein was separately cloned and co-expressed with
SCOTIN in Huh-7 hepatocellular carcinoma cells (Fig. 2a and
Supplementary Fig. 2a). Among the HCV proteins tested,
overexpression of SCOTIN specifically lowered the Flag-NS5A
protein levels, but not the NS5A mRNA levels (Supplementary
Fig. 2b). In addition, knockdown of endogenous SCOTIN
expression enhanced the exogenous Flag-NS5A protein levels
(Fig. 2b). Three different short interfering RNAs (siRNAs) spe-
cific to SCOTIN were separately examined to prevent off-target
effects of siRNA from occurring. SCOTIN was observed to
specifically alter the level of the NS5A protein but it did not
indiscriminately affect the levels of ER proteins, as demonstrated
by the lack of effect of its overexpression on the level of the ER
protein GRP94 (Supplementary Fig. 1d). To demonstrate the
involvement of NS5A in SCOTIN-mediated HCV regulation, the
effect of BMS-790052, which has been reported to specifically
inhibit NS5A (ref. 33), was assessed in control and SCOTIN
siRNA-transfected Huh-neo-5-15 replicon cells. The suppressive
effect of SCOTIN on HCV replication disappeared when NS5A
activity was inhibited (Supplementary Fig. 2c), indicating that this
protein acts to limit HCV replication, most likely through
downregulating the level of NS5A.

To understand how SCOTIN controls the NS5A level, its effect
on NS5A was then examined in cells treated with protein
degradation inhibitors. The NS5A level was slightly increased by
treatment with MG132, a 26S proteasome inhibitor, as previously
reported34; however, the suppressive effect of SCOTIN on
NS5A remained (Fig. 2c and Supplementary Fig. 2d), indicating
that proteasomal degradation might not be involved in

SCOTIN-mediated NS5A downregulation. In contrast, the
inhibitory effect of SCOTIN on NS5A was almost completely
abrogated following treatment with 3-methyladenine (3-MA),
bafilomycin A1 (BFA) or chloroquine (CQ; Fig. 2d–f). 3-MA
inhibits the early stages of autophagy, while BFA and CQ inhibit
autolysosomal maturation and lysosomal activity, respectively35.
As previously reported35, treatment of cells with 3-MA blocks the
conversion of LC3-I to LC3-II, which is a molecular marker of
autophagy processing, while treatment with either BFA or CQ
blocks LC3-II degradation (Fig. 2d–f).

To verify the involvement of autophagy in the regulation of
NS5A by SCOTIN, expression of autophagy-related genes was
silenced. Knockdown of either ATG7 or ATG5, which are
involved in LC3 lipidation, blocked degradation of NS5A by
SCOTIN (Fig. 2g and Supplementary Fig. 2e–g). In addition,
silencing of RAB7, which is required for the maturation of late
autophagosomes, also prevented SCOTIN-mediated NS5A
downregulation (Supplementary Fig. 2f,g). Taken together, these
results indicate that SCOTIN modulates NS5A protein degrada-
tion through the autophagy–lysosome pathway.

Although NS5A is mainly localized to the membranous
compartment of the ER membrane, to which it is directed by its
N-terminal regions36, fractions of this protein, along with other
HCV proteins and viral RNAs, have also been found in
autophagosomes26. Therefore, we investigated whether
SCOTIN affects the autophagosomal localization of NS5A in
Huh-7 cells. LC3 protein translocates from the cytosol to
autophagosomal membranes via C-terminal lipidation during
autophagy and becomes arranged in a punctate pattern37. When
SCOTIN expression was silenced in Huh-7 cells, the extent of
colocalization of NS5A and LC3 was significantly reduced,
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Figure 1 | The ER protein SCOTIN inhibits HCV replication. (a,b) Huh-7 cells were incubated with IL-1b (10 ng ml� 1), IL-6 (10 ng ml� 1), tumour-necrosis

factor (TNF)-a (10 ng ml� 1) or IFN-b (100 U ml� 1) for 12 h, and the expression of SCOTIN mRNA was measured with RT–qPCR and compared with that of

RPL32 mRNA (a). Endogenous SCOTIN protein levels were measured by immunoblotting. Lamin B2 was used as a loading control (b). The bars indicate the

mean value±s.d. obtained from three experiments. (c–h) Huh-7 cells were infected with HCVcc (0.5 multiplicity of infection (MOI)) for 2 days, followed by

transfection of the indicated plasmids or siRNAs for 72 h. (c,f) The intracellular HCV RNA titre was measured using reverse transcriptase–quantitative PCR

(RT–qPCR) and normalized to b-actin. (d,g) Infectious HCV virions were analysed using a colorimetric focus-forming assay. The results are presented as

focus-forming units (FFU) per ml of culture supernatant. (e,h) Total cell lysates were subjected to immunoblotting using the indicated antibodies. The bars

indicate the mean value±s.e. obtained from triplicate experiments. The asterisks indicate the P values calculated using the t-test. *P valueo0.05,

**P valueo0.01.
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Figure 2 | SCOTIN promotes NS5A trafficking to autophagosomes. (a,b) Huh-7 cells were transfected with the indicated plasmids or siRNAs for 48 h,

and total cell lysates were subjected to immunoblotting using the indicated antibodies. A GST-expressing pEBG (a) or LacZ-V5 (b) plasmid was included to

monitor transfection efficiency. (c–f) Huh-7 cells were transfected with the indicated plasmids followed by treatment with MG132 (1 mM; c), 3-MA

(10 mM; d), BFA (100mM; e) or CQ (50mM; f) for 12 h. Total cell lysates were subjected to immunoblotting using the indicated antibodies. Distilled water

(DW) was used as a control for 3-MA and CQ, and dimethylsulphoxide (DMSO) was used as a control for BFA and MG132. c-MYC was used as a positive

control for MG132. The relative ratios (FLAG-NS5A/LacZ-V5) are shown based on the intensity values quantified using the Multigauge programme

(Fuji Film). (g) Huh-7 cells transfected with the indicated plasmids along with control or ATG7 siRNA. Extracted lysates were subjected to immunoblotting

using the indicated antibodies. (c–g) To determine the transfection efficiency, LacZ-V5 was co-transfected with the indicated plasmids. (h–j) Huh-7 cells

were transfected with FLAG-NS5A along with control or SCOTIN siRNA, and then were treated with rapamycin (2mM) for 6 h. (h) Cellular localization of

endogenous LC3 (green), FLAG-NS5A (red) and the nucleus (Hoechst) was detected using confocal fluorescence microscopy. A colocalization image was

obtained using the Co-localization Image J Plugin. Scale bars, 10 mm. (i) Total cell lysates from the same cell populations were subjected to immunoblotting

using the indicated antibodies. (j) The extent of colocalization of FLAG-NS5A and LC3 in each cell was measured using Pearson’s correlation coefficient

with the JAcoP Image J Plugin. The coefficient values were plotted using a whiskers box plot. The box extends from the 25th to 75th percentiles, and the

error bars depict the minimum and maximum values. Cells transfected with siCON (N¼46) or with siSCOTIN (N¼ 50) were analysed. The asterisk

denotes the P value calculated using the t-test (***P valueo0.001).
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suggesting that NS5A autophagosomal localization is dependent
on the SCOTIN level (Fig. 2h–j). When SCOTIN-MYC
and GFP (green fluorescent protein)-LC3 were transiently
overexpressed, the majority of tagged SCOTIN was distributed
in a punctate pattern and was colocalized with GFP-LC3-
containing puncta (Supplementary Fig. 3a). In contrast, the
distribution of FLAG-NS5A only partially overlapped with the
GFP-LC3-containing puncta in cells transfected with
FLAG-NS5A. However, when SCOTIN-MYC was co-expressed
with FLAG-NS5A, a large proportion of the cells exhibiting
NS5A signals displayed colocalization with GFP-LC3 puncta.
Similarly, overexpressed SCOTIN and endogenously expressed
NS5A protein were colocalized in Huh-neo-5-15 replicon cells,
and the majority of these proteins were colocalized within GFP-
LC3-containing puncta (Supplementary Fig. 3b). Taken
together, these results indicate that SCOTIN might function to
promote the trafficking of NS5A to the autophagosomal
compartment.

To determine whether enhanced autophagosomal localization
of NS5A by SCOTIN also leads to its autolysosomal localization,
Huh-7 cells were co-transfected with GFP-tagged lysosomal-
associated membrane protein 1 (LAMP1), which is enriched in
lysosomes and late endosomes. When SCOTIN-V5 was over-
expressed alone, it was observed to colocalize with a fraction of
the GFP–LAMP1 structures present (Supplementary Fig. 3c, top),
and when NS5A was transfected alone, it barely overlapped with
these structures. However, NS5A colocalized with GFP–LAMP1
when SCOTIN was co-expressed (Supplementary Fig. 3c). There-
fore, these data suggest that SCOTIN facilitates NS5A trafficking
to autophagosomes, which in turn fuses with lysosomes for
protein degradation.

SCOTIN suppresses HCV replication through autophagy. To
determine whether SCOTIN-mediated NS5A degradation via
autophagy is an efficient mechanism for limiting HCV replica-
tion, we examined the effect of SCOTIN overexpression in Huh-
7 cells infected with HCVcc at a multiplicity of infection of 10,
the condition under which autophagy was induced in previous
studies12,24,38. When the early stage of the autophagy process
was blocked by treatment with 3-MA or by ATG7 knockdown,
HCV replication was inhibited, as previously reported13,27,39,
and the restriction of HCV replication by SCOTIN over-
expression disappeared (Fig. 3a,b). These results indicate that
the early stage of autophagy is required for the restriction of
HCV replication by SCOTIN overexpression. In contrast,
treatment with BFA or CQ had mild or no significant effects
on HCV replication. These results can be explained by the
counteracting activities of BFA and CQ on HCV replication.
BFA and CQ treatment results in the accumulation of early
autophagosomes40,41, which are used as replication sites for
HCV26. At the same time, CQ treatment or a Rab7 knockdown
augmented the expression of interferon-b after HCV infection
and reduced the level of viral RNA12. The complicated effects of
BFA and CQ on HCV replication may be reflected in our
system. Nonetheless, BFA and CQ treatments abrogated the
inhibitory effect of SCOTIN on HCV replication (Fig. 3c,d),
indicating that autolysosomal activity is required
for the SCOTIN-mediated restriction of HCV replication.
Furthermore, the level of colocalization of NS5A with
LC3-containing puncta was reduced in the SCOTIN-silenced
cells (Fig. 3e–g). Taken together, these data suggest that
autophagy or lysosomal activity is required for the SCOTIN-
mediated downregulation of HCV replication and that SCOTIN
and autophagy activity are both required for the suppression of
HCV replication.

SCOTIN does not directly alter the general autophagy process.
SCOTIN degrades HCV NS5A through autophagy; therefore, we
examined whether SCOTIN directly controls the overall autop-
hagy process as a component of the autophagy machinery or
whether it acts as a receptor that transports NS5A to the
autophagosomal compartment. To determine whether SCOTIN is
involved in autophagosome formation, the processing of cytosolic
LC3-I protein to the modified autophagosomal LC3-II form was
examined in SCOTIN-silenced or -overexpressing cells. However,
neither steady-state nor rapamycin-induced autophagy were
significantly altered in the SCOTIN-V5-overexpressing or
SCOTIN-silenced cells (Fig. 4a,b). Similarly, FLAG-NS5A
overexpression alone did not alter the level of LC3-II/LC3-I
(Supplementary Fig. 4a). We also examined the effect of SCOTIN
on the abundance of the autophagy substrate p62 protein. This
protein is continuously degraded by autophagy, and its cellular
level increases when autophagy is blocked42. Therefore, we
expected that the p62 level might be altered by manipulation of
SCOTIN expression if it directly controls the efficiency of the
overall autophagy process. Although the p62 level was reduced by
the activation of autophagy in rapamycin-treated cells, neither
SCOTIN overexpression nor its knockdown considerably altered
this level (Fig. 4a,b). We next examined the effect of SCOTIN
on starvation-induced autophagy. Although serum starvation
successfully induced autophagy as previously reported43, neither
SCOTIN overexpression nor its knockdown significantly affected
the relative conversion ratio of LC3-II/LC3-I or the abundance of
p62 (Fig. 4c,d).

Finally, we examined whether SCOTIN alters the formation or
maturation of autophagosomes using a tandem monomeric red
fluorescent protein (mRFP)–GFP–LC3 protein-expressing con-
struct (ptf-LC3). The autophagic flux can be measured by
analysing mRFPþ /GFPþ and mRFPþ /GFP� puncta in each
cell because both the GFP and mRFP signals are detectable in
early autophagosomes, while the GFP signal is quenched and only
the mRFP signal remains in the acidic lysosome compartment44.
For this purpose, we counted the numbers of mRFPþ /GFPþ and
mRFPþ /GFP� puncta in individual cells stably expressing
mRFP–GFP-LC3 (Fig. 4e). Enhanced numbers of mRFPþ /
GFPþ and mRFPþ /GFP� were detected after rapamycin
treatment or HCV infection (Fig. 4e and Supplementary
Fig. 4b). However, the numbers of both types of puncta were
not significantly altered by SCOTIN overexpression in basal,
rapamycin-treated or HCV-infected cells (Fig. 4e and
Supplementary Fig. 4b).

SCOTIN physically interacts with NS5A to control degradation.
We next examined whether SCOTIN accompanies NS5A to the
autophagosomal compartment for degradation. If this action
occurs, then SCOTIN must fulfill the following criteria: it must
physically interact with NS5A and it must be degraded through
the autophagy process.

We first determined whether SCOTIN physically interacts with
NS5A. To this end, cells were transiently transfected with a
glutathione S-transferase (GST)-tagged NS5A plasmid and
SCOTIN-MYC, and the physical interactions between NS5A
and SCOTIN were examined using a GST pulldown assay
(Fig. 5a). SCOTIN proteins were successfully precipitated with
GST-NS5A proteins, suggesting that they physically interacted.
Binding of NS5A with endogenous SCOTIN was also observed in
Huh-neo-5-15 subgenomic replicon cells (Supplementary
Fig. 5a). Next, we assessed whether a physical interaction was
required for SCOTIN-mediated control of the NS5A protein level.
For this purpose, we generated a series of GST-NS5A
deletion constructs, and the interaction domain necessary for
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the NS5A–SCOTIN interaction was mapped (Fig. 5b). The NS5A
protein is composed of at least three distinct functional regions.
Domain I (1–213) contains the N-terminal amphipathic a-helix,
which directs NS5A localization to the ER-derived membrane and
zinc-binding motifs, whereas Domains II (250–342) and III
(356–447) contain an IFN sensitivity-determining region and a
nuclear localization signal, respectively45. SCOTIN-V5 was
overexpressed along with a GST-tagged full-length (Full) or
truncated NS5A construct, and a GST pulldown assay was
performed to assess their interactions (Fig. 5c). GST-NS5A
(D1þD2) and GST-NS5A (Full) exhibited similar levels of
interaction with SCOTIN; however, the GST-NS5A (D1) mutant
failed to interact with this protein, suggesting that Domain-II of
NS5A is necessary for this interaction. We then assessed the
SCOTIN-mediated degradation of full-length and truncated
NS5A proteins (Fig. 5d). Consistent with the physical

interaction data, SCOTIN overexpression resulted in substantial
reductions in the levels of GST-NS5A (D1þD2) and GST-NS5A
(Full) proteins, although no decrease was observed in the level of
GST alone or of GST-NS5A (D1). Taken together, these results
suggest that physical interactions between NS5A and SCOTIN are
required for controlling NS5A degradation.

To map the SCOTIN domain involved in NS5A degradation, a
series of SCOTIN deletion constructs was generated and was
transiently transfected into Huh-7 cells (Fig. 5e). SCOTIN has the
following three distinct structural domains along with an
N-terminal signal sequence: a cysteine-rich domain (CRD),
which localizes to the ER lumen, a single transmembrane domain
and a C-terminal proline-rich domain (PRD), which faces the
cytosolic side30,46. All of the generated mutant SCOTIN proteins,
except for SCOTIN (TMCRD), mainly colocalized with GRP94,
an ER marker protein (Supplementary Fig. 5b). The full-length
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Figure 3 | SCOTIN restricts HCV replication through autophagy-mediated protein degradation. (a–d) Huh-7 cells were transfected with the indicated
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and SCOTIN (transmembrane/proline-rich domain (TMPRD))
proteins were observed as punctate signals that colocalized with
LC3-containing puncta in rapamycin-treated cells (Fig. 5f). In
contrast, the other SCOTIN mutants exhibited distinct
localization patterns relative to the LC3 puncta. The SCOTIN

(CRD) mutant protein was localized near the perinuclear region,
whereas the SCOTIN (PRD) mutant protein displayed a diffuse
localization pattern. We also quantified the degree of
colocalization of SCOTIN with LC3 puncta by counting the
number of cells that exhibited co-staining (Supplementary
Fig. 5c). Only the SCOTIN (TMPRD) protein colocalized with
the autophagosomal compartment at a level comparable to that of
the full-length SCOTIN protein.

Because SCOTIN promoted the degradation of NS5A in an
autophagy-dependent manner, we next examined whether the
autophagosomal localization of SCOTIN is critical for its
interaction with NS5A and for degradation control. We
first examined the NS5A levels in full-length and mutant
SCOTIN-transfected cells (Fig. 5g). The NS5A levels were
considerably decreased in cells expressing full-length SCOTIN
or SCOTIN (TMPRD) but not in those expressing SCOTIN
(CRD), SCOTIN (TMCRD) or SCOTIN (PRD). Furthermore,
physical interaction with NS5A was detected only for the
full-length SCOTIN and SCOTIN (TMPRD) constructs
(Fig. 5h). The suppressive effect of SCOTIN (TMPRD) on
HCV replication was consistently observed in HCVcc-infected
cells, and this effect was comparable to that of full-length
SCOTIN, as determined by the observed levels of intracellular
HCV RNA and endogenous NS5A (Fig. 5i,j). Taken together,
these results indicate that the TMPRD domain of SCOTIN is
needed for autophagic trafficking and for the control of NS5A
protein degradation, thereby restricting HCV replication.

SCOTIN is degraded via HCV-induced autophagy. We next
examined whether SCOTIN is degraded through the autophagy-
lysosomal pathway. The abundance of endogenous SCOTIN
decreased over time in the rapamycin- and starvation-induced
Huh-7 cells (Fig. 6a and Supplementary Fig. 5d). In addition,
considerable SCOTIN accumulation was observed in cells treated
with an autophagy or lysosome inhibitor (3-MA, BFA or
CQ; Fig. 6b). Similar results were obtained using exogenous
SCOTIN-V5 protein (Supplementary Fig. 5e). To corroborate this
finding, endogenous SCOTIN was detected in autophagosomes
by immunogold labelling electron microscopy (Fig. 5c). These
results indicate that the SCOTIN level might be maintained by
autophagy-mediated degradation processes.

Thus far, we have demonstrated that SCOTIN targets the
NS5A protein to autophagosomes for degradation. However, it is
also known that HCV induces autophagy to benefit its
replication47. Therefore, we examined the effects of HCV
infection on SCOTIN expression. During HCVcc infection, no
significant IFN-b expression was observed; hence, the induction
of SCOTIN mRNA expression was not detected (Fig. 6d).
Although primary human hepatocytes and Huh-7-TLR3 cells
produce type I and type III IFN after being infected with HCVcc
at a high titre, the Huh-7 cell line is known to be a poor producer
of type I and III IFNs after HCVcc infection48. Interestingly,
however, the level of endogenous SCOTIN was dramatically
decreased (Fig. 6e). HCVcc infection induced autophagy, as
demonstrated by the enrichment of LC3-II, and SCOTIN was
detected within the autophagosomal compartment after HCVcc
infection (Supplementary Fig. 5f). Therefore, these results
indicate that HCV eliminates SCOTIN protein in the infected
host cells, presumably via enhancing the autophagy process.

Discussion
In this report, we demonstrate that an IFN-b-inducible
host factor, SCOTIN, contributes to suppressing HCV replication
via the autolysosomal degradation of the HCV NS5A
protein. SCOTIN is an ER transmembrane protein that
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physically associates with NS5A and is also a substrate for
autophagy-mediated degradation. Similar to the role of p62
autophagy receptor in the autophagy-mediated clearance of
intracellular viruses and bacteria, SCOTIN recruits NS5A to
LC3-II-containing autophagosomal compartments through
physical interactions. These physical interactions and the

colocalization of SCOTIN and NS5A in autophagosomes are
critical for controlling the autophagy-mediated proteolytic
degradation of the NS5A viral protein and HCV replication.

In the present work, we propose that SCOTIN is one of the
ISGs that interferes with HCV replication. Type I IFNs exhibit
most of their antiviral activities via hundreds of ISGs, which
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involve various proteins, including enzymes, transcription factors,
heat-shock proteins and apoptotic proteins49. SCOTIN
expression was induced in Huh-neo-5-15 HCV subgenomic
replicon cells treated with IFN-b, and the suppressive effect of
IFN-b on HCV replication was reduced when SCOTIN
expression was silenced (Supplementary Fig. 6a–c). These
results indicate that SCOTIN acts as one of the ISGs that
contribute to the antiviral activity of interferon-b that is directed
against HCV.

We have demonstrated that the host factor SCOTIN transports
NS5A to autophagosomes and promotes its autolysosomal
degradation. NS5A produced during an HCV infection can be
cleared by autophagy if autolysosomes are active and a sufficient
SCOTIN level is present. However, no significant increase in
SCOTIN and IFN-b mRNA was observed after HCV infection
(Fig. 6d), which might be caused by the inhibition of RIG-I-like-
receptor-mediated IFN-b induction50. In addition, a diminished
SCOTIN level was detected after HCV infection when autophagy
was induced (Fig. 6e). Therefore, it is highly likely that autophagy
induced by HCV facilitates the degradation of this protein. These
findings demonstrate a novel scenario of competition between
host and viral proteins that involves the degradative processes
of autophagy (Fig. 6f). If the steady-state SCOTIN level is
sufficiently high to overpower HCV at earlier stages of infection,
then this protein recruits NS5A to the autolysosomal
compartment for degradation and inhibits viral replication.
However, if the infected HCV overwhelms SCOTIN at earlier
stages, then the virus induces autophagy at a level sufficient to
destroy this protein and evade the host antiviral response. This
scenario somewhat resembles the cro-cII protein degradation
controls that determine the fate of Escherichia coli infected with
lambda bacteriophage50. As the cellular level of the cII protein
that infected lambda encounters is the critical parameter that
determines the lysogenic or lytic cycle, the cellular level of
SCOTIN at the boundary of HCV infection might play key roles
in the tug-of-war between the virus and host. In that sense,
induction of SCOTIN production by paracrine interferon-b in
non-infected, neighbouring cells might confer immunity against
infection. Our model therefore suggests that SCOTIN might be
more effective in controlling the infection at an earlier stage than
it is during the pre-established chronic infection state.

Although autophagy is known to facilitate HCV replication,
there are some controversies regarding the controlling mechan-
ism of autophagy by HCV. HCV infection has been proposed to
cause the incomplete maturation of autophagic vesicles to prevent
autophagic protein degradation13, and HCV has been found to
utilize enriched autophagosomal membranes for its replication26.
However, other reports suggested that HCV induces complete
autophagy processes and that full autolysosomal activity is
required for the repression of the innate immune response12,27.

In the present study, we also observed that HCVcc infection
induced autophagy accompanied by lysosomal activity (Fig. 4e).
Because 3-MA treatment or ATG7 knockdown resulted in a
decrease in the level of HCV RNA in the HCVcc experiments
(Fig. 3a,b), it is likely that HCV-induced autophagy regulation
also occurred in our HCVcc infection study. Nevertheless, our
data suggest that HCV can be cleared by autophagy processes
when a sufficient amount of SCOTIN protein is present. At this
moment, it is not clear whether the general autophagy process is
utilized or whether selective autophagy is required for the
clearance of HCV by SCOTIN.

SCOTIN was first identified as a direct target gene of the p53
transcription factor30. The expression is specifically induced
under p53-activating, DNA-damaging conditions, such as
ultraviolet irradiation or actinomycin D treatment, and it has
been suggested to be involved in caspase-dependent apoptosis30.
SCOTIN has also been reported to physically interact with the
calcium-binding protein ALG-2, which is known to interact with
the AIP1, ALIX and TSG101 proteins, which control intracellular
vesicle trafficking and apoptosis46. Complicated crosstalk occurs
between autophagy and apoptosis51; therefore, we considered the
possible involvement of SCOTIN-mediated apoptosis in the
regulation of HCV replication. However, the IFN-b-inducible
expression of SCOTIN was independent of p53, as similar levels
of SCOTIN protein induction were observed in IFN-b-stimulated
HCT116 p53 wild-type and HCT116 p53 null cells
(Supplementary Fig. 6d). The basal SCOTIN level was relatively
lower in p53 null cells, suggesting that p53 might function to
maintain a steady-state SCOTIN level. We further determined
whether SCOTIN overexpression alone induces apoptosis. In the
absence of DNA damage stress signals, however, the basal level of
apoptosis was not considerably increased by SCOTIN
overexpression alone, as determined by the proteolytic cleavage
of PARP-1 proteins (Supplementary Fig. 1d). Furthermore, the
functional domains that control p53-dependent apoptosis and
autophagosomal degradation of HCV NS5A are distinct. The
CRD of SCOTIN is required for promoting p53-dependent
pro-apoptotic activity30, and the TMPRD is sufficient for
localization to autophagosomes and degradation of the NS5A
protein (Fig. 5f,g). These results suggest that SCOTIN is involved
in at least two distinct cellular processes, namely apoptosis and
autophagy.

Among the viral proteins produced by HCV, NS5A is the most
enigmatic. It does not demonstrate any intrinsic enzymatic
activity, although it interacts with many cellular proteins,
including PKR, TRAF2, Grb2 and Bax (ref. 45). NS5A is critical
for HCV RNA replication45. Because of its multiple functions in
HCV replication and assembly and in modulating cellular
pathways, NS5A inhibitors are considered to be the most
potent anti-HCV drugs in development, and compounds such

Figure 5 | Physical interaction between NS5A and SCOTIN is required for control of degradation. (a) HEK293 cells were transfected with GST-NS5A

along with an empty (pcDNA3.1-MYC) or SCOTIN-MYC plasmid for 48 h. GST-NS5A was pulled down from total cell lysates using glutathione-Sepharose

beads, and the interacting proteins were analysed by immunoblotting. (b) Schematic representation of GST-tagged NS5A deletion constructs. (c) HEK293

cells were transfected with the indicated plasmids and subjected to a GST pulldown assay. (d) Huh-7 cells were transfected with the indicated plasmids for

48 h, followed by immunoblotting analysis using the indicated antibodies. EGFP was used to monitor transfection efficiency. (e) An illustration of the

truncated SCOTIN constructs is shown. (f) Huh-7 cells were transfected with the indicated SCOTIN mutant constructs, and immunofluorescence analysis

was performed using LC3 and MYC antibodies, followed by Hoechst staining. Cellular localization of LC3 (green), MYC (red) and the nucleus (blue) was

determined using fluorescence microscopy. Representative images are shown. Higher-magnification images are shown in the right corner. Scale bar, 10mm.

(g) Western blot analysis of Huh-7 cells transfected with the indicated plasmids. EGFP-N1 was co-transfected to monitor transfection efficiency.

(h) HEK293 cells were transfected with GST-NS5A along with the indicated plasmids for 48 h. Total cell lysates were incubated with glutathione-Sepharose

beads, and the interacting proteins were analysed by immunoblotting. (i,j) Huh-7 cells were transfected with the indicated plasmids followed by HCVcc

infection (10 MOI) for 3 days before harvesting. The intracellular HCV RNA levels were determined using RT–qPCR (i), and total cell lysates were subjected

to immunoblotting using the indicated antibodies (j). The bars indicate the mean value±s.d. obtained from triplicate experiments. The asterisks indicate

the P values calculated using the t-test. **P valueo0.01, ***P valueo0.001.
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as daclatasvir have been reported to possess pan-genotypic
activity and high potency in clinical trials52. Among the many
postulated roles of NS5A, its localization to the ER or to ER-
derived compartments via its N-terminal amphipathic alpha-
helical domain is critical because disruption of its association with
the ER membrane directly alters HCV replication53. There is
controversy regarding NS5A trafficking to ER-derived
autophagosomes. NS5A, along with other HCV proteins and
RNA, is localized to autophagosomes, where HCV uses the
membrane as a platform for replication26. Other groups have also
proposed that the localization of NS5A is distinct from that of
GFP-LC3 puncta, and that components of the autophagy pathway
act as proviral factors to assist with the translation of incoming
HCV RNA or with viral particle production24,25.

In this report, we demonstrated that alterations in the steady-
state SCOTIN level did not affect autophagy progression
(Fig. 4). Instead, its level was reduced by the activation of
autophagy and increased following treatment with an autophagy
or lysosome inhibitor (Fig. 6a,b). These data indicate that
SCOTIN may be a substrate of the autophagic proteolysis
pathway itself rather than a universal component of autopha-
gosomal machinery. Various autophagy receptors are involved
in the selective sequestration of diverse endogenous or
exogenous target substrates to autophagosomes. These autop-
hagy receptor proteins, including p62, NBR1, BNIP3, NIX,
NDP52 and OPTN, are capable of tethering autophagy
substrates to autophagosomal membrane via unique cargo-
recognizing domains, as well as LC3/GABARAP-interacting
regions that facilitate the association of substrates with
autophagosomal membranes17. In addition, these receptor
proteins are destroyed by autophagosomal degradation. We
observed that SCOTIN shares many features with these receptor
proteins. It colocalizes with LC3 in autophagosomes, selectively
binds to NS5A, an autophagic substrate, and is degraded via
autophagy. However, the mechanism of the selective localization
of SCOTIN to autophagosomes is unclear, as is whether there is

a known autophagy receptor that is specifically involved.
Therefore, elucidation of the regulatory mechanism of
SCOTIN recruitment to autophagosomes would be of great
interest in future studies.

Methods
Cell culture and reagents. Huh-7 (a gift from S.K. Jang, POSTECH, Republic of
Korea) and HEK293 (obtained from American Type Culture Collection) cells were
grown in DMEM (Welgene) supplemented with 10% fetal bovine serum (Hyclone).
Huh-luc/neo-ET and Huh-neo-5-15 HCV subgenomic replicon cells (a gift from
Bartenschlager, R., University of Heidelberg, Germany) were grown in DMEM
media containing G418 (600 mg ml� 1; Calbiochem). Huh-7 stable cells expressing
mRFP-GFP-LC3 (ptf-LC3, a gift from Tamotsu Yoshimori, Addgene plasmid
#21074) were selected using G418 (1.2 mg ml� 1). Plasmid and siRNA transfections
were performed with Lipofectamine 2000 (Invitrogen) in accordance with the
manufacturer’s instructions. For stimulation, the cells were treated with IL-1b
(10 ng ml� 1, R&D Systems), IL-6 with IL-6sR (each 10 ng ml� 1, R&D Systems),
tumour-necrosis factor-a (10 ng ml� 1, R&D systems) and IFN-b (100 U ml� 1,
R&D systems) for 12 h. To perturb autophagy, the cells were treated with
rapamycin (2 mM; Sigma-Aldrich) and incubated in low-glucose DMEM
(purchased from Welgene), 3-MA (10 mM; Sigma-Aldrich), BFA (100 mM;
Sigma-Aldrich) or CQ (50 mM; Sigma-Aldrich) for the indicated durations. To
induce starvation, starvation media (140 mM NaCl, 1 mM CaCl2, 1 mM MgCl2,
5 mM glucose, 20 mM HEPES, pH 7.4) was applied to cells for the indicated
duration after washing the cells twice using PBS, as previously reported43.
BMS-790052 (1 nM, S1482, Selleckchem) was used to inhibit NS5A protein.
For the knockdown experiments, control, ATG7, ATG5, RAB7 and SCOTIN
siRNAs were purchased from GenePharma; their sequences are listed in
Supplementary Table 1.

Plasmids. The HCV-E2, NS3, NS4, NS5A and NS5B plasmids have been
previously described54. The plasmid pHAGE-Ubc-LAMP1-GFP was a generous
gift from Y.M. Kim (POSTECH, Republic of Korea). For GFP-LC3 expression
plasmid, CDS coding LC3B protein was amplified using cDNA produced from
HepG2 cells and ligated with EGFP-C3 plasmid digested with XhoI and KpnI.
Scotin isoform1 CDS was amplified using cDNA from lipopolysaccharide-treated
mouse liver, and then cloned into pDEST-V5 plasmids digested with SpeI and
NheI. SCOTIN deletion mutations for PRD and TMPRD were created via the
QuickChange Site-Directed Mutagenesis Kit (Stratagene). SCOTIN deletion
mutation for CRD and TMCRD was generated using primers described in
Supplementary Table 2. Full-length or deleted NS5A sequence was amplified from
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pCMV-FLAG-NS5A plasmid using primers described in Supplementary Table 2,
and they were cloned into mammalian GST expression vector pEBG.

Cell lysis and immunoblot analysis. Cell pellets were lysed with lysis buffer
(150 mM NaCl, 1% Triton X-100, 25 mM Tris, pH 7.5, 0.5% deoxycholic acid, 0.1%
SDS, 1 mM DTT, 2 mg ml� 1 pepstatin, 0.1 mg ml� 1 phenylmethyl sulphonyl
fluoride, 5 mg ml� 1 aprotinin, 5 mg ml� 1 leupeptin and 1 mM benzamidine), and
the lysate was resolved on an SDS–PAGE gel and transferred to a nitrocellulose
membrane (Bio-Rad). For immunoblotting analysis, the membranes were probed
with primary antibodies, followed by horseradish peroxidase (HRP)-conjugated
secondary antibodies, and they were visualized using an LAS 4000 image Reader
(Fuji Film, Japan) after ECL treatment (Pierce).

Immunoprecipitation and GST pulldown. For immunoprecipitation, 1 mg of total
cell lysate was incubated with mouse normal IgG or an NS5A antibody for 12 h at
4 �C, followed by incubation with protein A/G agarose beads (Calbiochem) for 2 h.
For the GST pulldown experiments, 1 mg of cell lysate was incubated with 20 ml of
glutathione-Sepharose beads (Amersham) at 4 �C overnight. The beads were then
washed with lysis buffer three times, and proteins were eluted from the beads
by incubation with Laemmli sample buffer (Bio-Rad) supplemented with 5%
b-mercaptoethanol at 95 �C for 10 min. For the immunoprecipitation and GST
pulldown assays, 1/20th of the total cell lysate volume was loaded as the input
sample.

RNA extraction and RT–qPCR analysis. Total RNA was extracted using RNAiso
Plus (Takara), and 1 mg of RNA was reverse-transcribed into cDNA using random
primers and an ImProm-II Reverse Transcription Kit (Promega). The synthesized
cDNA was analysed by quantitative real-time PCR using 2X SYBR premix (Takara)
and a StepOnePlus real-time PCR system (ABI). The oligomer sequences are listed
in Supplementary Table 3. The level of intracellular HCV RNA was quantified
using primers described in Supplementary Table 3 and standardized to a b-actin
Taqman primer (appliedbiosystems, 4310881E)55.

Luciferase assay. Huh-luc/neo-ET HCV subgenomic replicon cells were lysed
with passive lysis buffer (Promega), and luciferase acitivity was analysed using a
Dual Luciferase Assay Kit (Promega) after protein quantitation using the Bradford
assay to adjust for the amount of cell lysate.

Immunofluorescence staining and analysis. Cells were grown on poly-D-lysine-
coated glass cover slips and fixed with 4% paraformaldehyde in PBS before
immunostaining. The cells were then permeabilized with 0.2% Triton X-100 and
blocked with 3% goat serum and 5% bovine serum albumin. Next, they were
incubated with the indicated antibody at 4 �C overnight. After washing with PBST,
the cells were incubated with Alexa Fluor 488-, Alexa Fluor 405- or Alexa
568-conjugated IgG (Invitrogen) for 2 h at 4 �C. Slides were incubated with
Hoechst 33258 (Sigma-Aldrich) during the PBST washing step, and then mounted
and analysed using an epifluorescence microscope (Zeiss) or FV1000 confocal
microscope (Olympus). For LC3 staining, the cells were permeabilized with 100%
methanol for 10 min at � 20 �C and were blocked with 5% goat serum and 0.3%
Triton X-100 in PBS. Next, they were incubated with the indicated antibody in 1%
bovine serum albumin (BSA) and 0.3% Triton X-100 in PBS at 4 �C overnight.
After washing with PBS, the cells were incubated with the secondary antibodies
described above in PBS containing 1% BSA and 0.3% Triton X-100 for 1 h at room
temperature. For endogenous NS5A staining, all of the washing and antibody-
incubation steps were performed in Tris-buffered saline containing 0.1% Triton
X-100 (TBST) instead of PBS or PBST. Pearson’s correlation coefficient was
calculated using the JACoP plugin for Image J. Quantification of RFPþ /GFPþ

or RFPþ /GFP� puncta was performed using the Green and Red Puncta
Colocalization Macro for Image J (Daniel J. Shiwarski, Ruben K. Dagda and
Charleen T. Chu).

Antibodies. The following primary antibodies were used at indicated dilution:
SCOTIN (Santa Cruz Biotechnology, sc-390725, western blot (WB)—1:500), MYC
(Santa Cruz Biotechnology, sc-40, WB—1:1,000), V5 (Invitrogen, R960-25,
WB—1:5,000), FLAG (Sigma-Aldrich (mouse), F3165, immunofluorescence
(IF)—1:200), FLAG (Santa Cruz Biotechnology (rabbit), sc-807, WB—1:2,000),
ACTIN (Santa Cruz Biotechnology, sc-1616, WB—1:5,000), Lamin B2 (Santa Cruz
Biotechnology, sc-6216, WB—1:5,000), a-tubulin (Sigma-Aldrich, clone
B-5-1-2, WB—1:4,000), GST (Santa Cruz Biotechnology, sc-138, WB—1:1,000),
GRP94 (Abcam, ab18055, IF—1:200, WB—1:1,000), PARP-1 (Santa Cruz Bio-
technology, sc-8007, WB—1:1,000), LC3B (Cell signaling, #2775, WB—1:500,
IF—1:100), p62 (BD Bioscience, 610832, WB—1:2,000), ATG7 (Santa Cruz
Biotechnology, sc-33122, WB—1:1,000), GAPDH (Chemicon, MAB374,
WB—1:25,000), SCOTIN (JC105, gift from D.P. Lane, University of Dundee,
IF—1:100), HCV NS5A (Thermo Scientific, MA1-82923, used for IF staining,
IF—1:100) and HCV NS5A (Virogen, 256-A, used for WB and IP, WB—1:500).
The following secondary antibodies were used for immunoblot analysis: goat
anti-mouse HRP-conjugated IgG (Pierce, 1858413, 1:25,000), goat anti-rabbit

HRP-conjugated IgG (Pierce, 1858415, 1:25,000) and donkey anti-goat
HRP-conjugated IgG (Santa Cruz Biotechnology, sc-2020, 1:5,000).

Immunogold labelling of SCOTIN protein. Cells were fixed in 0.005%
glutaraldehyde and 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4)
for 2 h at 4 �C. The cells were washed three times with phosphate buffer. For
low-temperature embedding, the cells were transferred to Leica EM AFS
(Leica Instruments, Vienna, Austria) and were treated as follows: the cells were
dehydrated in increasing concentrations of ethanol (30, 50 and 70% at 4 �C, and 80,
95 and 100% at � 20 �C). The cells were washed two times with absolute ethanol
and were infiltrated with Lowicryl HM20 resin (ethylmethane sulphonate, Lowicryl
HM20 embedding kit) at � 20 �C: 1 h in each of 50, 75 and 100% Lowicryl HM20
and then 18 h in 100% Lowicryl HM20. The resin was polymerized using ultraviolet
light (48 h each at � 20 and þ 20 �C). Ultrathin sections were cut (65–70 nm
thickness) and were collected on 300-mesh nickel grids. The grids were etched for
3 s in sodium ethanolate (a saturating concentration of NaOH dissolved in 100%
ethanol at least 24 h before use). The grids were wetted in TBST (pH 7.6) and
then were incubated for 20 min in a solution of 2% human serum albumin
(Sigma-Aldrich, St Louis, MO) containing 0.1% Na-borohydride and 50 mM
glycine. The grids were then washed with TBST and incubated for 2 h at room
temperature with a rabbit anti-SCOTIN antibody (1: 50, Santa Cruz Biotechnology,
sc-103188). The grids were rinsed two times each for 10 min in TBST and then
were incubated for 1.5 h in goat anti-rabbit IgG conjugated to 30-nm gold particles
(1:25 in TBST containing 0.05% polyethylene glycol; BBI, UK). After rinsing with
distilled water, the grids were stained with uranyl acetate and lead citrate and were
examined using a Hitachi H-7500 electron microscope (Tokyo, Japan). Digital
images were captured using the Digital Montage software driving a charge-coupled
device camera (SC1000; Gatan, Pleasanton, CA, USA) attached to an electron
microscope operated at 80 kV of accelerating voltage. Substituting the primary
antiserum with normal rabbit serum completely abolished the specific labelling.

Generation and infection of JFH-1 HCVcc. The Japanese Fulminant Hepatitis-1
(JFH-1) strain (genotype 2a) of HCVcc56–58 was generated and propagated as
follows59: Huh-7.5 cells were transfected with in vitro-transcribed JFH-1 RNA with
DMRIE-C reagent (Invitrogen), and the culture supernatant with the highest viral
titre was harvested to infect naive Huh-7.5 cells. The HCV-infected Huh-7.5 cells
were passaged, and the cell culture supernatants with the highest HCV production
were selected. The selected supernatants were passed through a 0.45-mm filter and
frozen until use. To titrate the infectivity of JFH-1, a colorimetric focus-forming
assay60 was performed as follows: briefly, Huh-7.5 cells were plated in 96-well,
collagen-coated plate. Next day, JFH-1 HCVcc stocks were inoculated after serial
dilutions. After 72 h, cells were fixed and permeabilized with 100% methanol. Cells
were stained with primary antibody against HCV core and alkaline phosphatase-
conjugated secondary antibody against anti-mouse IgG. After vigorous washing,
BCIP/NBT chromogenic substrate was used for foci development. The number of
foci was determined using an ELISpot reader and the image analysis software.
Huh-7 cells were infected with JFH-1 at the indicated multiplicity of infection.
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