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A large number of nuclear-encoded proteins are imported into chloroplasts after they are translated in the cytosol. Import is
mediated by transit peptides (TPs) at the N termini of these proteins. TPs contain many small motifs, each of which is critical for a
specific step in the process of chloroplast protein import; however, it remains unknown how these motifs are organized to give rise
to TPs with diverse sequences. In this study, we generated various hybrid TPs by swapping domains between Rubisco small subunit
(RbcS) and chlorophyll a/b-binding protein, which have highly divergent sequences, and examined the abilities of the resultant TPs
to deliver proteins into chloroplasts. Subsequently, we compared the functionality of sequence motifs in the hybrid TPs with those of
wild-type TPs. The sequence motifs in the hybrid TPs exhibited three different modes of functionality, depending on their domain
composition, as follows: active in both wild-type and hybrid TPs, active in wild-type TPs but inactive in hybrid TPs, and inactive in
wild-type TPs but active in hybrid TPs. Moreover, synthetic TPs, in which only three critical motifs from RbcS or chlorophyll a/b-
binding protein TPs were incorporated into an unrelated sequence, were able to deliver clients to chloroplasts with a comparable
efficiency to RbcS TP. Based on these results, we propose that diverse sequence motifs in TPs are independent functional units that
interact with specific translocon components at various steps during protein import and can be transferred to new sequence contexts.

The chloroplasts of plant cells have more than 3,000
different types of proteins involved in their functions
(Leister, 2003; Li and Chiu, 2010), andmore than 90% of
these proteins are encoded in the nucleus and trans-
lated by cytosolic ribosomes (Li and Chiu, 2010; Lee
et al., 2013a). Consequently, one of the most critical
processes in chloroplast proteome biogenesis is the
specific, posttranslational delivery of these nuclear-
encoded proteins to chloroplasts (Jarvis, 2008; Li and
Chiu, 2010; Lee et al., 2013a, 2014). Delivery to chloro-
plasts requires a specific targeting signal whose form
depends on the type of protein and its location in the
chloroplast. Most proteins imported into the chlo-
roplast contain an N-terminal transit peptide (TP)
as a targeting signal (Lee et al., 2006, 2008, 2013a;
Chotewutmontri et al., 2012; Li and Teng, 2013). The TP
is cleaved off after import into the chloroplast; thus, the

proteins that still contain the TP are called prepro-
teins. Despite progress made in previous studies (Lee
et al., 2008; Chotewutmontri et al., 2012; Li and Teng,
2013), the types of information encoded by the long
TPs, as well as how this information determines
translocation through the import channel, remain to
be elucidated.

One long-lasting question regarding the mechanism
of TP-mediated protein import is how TPs can specifi-
cally deliver proteins into chloroplasts. In striking con-
trast to endoplasmic reticulum (ER)-targeting signals,
TPs are highly diverse at the primary sequence level
and do not converge toward a consensus sequence. The
leader sequence, which contains the N-terminal ER-
targeting signal, is composed of a stretch of hydrophobic
amino acids ranging from 15 to 20 residues. Although
the exact sequence is highly variable, the residues tend to
be hydrophobic, making a high degree of hydropho-
bicity a common characteristic feature for both luminal
and membrane proteins. Despite their diversity in pri-
mary sequence, TPs also share certain characteristics that
serve as the basis for the software prediction of chlo-
roplast proteins; these features include an amino acid
composition with a high concentration of hydroxylated
residues and a lack of acidic residues (Bruce, 2000;
Bhushan et al., 2006), an unfolded and extended struc-
ture, an a-helix-containing secondary structure that may
be induced by binding to the lipids of chloroplasts
(Wienk et al., 1999; Bruce, 2000), and an abundance of
Pro residues that may contribute to the unstructured
nature of TPs (Pilon et al., 1995; Bruce, 2000; Zybailov
et al., 2008).

1 This work was supported by the National Research Foundation,
Ministry of Science, Technology and Future Planning (grant no.
2013070270 and NRF–2013R1A1A2060635 to D.W.L.) and the Minis-
try of Ocean and Fisheries, Korea (grant no. D11413814H480000121).

* Address correspondence to ihhwang@postech.ac.kr.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Inhwan Hwang (ihhwang@postech.ac.kr).

D.W.L. and I.H. conceived the project; D.W.L. and I.H. designed
the research; D.W.L., S.W., and K.R.G. performed the experiments;
D.W.L. and I.H. wrote the article.

[OPEN] Articles can be viewed without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.15.00842

Plant Physiology�, September 2015, Vol. 169, pp. 471–484, www.plantphysiol.org � 2015 American Society of Plant Biologists. All Rights Reserved. 471
 www.plantphysiol.orgon March 12, 2019 - Published by Downloaded from 

Copyright © 2015 American Society of Plant Biologists. All rights reserved.

mailto:ihhwang@postech.ac.kr
http://www.plantphysiol.org
mailto:ihhwang@postech.ac.kr
http://www.plantphysiol.org/cgi/doi/10.1104/pp.15.00842
http://www.plantphysiol.org


These features provide insight into the sequence in-
formation carried by TPs. However, we are still far from
fully understanding how TPs function in the mecha-
nism of protein import into chloroplasts. Recent studies
have identified sequence motifs by analyzing various
deletion and substitution mutants (Pilon et al., 1995; Lee
et al., 2006, 2008, 2013a; Chotewutmontri et al., 2012).
These motifs, or domains, are thought to be involved
in the interaction with components of the translocon
(Chotewutmontri et al., 2012; Li and Teng, 2013). More-
over, multiple sequence motifs function individually, or
in a combinatorial manner, during specific steps of the
import process (Lee et al., 2006, 2008, 2009a). In addi-
tion, certain motifs share functional redundancy, or are
additive or synergistic. However, despite the progress
in identifying sequence motifs from different TPs, it re-
mains unknown how the large number of diverse TPs, as
a whole, can deliver proteins to chloroplasts. In ER tar-
geting, the targeting machinery recognizes hydropho-
bicity, a common feature of the leader sequences, but
not the primary sequence (Hessa et al., 2005). Therefore,
leader sequenceswith different primary sequences can be
recognized by the same molecular machinery. However,
in contrast to the leader sequences, the TPs of chloroplast
preproteins contain different sets of sequence motifs
(Lee et al., 2006, 2008). These observations raise several
questions, including (1) how the large number of TPswith
different sets of sequence motifs can be recognized by
only a few import receptors (Li and Chiu, 2010; Lee et al.,
2013a; Li and Teng, 2013), and (2) how TPs can have such
diverse sequences while still retaining their function.

In this study, we investigated the design principles of
TPs with diverse primary sequences. Using TPs of the
Rubisco small subunit (RbcS) and chlorophyll a/b-
binding protein (Cab) proteins, which have completely
different primary sequences and functional motifs (Lee
et al., 2006, 2008), we generated hybrid TPs and ex-
amined their activities in chloroplast protein import
within protoplasts. We provide evidence that sequence
motifs are independent functional units that interact
with various components of the translocon during im-
port into chloroplasts and can be transferred to new
sequence contexts. However, the functionalities as well
as the activities of thesemotifs are greatly dependent on
the overall sequence context of, and their positions in,
TPs. In addition, we demonstrated that functional
synthetic transit peptides (SynTPs) can be generated by
incorporating only a few sequence motifs from RbcS
and Cab TPs into an unrelated sequence.

RESULTS

TPs of RbcS and Cab Share the Same General
Import Pathway

To gain insight into the functionality of sequence mo-
tifs in TPs, we first examined whether TPs with different
sequence motifs are imported by the same molecular
machinery. To this end, we fused the TPs of Rubisco
small subunit (RbcS-nt [N-terminal region]) and Cab

(Cab-nt), which contain completely different sequence
motifs (Fig. 1A), to GFP and examined whether they are
imported into chloroplasts by the same general import
pathway. In this study, we used the protoplast system
among many different approaches that had been used in
the study of protein import into chloroplasts. Compared
with the in vitro import system, the protein import pro-
cess in protoplasts more closely resembles that in plants,
although it is more difficult to elucidate the exact action
mechanism at each step of the import process in detail
(Lee et al., 2006, 2008, 2009a; Lee and Hwang, 2011).
Therefore, we took advantage of the protoplast system to
examine the behavior of various TPs in delivering the
C-terminalGFPmoiety into chloroplasts after translation.
Initially, we introduced the two constructs, RbcS-nt:GFP
and Cab-nt:GFP, into protoplasts from wild-type, plastid
protein import2 (ppi2), or heat shock protein93-V (hsp93-V)
plants, and their import into chloroplasts was compared.
ppi2 and hsp93-V plants have a mutation in Arabidopsis
translocon at the outer envelope of chloroplasts159 (atToc159)
and Hsp93-V, respectively (Bauer et al., 2000; Su and
Li, 2010). Toc159 and Hsp93-V are outer membrane-
localized import receptors and members of the
chloroplast-localized heat shock protein Hsp93 family
that play crucial roles at early and late steps, respectively,
during protein import into chloroplasts (Smith et al.,
2004; Kovacheva et al., 2005; Su and Li, 2010). In wild-
type protoplasts, both fusion proteins localized to chlo-
roplasts; moreover, they were properly processed, as
revealed by western-blot analysis with an anti-GFP an-
tibody (Fig. 1, B and C). By contrast, in ppi2 and hsp93-V
mutant protoplasts, both RbcS-nt:GFP and Cab-nt:GFP
localized in the cytosol as well as in chloroplasts (Fig.
1Bb, Bc, Be, and Bf), indicating that these mutant proto-
plasts show a defect in import of these reporter proteins.
Consistent with this, both constructs yielded consider-
able amounts of unprocessed precursors in addition to
the processed form, indicating that Toc159 and Hsp93-V
play crucial roles in chloroplast import of both RbcS-nt:
GFP and Cab-nt:GFP (Fig. 1, B–D). These results suggest
that, despite the differences in their primary sequences
and sequencemotifs, RbcS-nt:GFP and Cab-nt:GFP are
imported into chloroplasts by the same molecular
machinery.

Functionality of Sequence Motifs Is Critically Dependent
on Their Locations within TPs

Next, we examined how different sequence motifs
are used in the same import machinery. The entire im-
port process of chloroplast proteins can be divided
into multiple steps, each of which involves one or more
interactions between a selected translocon compo-
nent and its corresponding sequence motifs in the
TP (Li and Teng, 2013). Consistent with this idea, TPs
contain specific binding motifs for Toc159, chloro-
plast heat shock protein70 (cpHsp70), or 14-3-3 (May
and Soll, 2000; Smith et al., 2004; Lee et al., 2009a, 2013a;
Chotewutmontri et al., 2012; Li andTeng, 2013). In addition,
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Figure 1. The TPs of RbcS and Cab share the import machinery for preprotein import into chloroplasts. A, Sequences of wild-type
RbcS-nt andCab-nt. Functionalmotifs are indicated in red and underlined. The activities of sequencemotifs are described in blue.
B, Localization of reporter proteins. Protoplasts fromwild-type (Columbia-0 [Col-0]), ppi2, and hsp93-V plants were transformed
with the indicated constructs, and GFP patternswere observed 12 h after transformation. Green, red, and yellow signals represent
GFP, autofluorescence of chlorophyll, and the overlap between green and red signals, respectively. Scale bar = 20 mm. C,
Western-blot analysis of the reporter proteins. Total protein extracts from transformed protoplasts were analyzed by western
blotting with anti-GFPantibody. Pre, Precursor form; Pro, processed form. D, Targeting efficiency of RbcS-nt and Cab-nt in wild-
type, ppi2, and hsp93-V plants, obtained by quantitation of western-blot data shown in (C). Signal intensity of protein bands was
measured using software installed on the LAS3000 imager (FUJIFILM), and targeting efficiency was defined as the percentage of
the processed form relative to the total amount of expressed protein. Three independent transformation experiments were per-
formed; the data represent means with SDs.
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a specific component of the translocon may interact
with multiple motifs in different sequences (Li and
Teng, 2013). Therefore, we hypothesized that a particu-
lar TP should contain one or more motifs corresponding
to each of these translocon components, and that for each
component, the interacting motif can be selected from
among multiple potential motifs. This hypothesis intro-
duces the concept that sequence motifs act as indepen-
dent functional units, and is therefore similar to the
multiselection and multiorder (M&M) model for gener-
ation of TPs proposed by Li and Teng (2013). To test this
hypothesis, we generated various hybrid TPs by swap-
ping regions of sequence betweenRbcS-nt andCab-nt. In
our previous studies, we identified critical sequence
motifs in both RbcS-nt and Cab-nt (Fig. 1A). Based on
this information, we divided the TPs into four blocks
(namely, amino acid positions 1–22, 23–31, 32–41, and
42–79 or 42–80; Fig. 2A) and exchanged these blocks
between RbcS-nt (R) and Cab-nt (C; Fig. 2A). The
resulting hybrid TPs were fused to GFP and introduced
into protoplasts to examine their ability to deliver pro-
teins into chloroplasts (Fig. 2, B–F).Of these six reporters,
C(1–22)R(23–79):GFP, C(1–31)R(32–79):GFP, C(1–41)R
(42–79):GFP, and R(1–41)C(42–80):GFP localized pri-
marily to chloroplasts andmainly produced the processed
forms, indicating that they were efficiently imported
into chloroplasts (Fig. 2, Bc and E). By contrast, R(1–22)
C(23–80):GFP and R(1–31)C(32–80):GFP exhibited de-
fects in protein import: R(1–22)C(23–80):GFP was par-
tially imported into chloroplasts, with a significant
proportion remaining in the cytosol (Fig. 2, Ba, C, andD),
whereas R(1–31)C(32–80):GFPwas presentmainly in the
cytosol as the unprocessed form (Fig. 2, Bb, C, and D). In
general, hybrid TPs consisting of the N-terminal seg-
ment from Cab-nt and the C-terminal segment from
RbcS-nt were more efficient in mediating protein import
into chloroplasts than those with the inverse arrange-
ment (Fig. 2, E and F). These results indicate that se-
quence motifs in TPs are largely, but not always,
functional in different sequence contexts and thus raise
the possibility that the motifs act as functional units
independent of TPs where they originated.

The Function of Motifs Depends on Their Position and
Sequence Context of TPs

Of the six hybrid TPs, two exhibited significant or
severe defects in protein import efficiency despite the
presence of motifs that are functional in their original
TPs. One conceivable explanation is that artificial
swapping of domains between RbcS-nt and Cab-nt
resulted in improper placement of the sequence mo-
tifs in the hybrid TPs. Consistent with this idea, internal
deletions in TPs inhibit protein import into chloroplasts
(Rensink et al., 2000; Lee et al., 2006). To test this idea,
we modified R(1–22)C(23–80) by inserting three resi-
dues (SSS, amino acids 20–22 of Cab-nt) to give R(1–22)
C(20–80) (Fig. 3A). The import efficiency of R(1–22)C
(20–80) was significantly improved relative to R(1–22)C

(23–80), but it was still not as efficient as Cab-nt (Fig. 3,
Ba, Bc, and C). We then further extended the Cab-nt
domain by two additional residues (LL, amino acids
18–19 of Cab-nt) to generate R(1–22)C(18–80), which
was as efficient as Cab-nt (Fig. 3, Bb, Bc, and C); thus,
insertion of five residues fully restored import effi-
ciency to the wild-type level (Fig. 3, B and C). Next, to
determine whether the increase in import efficiency
was caused by repositioning of sequence motifs con-
tained in the C-terminal segment of Cab-nt, we replaced
LLSSS, the residues inserted in R(1–22)C(18–80), with
five alanines (Fig. 3D); as a control, we introduced the
same mutation into Cab-nt. Ala substitution in R(1–22)
C(18–80) significantly reduced import efficiency, but
substitution of the same sequence in wild-type Cab-nt
had no effect (Fig. 3, D–F), indicating that the specific
amino acid sequence LLSSS, but not the five-residue
insertion, was critical for the import efficiency of R(1–22)
C(18–80). These results suggest that the motif LLSSS
acts as a critical sequence motif for protein import into
chloroplasts in the hybrid TP R(1–22)C(18–80), but not
the wild-type Cab-nt, and therefore raise the possibility
that the functionality of sequence motifs is dependent
on local sequence context. Next, we attempted to rescue
the import efficiency of R(1–31)C(32–80) (Fig. 4). As in
the approach used for R(1–22)C(23–80), we inserted
nine residues (KSKFVSAGV, corresponding to amino
acids 23–31 of Cab-nt) to yield R(1–31)C(23–80) (Fig.
4A). R(1–31)C(23–80) was imported as efficiently as
wild-type Cab-nt (Fig. 4, B–D). We then assessed the
contribution of individual sequence motifs to import
efficiency. The inserted segment, KSKFVSAGV, con-
tains the essential sequence motif KSKF from Cab-nt
(Lee et al., 2008), and another critical sequence motif,
LKSS, from RbcS-nt is N terminal to that sequence (Fig.
1A; Lee et al., 2006). To investigate the role of the LKSS
motif in this hybrid TP, R(1–31)C(23–80), during pro-
tein import, we generated two mutants by deleting
three residues (SSA, amino acids 29–31 of RbcS-nt) or
five residues (LKSSA, amino acids 27–31 of RbcS-nt) to
yield R(1–28)C(23–80) and R(1–26)C(23–80), respec-
tively (Fig. 4A). The import efficiency of both deletion-
mutant hybrid TPswas similar to that of R(1–31)C(23–80),
indicating that the motif LKSS of RbcS-nt no longer
acted as a critical sequence motif in this context (Fig. 4,
B–D). This observation raises the possibility that a new
sequence motif might have substituted functionally for
the LKSS motif in R(1–31)C(23–80). A previous report
proposed that FNGLK residues (amino acids 24–28) in
the RbcS TP, located just upstream of the LKSS motif,
are semiconserved and postulated to be a potential
binding site for Toc33/34, which is essential for chlo-
roplast biogenesis and viability (Constan et al., 2004;
Chotewutmontri et al., 2012; Li and Teng, 2013). To test
whether the FNGLK motif is critical for protein import
into chloroplasts in the hybrid TP, we replaced it with
alanines (Fig. 4E); as a control, the same mutation was
introduced into wild-type RbcS-nt. Ala substitution of
thismotif in R(1–28)C(23–80) caused a significant defect
in protein import into chloroplasts, therefore, GFP
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signals were detected in both the cytosol and chloro-
plasts (Fig. 4, Fc, Gc, and H). However, the same mu-
tation in wild-type RbcS-nt did not affect chloroplast
targeting (Fig. 4Fa, G, and H), as reported previously
(Lee et al., 2006). Next, we examined the role of the
KSKF motif in the hybrid TP R(1–28)C(23–80) (Fig. 4E).
In Cab-nt, the KSKFmotif is essential for an early step in
protein import (Lee et al., 2008). Consistent with this,
the majority of Cab-nt[KSKF/4A] was present in the
cytosol as the unprocessed form (Fig. 4, Fb andGb). The
Ala substitution of the KSKF motif in R(1–28)C(23–80)
also caused a severe defect in protein import, but with
improved targeting efficiency compared with Cab-nt

[KSKF/4A], suggesting that the KSKF motif in the R
(1–28)C(23–80) context may have partially redundant
function with the FNGLK motif (Fig. 4, F–H). Taken
together, these results support the idea that the func-
tionality and activity of sequence motifs in TPs are
critically dependent on their position in and sequence
context of TPs. These motifs are thought to be involved
in interactions with various translocon components
either simultaneously or sequentially during protein
import into chloroplasts. The motif-interacting trans-
locon components are located at the specific locations
along the route of protein import into chloroplasts, such
as the surface of chloroplasts, outer and inner envelope

Figure 2. The sequence motifs of RbcS and Cab TPs are only partially interchangeable. A, Sequences of RbcS-nt, Cab-nt, and
hybrid TPs. B and E, Localization of reporter proteins. Protoplasts from wild-type plants were transformed with the indicated
constructs, and the GFP patterns were observed 12 h after transformation. Green, red, and yellow signals represent GFP, auto-
fluorescence of chlorophyll, and the overlap between green and red signals, respectively. Scale bar = 20 mm. C and F, Western-
blot analysis of reporter proteins. Protein extracts from protoplasts transformed with indicated constructs were analyzed by
western blotting with anti-GFP antibody. Pre, Precursor form; Pro, processed form. D, Targeting efficiency of various domain-
swapping mutants. Western-blot data shown in C were quantitated as described in Figure 1D.
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membranes, and stroma, and may have little mobility.
Therefore, the position of these translocon compo-
nents may dictate the position of sequence motifs in
TPs for successful interaction between translocon
components and their interacting motifs during pro-
tein import.

New Sequence Contexts Lead to Changes in Both
Composition and Function of Active Sequence Motifs

The results described in Figure 4 revealed that active
sequence motifs became inactive, and vice versa, in the
new sequence context of hybrid TPs. This observation

Figure 3. Functions of sequence motifs are critically dependent on their locations within transit peptides. A and D, Sequences of
RbcS-nt, Cab-nt, and hybrid TPs. B and E, Localization of reporter proteins. Protoplasts were transformed with the indicated
constructs, and the GFP patterns were observed 12 h after transformation. Green, red, and yellow signals represent GFP, auto-
fluorescence of chlorophyll, and the overlap between green and red signals, respectively. Scale bar = 20mm. Protein extracts from
protoplasts transformedwith indicated constructs were analyzed bywestern blotting with anti-GFPantibody. Pre, Precursor form;
Pro, processed form. C and F, Western-blot data shown in B and E were quantitated as described in Figure 1D.
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prompted an investigation of whether critical sequence
motifs originally identified in RbcS-nt and Cab-nt are
still active in the hybrid TPs. In two hybrid TPs, C(1–22)
R(23–79) and C(1–31)R(32–79), we replaced sequence
motifs identified in wild-type Cab-nt and RbcS-nt with
Ala (Fig. 5A).
We included two motifs, FP and RK, from RbcS-nt

and motif KSKF from Cab-nt, as well as two newly
identified motifs, LLSSS from Cab-nt and FNGLK from
RbcS-nt, in the two hybrid TPs (Figs. 1A and 5A). The
resultant constructs were fused to GFP and introduced

into protoplasts. In both hybrid TPs, C(1–22)R(23–79)
and C(1–31)R(32–79), simultaneous Ala substitution of
FP and RK caused a severe defect in protein import,
indicating that these motifs were still functional in the
hybrid TPs (Fig. 5, B–E). However, in the context of
the hybrid TP C(1–22)R(23–79), Ala substitution of the
newly identified sequence motifs LLSSS and FNGLK
did not cause a significant defect in protein import.
Similarly, in the hybrid TP C(1–31)R(32–79), Ala sub-
stitution of the motif KSKF, which is critical in wild-
type Cab-nt, did not cause any significant defect in

Figure 4. Functions of sequence motifs are critically dependent on the overall context of transit peptides. A and E, Sequences of
RbcS-nt, Cab-nt, and hybrid TPs. B and F, Localization of reporter proteins. Protoplasts were transformed with the indicated
constructs, and the GFP patterns were observed 12 h after transformation. Green, red, and yellow signals represent GFP, auto-
fluorescence of chlorophyll, and the overlap between green and red signals, respectively. Scale bar = 20 mm. C and G, Western-
blot analysis of reporter proteins. Protein extracts from protoplasts transformed with the indicated constructs were analyzed by
western blotting with anti-GFPantibody. Pre, Precursor form; Pro, processed form. D and H,Western-blot data shown in C and G
were quantitated as described in Figure 1D.
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protein import (Fig. 5, B–E), indicating that these motifs
were not functional in the hybrid sequences C(1–22)R
(23–79) and C(1–31)R(32–79). These results suggest
that, in the context of C(1–22)R(23–79) and C(1–31)R
(32–79), different sequence motifs, yet unidentified,
may play crucial roles in protein import.

Finally, we focusedon sequencemotifs in theN-terminal
regions of TPs. Previous studies have shown that the
moderate hydrophobicity of the N-terminal region in
TPs is important for an early cytosolic step, as well as
for recognition by cpHsc70 in the stroma (Lee et al.,
2006, 2008; Chotewutmontri et al., 2012; Chotewutmontri
and Bruce, 2015). In RbcS-nt, residues ML (amino acids
5–6) and MV (amino acids 11–12) contribute to the
moderate hydrophobicity of the N-terminal region. By
contrast, Ala substitution of four hydrophobic residues
(NLMC, amino acids 4, 6, 7, and 9) in Cab-nt did not
cause any defect in chloroplast import (Lee et al., 2008).
Instead of NLMC, we performed Ala substitution of
the residues LMCI (amino acids 6, 7, 9, and 11) in wild-
type Cab-nt and two hybrid TPs, C(1–22)R(23–79) and
C(1–31)R(32–79), and examined the import efficiency
of the resultant mutants (Fig. 6A). The LMCI/4A mu-
tation in Cab-nt abrogated chloroplast import almost
completely, indicating that the LMCI residues are

responsible for the moderate hydrophobicity of the
N-terminal region. However, the same mutation in the
two hybrid TPs, C(1–22)R(23–79) and C(1–31)R(32–79),
had almost no adverse effect on import efficiency (Fig.
6, B and C), indicating that the sequence motif respon-
sible for themoderate hydrophobicity of theN-terminal
region also depends on the sequence context. It is pos-
sible that other hydrophobic residues may substitute
functionally for LMCI to provide the required hydro-
phobicity in this region.

Next, we examined whether the lower import effi-
ciency of some of the hybrid sequence is caused by
proteasome-mediated proteolytic degradation of pre-
cursors in the cytosol. Previous studies have shown that
unimported precursors are subject to the proteasome-
mediated proteolytic degradation in the cytosol to
prevent cytotoxicity to the cell (Lee et al., 2009b; Bischof
et al., 2011; Grimmer et al., 2014; Tillmann et al., 2015).
Moreover, many chloroplast precursor proteins are
known to be modified by N-terminal acetylation in the
cytosol, which may possibly mediate the proteasomal
degradation in the cytosol (Hwang et al., 2010; Bischof
et al., 2011; Grimmer et al., 2014). To test the possibility
of proteasomal degradation of unimported hybrid pre-
proteins, four defective hybrid TPs, R(1–22)C(23–80),

Figure 5. New sequence contexts of TPs lead to inactivation of critical sequence motifs in the original or other contexts. A, Se-
quences of RbcS-nt, Cab-nt, and Ala substitution mutants of hybrid TPs. B and D, Localization of reporter proteins. Protoplasts were
transformed with indicated constructs and analyzed as described in Figure 1. C and E, Protein extracts from protoplasts transformed
with indicated constructs were analyzed by western blotting with anti-GFP antibody. Pre, Precursor form; Pro, processed form.
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R(1–31)C(32–80), R(1–28)C(23–80)[FNGLK/5A], and
R(1–28)C(23–80)[KSKF/4A], and an efficient TP, R(1–28)
C(23–80), were transformed into protoplasts (Supplemental
Fig. S1). At 8 h after transformation, protoplasts were
treated with dimethyl sulfoxide (DMSO) or MG132
and incubated for an additional 6 h. In this experiment,
RbcS-nt[T4A/T7A] was included as a positive control
for proteasome-mediated proteolytic degradation (Lee
et al., 2006), and Cab-nt:monomeric red fluorescent protein
was cotransformed as a negative control for the MG132
treatment. All four preproteins containing defective TPs
were degraded at varying degrees, which is in agree-
ment with the previous report showing that the stability
of chloroplast preproteins in the cytosol can vary depend-
ing on the precursors (Supplemental Fig. S1; Grimmer
et al., 2014). However, their targeting efficiencies were
not improved in the presence of MG132, indicating
that the low targeting efficiencies of these four hybrid
TPs are not caused by the cytosolic quality control
(Supplemental Fig. S1).

Hybrid TPs Have Different Targeting Efficiencies in ppi2
and hsp93-V Protoplasts Depending on the
Sequence Context

Protein import into chloroplasts is mediated by the
interaction between sequence motifs in TPs and compo-
nents located in the cytosol and outer/inner envelopes of
chloroplasts, namely, Toc/Tic (translocon at the inner
envelope of chloroplasts) translocons (Li and Chiu, 2010;
Li and Teng, 2013). Thus, we examined the import effi-
ciency of hybrid TPs with different sequence contexts in
ppi2 and hsp93-V protoplasts (Fig. 7). In ppi2 protoplasts,
the import efficiency of all of the hybrid constructs was

decreased, similar to their parental TPs RbcS-nt and
Cab-nt:GFP (Fig. 7,A andB), indicating that these hybrid
TPs are also imported through an atToc159-containing
translocon, similar to their parental TPs. However, the
degree of the decrease varied among these hybrid TPs. In
ppi2 protoplasts, the import efficiency of C(1–22)R(23–79)
and C(1–31)R(32–79) was higher than that of wild-type
RbcS-nt and Cab-nt at both early and late time points
(Fig. 7, A and B), whereas in the import efficiency of
R(1–22)C(18–80) and R(1–28)C(23–80) was higher than
that of Cab-nt and RbcS-nt at early and late time points,
respectively (Fig. 7, A and B). This indicates that the im-
port efficiency of TPs depends on the sequence context.

Next, we examined the import efficiency of these hy-
brid TPs in hsp93-V protoplasts. Unlike in ppi2 proto-
plasts, in hsp93-V protoplasts, the import efficiency of
R(1–22)C(18–80) and R(1–28)C(23–80) was nearly iden-
tical to that of Cab-nt but lower than that of RbcS-nt (Fig.
7, C and D). On the other hand, the import efficiency of
C(1–22)R(23–79) and C(1–31)R(32–79) was higher than
that of RbcS-nt and Cab-nt in hsp93-V protoplasts (Fig. 7,
E and F), again confirming that the import efficiency
depends on the sequence contexts of TPs. It is possible
that the sequence contexts of TPs as well as the avail-
ability of translocon components influence the mode of
interaction between motifs and translocon components.

An Efficient SynTP Can Be Generated from an Unrelated
Sequence by Incorporating Critical Sequence Motifs from
RbcS or Cab TPs

The fact that various sequence motifs in TPs are in-
dependent functional units capable of interacting with

Figure 6. The functionality of the N-terminal hydrophobic residues in Cab TP can be dramatically changed depending on the
contexts. A, Sequences of RbcS-nt, Cab-nt, and Ala substitution mutants of hybrid TPs. B, Localization of reporter proteins.
Protoplasts were transformed with the indicated constructs and analyzed as described in Figure 1. C, Protein extracts from
protoplasts transformed with indicated constructs were analyzed by western blotting using anti-GFP antibody. Pre, Precursor
form; Pro, processed form.
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their cognate translocon components (Figs. 3–6) raises
the intriguing possibility that diverse TPs evolved
such that each TP contains a unique set of translocon
component-interacting motifs. This idea is similar to
the concept proposed by the M&M model (Li and
Teng, 2013). To test this idea, we first introduced two
critical sequence motifs, FNGLK and FP/RK, of the
RbcS TP into the N-terminal 80-amino acid segment
(CPY80) of carboxypeptidase Y (CPY), a vacuolar
protein that is targeted to the ER via a signal recog-
nition particle-dependent pathway and finally trans-
ported to the vacuole via vesicle trafficking through
the Golgi apparatus and prevacuolar compartment
(Lee et al., 2013b). As expected, CPY[1–95] delivered
GFP to the central vacuole, but not to the chloroplast
(Fig. 8, A, Ba, and Bb). Next, we removed the outer-
most N-terminal charged residues EK by substituting
them with AS (commonly present in RbcS and Cab

TPs), and we substituted four acidic residues (E or D)
with alanines (indicated in blue characters) because
TPs do not favor charged residues in the N-terminal
region or negatively charged residues (Bruce, 2000;
Bhushan et al., 2006). Finally, we substituted 10 hy-
drophobic residues in the leader sequence (under-
lined) of CPY with alanines to prevent ER targeting.
However, the SynTP was not able to efficiently de-
liver proteins into chloroplasts (Fig. 8, A–D). Next, we
incorporated the motif LLSSS of the Cab TP or the
corresponding region of the RbcS TP to generate
SynTP[LLSSS] and SynTP[ATMVASPA], respectively.
These two SynTPs were able to deliver proteins into
chloroplasts (Fig. 8, A–D). These results clearly show
that specific sequence motifs from functional TPs
can be transferred to a completely unrelated se-
quence to confer the ability to deliver proteins into
chloroplasts.

Figure 7. TPs with different sequence contexts exhibit differences in their import into ppi2 and hsp93-V protoplasts. A, C, and E,
Western-blot analyses of reporter proteins. Protein extracts from wild-type (Columbia-0 [Col-0]), ppi2, and hsp93-V mutant
protoplasts transformed with the indicated constructs were analyzed by western blotting using an anti-GFP antibody. Pre, Pre-
cursor form; Pro, processed form. B, D, and F,Western-blot data shown in A, C, and E were quantitated as described in Figure 1D.
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DISCUSSION

In this study, we provide compelling evidence that
the sequence motifs are functional units independent
of any specific TPs from which they originated. This
conclusion is based on the finding that the majority of
hybrid TPs, generated by domain swapping at three
different arbitrarily selected positions between two
different TPs (RbcS-nt and Cab-nt), were as efficient in
chloroplast protein import as their parental wild-type
TPs (Fig. 2). The process of protein import into chloro-
plasts can be divided into multiple independent steps:
navigation through the cytosol (May and Soll, 2000;
Qbadou et al., 2006; Li and Chiu, 2010; Fellerer et al.,
2011; Lee et al., 2013a), recognition by receptors at the
surface of chloroplasts (Becker et al., 2004; Smith et al.,
2004; Li and Chiu, 2010), translocation through the
outer and inner membranes (Rensink et al., 2000;
Kikuchi et al., 2009, 2013; Li and Chiu, 2010), and pos-
sibly the pulling step by chaperones at the stroma
(Chou et al., 2006; Li and Chiu, 2010; Shi and Theg,
2010; Su and Li, 2010; Chotewutmontri et al., 2012;
Inoue et al., 2013; Liu et al., 2014). Each of these steps
requires one or more specific factors to mediate the
import process. These factors include cytosolic factors,
import receptors at the surface of chloroplasts, channel
proteins at both chloroplastic inner and outer mem-
branes, and stromal proteins (Jarvis, 2008; Li and Chiu,
2010). Translocon components may bind to TPs using

their cognate sequence motifs. Indeed, this notion is
consistent with previous studies showing that cpHsp70
and the import receptors Toc159 and Toc33 bind to spe-
cificmotifs in the TPs (Becker et al., 2004; Chotewutmontri
et al., 2012). At the inner membrane, the TPs that emerge
from the Tic translocon bind directly to Tic110 (Chou
et al., 2006; Tsai et al., 2013). The TPs released from Tic110
by the action of Tic40 interact with several stromal
chaperones, such as Heat shock cognate70 (Hsc70),
Hsp93, and possibly Hsp90C, during or after translo-
cation (Shi and Theg, 2010; Su and Li, 2010; Rosano
et al., 2011; Chotewutmontri et al., 2012; Inoue et al.,
2013; Liu et al., 2014). Cytosolic factors, such as 14-3-3
and Hsp70, also bind to specific sites in the TP and
facilitate import into chloroplasts (May and Soll, 2000).
Thus, TPs may contain at least one motif for each
of these translocon components for efficient import.
Together with the notion that sequence motifs are in-
dependent functional units, this idea may constitute a
key concept to explain how such diverse TPs evolved as
the targeting signal of plastid proteins. Based on these
ideas, wewere able to design SynTPs from a completely
unrelated sequence using a few sequence motifs from
RbcS and Cab TPs (Fig. 8).

Another important finding of our study is that the
activity and/or functionality of sequence motifs are
dependent on the sequence context of TPs where they
are located. One example is the semiconserved FNGLK
motif, a potential Toc34-binding motif in RbcS-nt

Figure 8. SynTPs generated using critical sequencemotifs from RbcS and Cab TPs efficiently deliver proteins into chloroplasts. A,
Sequences of RbcS-nt, Cab-nt, and SynTPs. B and C, Localization of reporter proteins. Protoplasts were transformed with the
indicated constructs and analyzed as described in Figure 1. D, Protein extracts from protoplasts transformed with the indicated
constructs were analyzed by western blotting using an anti-GFP antibody. Pre, Precursor form; Pro, processed form.
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(Chotewutmontri et al., 2012; Li and Teng, 2013); this
motif is not critical for import into chloroplasts in its
original context (Fig. 4), but in the context of R(1–28)C
(23–80), this motif was essential for import (Fig. 4).
Another example is the KSKFmotif in Cab-nt; this motif
is essential for an early cytosolic step in chloroplast
targeting (Lee et al., 2008), but it became less critical in
the context of R(1–28)C(23–80) (Fig. 4) and became in-
active in the context of C(1–31)R(32–79) (Fig. 5). RbcS-nt
and Cab-nt have differences not only in the primary
sequence of their sequence motifs, but also in the or-
ganization of, and the relationship among, these motifs:
RbcS-nt sequence motifs have a high degree of func-
tional redundancy and are often involved in additive
and synergistic relationships, whereas the sequence
motifs in Cab-nt are more independent of one another
(Fig. 1A; Lee et al., 2006, 2008). Because of the com-
plexities in the relationships among sequence motifs in
TPs, the hybrid TPs, which were generated by domain
swapping at arbitrary positions between RbcS-nt
(which has motifs that interact with one another) and
Cab-nt (which has more independent motifs), may not
easily recapitulate the relationship the motifs had in
their native context. Instead, in the hybrid TPs, the
motifs originating from the two different TPs may en-
gage in unique relationships. Thus, one possibility is
that the sequence motifs in the hybrid TPs may be
reassembled or reorganized using whatever sequence
motifs are available in the two domains. Reanalysis of
the hybrid TPs confirmed this idea and revealed that
the reassembly of a set of sequence motifs in the hybrid
TPs appears not to be straightforward. In the hybrid
TPs, the wild-type activity (or functionality) of a se-
quence motif had one of three different fates in the new
sequence context: sequence motifs active in the original
TPs remained active, sequence motifs originally active
became inactive, or latent sequence motifs in the origi-
nal TPs became active. Therefore, an important conclu-
sion of this study is that the activity and functionality of
the sequence motifs we investigated are not inherent,
but can change depending on the sequence context of
the TP.

What is the underlying cause of changes in the ac-
tivity or functionality of sequence motifs in new hybrid
TPs? In the process of reassembling a new set of se-
quence motifs in hybrid TPs, whether a particular se-
quence motif is included should depend on whether it
can make a successful interaction with a specific com-
ponent of the translocon as part of the entire import
process, thereby contributing to the protein import.
Thus, the import process should be considered as a
series of sequential interactions between TP sequence
motifs and translocon components (or cytosolic factors)
that continue until the precursor has been completely
translocated into the chloroplast. Moreover, at any
given time during translocation, multiple interactions
may occur. Consequently, an important factor is the
spacing between potential sequence motifs, especially
when the two domains are randomly fused to each
other. Indeed, it has been proposed that sequence

motifs must be arranged with proper spacing in the TPs
to facilitate interaction(s) with translocon components
(located at various sites within the chloroplast), as well
as with cytosolic factors (Bruce, 2000). Consistent with
this, an internal deletion in TPs causes severe defects in
the import efficiency (Pilon et al., 1995; Lee et al., 2002,
2006). The fact that the defective hybrid can be rescued
by insertion of a few amino acid residues at the junction
is also consistent with this notion. The spacing between
sequence motifs may be determined by the distance
between translocon components, and their correspond-
ing cognate sequence motifs, within the chloroplast.
Moreover, it has been proposed that the length of TPs is
determined by the thickness of the two chloroplast en-
velopemembranes (Bionda et al., 2010; Chotewutmontri
et al., 2012). The translocon components are located at
particular locations within the chloroplasts (Jarvis, 2008;
Li and Chiu, 2010) and can be considered fixed, with a
limited range of mobility. These translocon components
may engage in simultaneous or sequential interactions
using their cognate sequencemotifs en route to the stroma.
Therefore, the distance between translocon components
may be a key determining factor in selecting the inter-
actingmotifs in the TPs. For example, if a sequencemotif
is located too close or too far from another motif, it may
not be selected due to the difficulty of simultaneous or
sequential interactions.

TPs exhibit a great deal of flexibility and diversity in
sequence motif composition. Accordingly, one funda-
mental question is how this can occur. One possible
explanation is that a particular translocon component
may bind to more than one sequence motif. Consistent
with this notion, Toc159 binds to many different TPs
with very diverse primary sequences (Smith et al.,
2004). In ER-to-Golgi trafficking, Sec24, a component of
COPII vesicles acting as a cargo receptor, contains three
separate cargo-binding sites (Miller et al., 2003). An-
other possibility is that a translocon component inter-
acts with the main characteristics of amino acids in a
certain region of TPs, but does not bind to the motifs
with a specific sequence, as in the case of the signal
recognition particle that binds to the hydrophobic
leader sequences. For example, cpHsc70 interacts with
the N-terminal motif of TPs, which has a moderate
hydrophobicity conferred by a few hydrophobic amino
acids (Lee et al., 2008; Chotewutmontri et al., 2012;
Chotewutmontri and Bruce, 2015). A recent study by
Teng et al. (2012) also supports this notion; they showed
that preproteins with two consecutive basic residues
are actively imported into older chloroplasts, whereas
those with two consecutive acidic residues are not.
The two mechanisms may not be mutually exclusive,
but are utilized depending on the situation or the spe-
cific translocon component(s) involved. If a particular
translocon component can interact with more than one
motif, diverse TPs can be generated by selectively as-
sembling a TP-specific set of translocon component-
interacting motifs from a large potential pool of such
motifs. The flexibility and diversity may also be in-
creased by the existence of multiple pathways that
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involve different components during protein delivery
into chloroplasts (Ivanova et al., 2004; Kessler and
Schnell, 2009; Lee et al., 2009a; Andrès et al., 2010; Li and
Chiu, 2010; Su and Li, 2010; Bischof et al., 2011; Li
and Teng, 2013). In protein import mediated by RbcS
andCab TPs, translocon components such as Toc159 and
Hsp93-V play crucial roles in various steps. Protein im-
port was severely impaired in ppi2 and hsp93-V mutant
plants (Figs. 1 and 7). However, in ppi2 and hsp93-V
mutant protoplasts, the import efficiency of some pre-
proteins with hybrid TPs was significantly higher than
that of wild-type RbcS and Cab TPs, despite the fact that
these hybrid TPs were generated using domains of RbcS
and Cab TPs (Fig. 7). One possibility is that RbcS and
Cab TPs contain motifs that are active in at Toc159- or
Hsp93-independent pathways. Indeed, RbcS and Cab
TPs can support protein import into chloroplasts even in
ppi2 protoplasts, albeit at a lower efficiency (Lee et al.,
2009a; Su and Li, 2010; Bischof et al., 2011; Inoue et al.,
2013). These results suggest that TPs with different se-
quence contexts use different pathways and translocon
components during protein import.
Finally, we demonstrated that SynTPs with import

efficiencies comparable with that of the RbcS TP can be
generated with a completely unrelated sequence using
a few sequence motifs from RbcS and/or Cab TPs (Fig.
8). One possible scenario for TP evolution is that a se-
quence was converted into a functional TP by gradually
incorporating sequence motifs until it included at least
one motif randomly selected from multiple potential
motifs for each type of translocon component to attain
the maximal import efficiency. As a result, diverse TPs
can be generated such that each contains a unique set of
motifs. This idea is similar to the M&M model recently
proposed by Li and Teng (2013) and may also be con-
sistent with the exon shuffling model, in which TPs
originated from the acquisition of several preexisting
exons (Quigley et al., 1988; Gregerson et al., 1994; Long
et al., 1996; Bruce, 2001), and the design principle of
eukaryotic gene promoters, which use small sequence
elements as binding sites for transcription factors.

MATERIALS AND METHODS

Growth of Plants

Arabidopsis (Arabidopsis thaliana; Columbia-0) was grown in a growth
chamber at 22°C to 23°C with a 16-h-light/8-h-dark cycle on Gamborg B5
(Duchefa) plates. Leaf tissues were harvested from 2- to 3-week-old plants and
used immediately for protoplast preparation.

Construction of Reporter Constructs

The swapping and Ala substitution mutant constructs were generated by
PCR-based mutagenesis as described previously (Lee et al., 2006, 2008, 2009a).
The sequences of the primers used to construct reporter constructs are shown in
Supplemental Table S1. To generate CPY[1–95]:GFP, CPY:GFP (Lee et al.,
2013b) was digested with XbaI/SalI, and the digested DNA fragment corre-
sponding to CPY[1–95] was ligated to an expression vector digested with the
same restriction endonucleases. To generate SynTPs, we performed four suc-
cessive PCR reactions with four forward primers (in the order of Syn-1, Syn-2,
Syn-3, and Syn-4; Supplemental Table S1) and nosT-B primer (reverse primer)

using RbcS-nt:GFP as template. After the fourth round of PCR, PCR products
were digestedwithXbaI/XhoI and ligated to an expression vector digested with
the same restriction endonucleases.

Polyethylene Glycol-Mediated Transformation and in
Vivo Targeting of Reporter Proteins

Plasmid DNA used for polyethylene glycol-mediated transformation was
purified using Qiagen columns. DNA was introduced into Arabidopsis pro-
toplasts by the polyethylene glycol-mediated transformation method, as de-
scribed previously (Jin et al., 2001; Lee and Hwang, 2011). Images of
transformed protoplasts were acquired, as described previously (Jin et al., 2001;
Lee and Hwang, 2011).

DMSO or MG132 Treatment of Transformed Protoplasts

Protoplasts transformed with plasmid DNA were incubated for 8 h. Sub-
sequently, the transformed protoplasts were treated with DMSO or 20 mM

MG132 for 6 h. Protein extracts from the transformed protoplastswere analyzed
by western blotting with anti-GFP and red fluorescent protein antibodies.

Sequence data from this article can be found in the Arabidopsis Genome
Initiative or GenBank/EMBL data libraries under the following accession
numbers: RbcS, At1g67090; Cab, At3g54890.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Proteasome-mediated degradation of prepro-
teins.

Supplemental Table S1. Primer sequences used to generate the swapping
and Ala substitution mutant constructs.
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