
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 141.223.153.212

This content was downloaded on 08/04/2016 at 03:34

Please note that terms and conditions apply.

Magnetism and magnetoelectricity in the polar oxide -Cu2V2O7

View the table of contents for this issue, or go to the journal homepage for more

2016 EPL 113 27007

(http://iopscience.iop.org/0295-5075/113/2/27007)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/148817106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/113/2
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


January 2016

EPL, 113 (2016) 27007 www.epljournal.org
doi: 10.1209/0295-5075/113/27007

Magnetism and magnetoelectricity in the polar oxide α-Cu2V2O7

Y.-W. Lee
1
, T.-H. Jang

2,3
, S. E. Dissanayake

4
, Seunghun Lee

4 and Yoon H. Jeong
1(a)

1 Department of Physics, Pohang University of Science and Technology - Pohang, 790-784, Korea
2 c-CCMR, Pohang University of Science and Technology - Pohang, 790-784, Korea
3 Max Planck POSTECH Center for Complex Phase Materials - Pohang, 790-784, Korea
4 Department of Physics, University of Virginia - Charlottesville, VA 22904-4714,USA

received 20 October 2015; accepted in final form 3 February 2016
published online 22 February 2016

PACS 75.85.+t – Magnetoelectric effects, multiferroics
PACS 75.25.-j – Spin arrangements in magnetically ordered materials (including neutron and

spin-polarized electron studies, synchrotron-source x-ray scattering, etc.)
PACS 75.10.-b – General theory and models of magnetic ordering

Abstract – Single crystals of the orthorhombic polar oxide α-Cu2V2O7 with space group Fdd2
are synthesized and their physical properties are measured. Neutron powder diffraction is also
performed on a polycrystal sample to extract the magnetic structure. The ground state is shown
to be weakly ferromagnetic, that is, collinearly antiferromagnetic in the a-direction with a small
remanent magnetization in the c-direction. When an external magnetic field is applied in the
c-direction, further spin canting, accompanied by the induced electric polarization, occurs. It
is demonstrated that the magnetoelectric effect in α-Cu2V2O7 is adequately described if spin-
dependent p-d hybridization due to spin-orbit coupling as well as magnetic domain effects are
simultaneously taken into account. We discuss the implication of the present result in the search
for materials with multiferroicity and/or magnetoelectricity.

Copyright c© EPLA, 2016

Introduction. – Over the past decade a considerable
number of materials have been studied regarding multi-
ferroics with simultaneous ferroelectricity and ferromag-
netism in a single phase and/or magnetoelectricity arising
from the cross coupling between them [1–3]. These mate-
rials belong to a rare system where both time reversal and
space inversion symmetries are broken and the electric po-
larization can be manipulated by magnetic field and vice
versa. From the latter aspect arises many technological
application possibilities, and thus a proper understanding
of the microscopic mechanisms is highly demanded.

On the theoretical front, there are presently at least
three known microscopic mechanisms for magnetically
induced ferroelectricity. Probably the most well-known
mechanism is the spin current mechanism, or equivalently
the inverse Dzyaloshinskii-Moriya (DM) mechanism [4,5].
In cycloidal spin structures, for example, the spin chi-
rality can induce the polarization via the spin current
mechanism. Orthorhombic perovskite TbMnO3 is an ex-
ample of the spin current mechanism [1]. It is also possible
that even the collinear spin structure may induce ferroelec-
tricity in crystals such as RMnO3 (R = Ho, Tm, Yb) and

(a)E-mail: yhj@postech.ac.kr

TbMn2O5, if they contain inequivalent multiple magnetic
sites [2]. In this case, polarization arises from magnetic
striction caused by the symmetric exchange interaction [6].
This type of ferroelectricity would generally be realized in
the so-called E-type antiferromagnets (↑↑↓↓) [7]. Lastly
a different kind, which is called the p-d hybridization
mechanism, was proposed to explain the ferroelectricity
induced in the screw spin structures [8]. Here the ferro-
electricity is supposedly caused by electronic charge trans-
fer via the transition-metal-ligand p-d hybridization which
would depend on the spin direction due to spin-orbit
coupling (SOC) [9]. Several materials such as melilite
Ba2CoGe2O7 [10,11] and borate (Cu,Ni)B2O4 [12] have
been reported to follow this mechanism.

In this paper, we wish to report the successful growth
of the single-crystalline α-Cu2V2O7 by the flux method
and the measurements of the magnetic and electric prop-
erties of α-Cu2V2O7 samples in single crystalline as well
as polycrystalline form. α-Cu2V2O7 is an oxide system of
a peculiar structure with a potential for ferroelectricity,
magnetoelectricity, and multiferroicity [13,14]. The physi-
cal properties and the field-induced polarization variations
will be discussed based on the crystallographic, magnetic
structure and magnetoelectric current measurements. It is
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shown that while the magnetically induced polarization
variation in α-Cu2V2O7 can be accounted for neither by
the spin current model nor the exchange striction mech-
anism, it is the p-d hybridization between the transition
metal Cu and ligand O via SOC that is essential for the
account of its magnetoelectric effect.

Experimentals. – Polycrystalline samples of
α-Cu2V2O7 were synthesized by a standard solid-
state reaction method. Single crystals, on the other hand,
were grown by a flux method using a mixture of SrCO3
and V2O5 as a flux [15]. The obtained crystals were
characterized by both powder and single-crystal X-ray
diffraction (XRD; Rigaku, RINT2000). Neutron powder
diffraction (NPD) experiments on powder samples were
performed on the neutron powder diffractometer BT1 at
NIST and possible magnetic structures were analyzed by
carrying out the symmetry analysis using the program
SARAh, and the refinement of magnetic structure was
done with the Fullprof program. Magnetic property
measurements were carried out using a commercial
Quantum Design physical property measurement system
(PPMS). Pyro-electric current and magnetoelectric (ME)
current were measured with an electrometer (Keithley,
6517) combined with PPMS.

Crystal structure. – The crystal structure of
α-Cu2V2O7 was determined by NPD and XRD and is in
agreement with the previous report [13]. The structure be-
longs to the orthorhombic system with space group Fdd2
(no. 43), and its schematic diagram is shown in fig. 1(a).
It consists of cross-linking chains of [CuO5] polyhedra
with one chain parallel to the [011] direction and another
parallel to [01̄1] direction. These magnetic copper oxide
chains are then separated by nonmagnetic (V2O7)−4 an-
ion groups. The local structure of the [CuO5] polyhedron
is of central importance for the ME properties, and the
schematic diagram is shown in fig. 1(b). The bond lengths
were determined by XRD and NPD at 5 K; each Cu ion
is surrounded by five oxygen ions, and four of them have
shorter bonds of 1.91–1.94 Å to Cu and the apical oxygen
has a longer bond of 2.56 Å. The a, b, and c lattice param-
eters are 20.69 Å, 8.43 Å, and 6.44 Å, respectively [16]. As
far as the point group mm2 of the system is concerned, the
unit cell contains four inequivalent Cu sites due to different
[CuO5] polyhedron orientations designated as Cu1, Cu2,
Cu3, and Cu4 in fig. 1(c). Note that mm2 lacks inversion
symmetry and thus α-Cu2V2O7 could be ferroelectric or
pyroelectric. In the low-temperature phase with magnetic
ordering, the Cu ions (d9, S = 1/2) themselves become
inequivalent due to the spin directions.

Magnetic properties. – Figure 2(a) is the plot of
the susceptibility χ ≡ M/H (magnetization per unit
field strength) of the single crystalline α-Cu2V2O7 in the
a-direction as a function of temperature T . A measur-
ing field μ0H of 1 T was used to ensure sensitivity. For a
field parallel to the [100] direction, χ exhibits a clear cusp

Fig. 1: (Color online) (a) Crystal structure of α-Cu2V2O7 with
the Cu and V polyhedron colored in blue and yellow, respec-
tively. Crystallographic axes are also shown. The lattice pa-
rameters are a = 20.69 Å, b = 8.43 Å, and c = 6.44 Å. (b) Local
environment surrounding the Cu ion. Cu-O bond lengths,
taken from neutron diffraction at 5K, are indicated. (c) Four
Cu sites with different [CuO5] orientations in the unit cell are
shown. Edge sharing nearest neighbor Cu-Cu (3.142 Å) is in-
dicated by a solid line, while the inter-chain neighbor Cu-Cu
(3.975 Å) is indicated by a dotted line.
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Fig. 2: (Color online) (a) Susceptibility χ of α-Cu2V2O7 mea-
sured with μ0H = 1T along the a-direction is shown as a func-
tion of T . The inset displays χ−1 as a function of T ; the line
represents the Curie-Weiss law from which the Curie constant
and the asymptotic Curie temperature are obtained. (b) The
magnetization M in the c-direction measured with a small field
50G clearly identifies a ferromagnetic transition. The lower in-
set displays M -H curves measured at T = 10 K. The upper in-
set is a magnified view of the low-field region of the M -H curve.

at TN = 33.3 K indicating an antiferromagnetic transi-
tion. Below TN , however, χ does not decrease to zero as
T approaches zero. This fact may indicate that the sys-
tem may not be a simple antiferromagnet. To check the
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possibility, M along the c-direction was measured with a
small measuring field of 50 G. When a field is applied
in the c-direction, the situation becomes strikingly dif-
ferent and spontaneous magnetization is detected below
TN . Figure 2(b) shows M(T ), expressed as the Bohr mag-
neton μB per Cu ion, of α-Cu2V2O7 in the temperature
range from 4 to 70 K. The M measurements clearly iden-
tifies a ferromagnetic transition. In fact, Ponomarenko
et al. studied polycrystalline samples and suggested that
the spontaneous magnetization arose due to the ferri-
magnetic or canted antiferromagnetic state because the
saturated moment value 0.04 μB they obtained was very
small [17,18]. For our single-crystal samples, the M -H
curve measured at T = 10 K shows that the moment value
reaches 0.08 μB quickly at a small field and then increases
slowly to 0.09 μB at 1 T for H ‖ [001], as displayed in
the lower inset of fig. 2(b). The magnified view of the
M -H curve in the low-field region, given in the upper inset,
clearly illustrates weak ferromagnetism with a hysteresis
behavior with remanent magnetization Mr ≈ 0.03 μB and
coercivity μ0Hc ≈ 7 G. Obviously, the hysteric behavior
consists of two regimes, domain wall motion at low fields
(< 10 G) and field-induced canting at higher fields.

In order to estimate the size of the intrinsic magnetic
moment per Cu ion, we can utilize the susceptibility data
in the paramagnetic region, that is, χ as a function of T
is analyzed in terms of the Curie-Weiss law,

χ =
C

T − Θ
(1)

where C is the Curie constant and Θ is the asymptotic
Curie (or Curie-Weiss) temperature. Here asymptotic
refers to the fact that the Curie-Weiss law holds well in the
deep paramagnetic region. The effective magnetic moment
μeff can be determined from the Curie constant. χ−1 as a
function of T is shown in the inset of fig. 2(a) and Θ and
μeff were extracted by fitting the data to the Curie-Weiss
law. The fit yielded Θ = −81.5 K and μeff = 1.95 μB.
Note that μeff = 1.95 μB is larger than the spin-only value
of μ = g

√
1/2(1 + 1/2) = 1.73 μB for S = 1/2 with the

g factor 2. These analysis results reveal the facts that g
deviates from 2 in this system due to SOC and that the
saturated magnetic moment of 0.09 μB is far smaller than
the intrinsic value. The latter fact, in particular, supports
the idea that spin canting occurring in the antiferromag-
netic state is the origin of the small spontaneous magneti-
zation. As a matter of fact, Pommer et al. already showed
that the spin canting as well as the underlying antiferro-
magnetism in α-Cu2V2O7 can be accounted for in terms
of the superexchange and DM interaction along the chain
direction if the chain structure of edge-sharing CuO5 poly-
hedra and the local distortion surrounding each Cu ion are
taken into account [19]. Thus, it may be concluded from
the magnetic measurements that in the ground state of
α-Cu2V2O7, the Cu spins are ordered antiferromagneti-
cally along the a-direction and canted magnetic moments
occur along the c-direction.
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Fig. 3: (Color online) (a) Neutron powder diffraction of
α-Cu2V2O7 measured at 5K. Circles are the experimental
data and black lines represent the calculated intensities. Green
bars represent nuclear and magnetic Bragg peak positions and
blue lines indicate the difference between experimental data
and calculation. The inset compares the data obtained at
5K and 50 K. A magnetic peak appears at lower tempera-
ture. (b) Magnetic structure refined with Γ2 representation,
consisting of Cu2+ spins antiferromagnetically aligned in the
a-direction with small canting in the c-direction. Only copper
ions are shown and the arrows denote spin directions. Four in-
equivalent Cu ions are colored in green (1), yellow (2), blue (3),
and orange (4). The size of the circles represents the b-direction
position and the solid lines connect nearest-neighbor Cu ions.

Determination of the magnetic structure. – The
microscopic magnetic structure of α-Cu2V2O7 was inves-
tigated in detail by analyzing the NPD results [20]. The
NPD data were collected at two temperatures below and
above TN , 5 K and 50 K. Figure 3(a) shows the NPD data
measured at 5 K. The crystal structure refinement was
performed with Fullprof and the optimal parameters ob-
tained with space group Fdd2 are summarized in table 1.
The inset of fig. 3(a) shows the NPD data at 5 K, 50 K
and their difference. The characteristic wave vector for
magnetic ordering was identified as km = (0, 0, 0). An ad-
ditional intensity at the (020) Bragg peak position which
is forbidden by space group Fdd2, was observed at 5 K, in-
dicating an antiferromagnetic arrangement of spins. Pos-
sible magnetic structures were inspected by carrying out
a group theoretical analysis. The best-fit magnetic struc-
ture was obtained using basis vectors of Γ2 irreducible
representation [21]. The magnetic moment for each Cu
ion in the unit cell is summarized in table 2. The ordered
moment was 0.84 μB which is close to the expected spin
moment of S = 1/2. Cu spins are ordered antiferromag-
netically along the a-direction with a canting towards the
c-direction. In this model, the finite magnetic moment
along the b-axis, Mb, will produce an additional intensity
at the (200) Bragg peak. The NPD data, however, do
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Table 1: The crystal structural parameters of α-Cu2V2O7 with
space group Fdd2 obtained at 5K by refining the data shown in
fig. 3 using the program Fullprof. Biso is an isotropic thermal
parameter expressed as exp(−Biso sin2 θ/λ2), where θ is the
scattering angle and λ is the wavelength of the neutron. The
lattice parameters are also shown.

Atom (W ) x y z Biso (Å
2
)

Cu (16b) 0.1658(1) 0.3633(2) 0.7500 0.24(3)
V (16b) 0.1964(10) 0.4023(30) 0.2602(46) 0.30
O1 (16b) 0.2457(1) 0.5627(2) 0.2704(3) 0.48(3)
O2 (16b) 0.1446(1) 0.4392(2) 0.0260(4) 0.39(4)
O3 (16b) 0.1619(1) 0.3469(2) 0.4540(3) 0.39(4)
O4 (8a) 0.2500 0.2500 0.1509(4) 0.67(6)

a = 20.6892(2) Å, b = 8.4277(1) Å, c = 6.43975(5) Å

Table 2: Magnetic moments for four inequivalent Cu ions ob-
tained by refining the NPD data at 5K with antiferromagnetic
arrangements of spins with canting along the c-direction.

Ion Ma Mb Mc 〈M〉
Cu1 0.797(35) 0 −0.26(14) 0.84(6)
Cu2 −0.797(35) 0 −0.26(14) 0.84(6)
Cu3 0.797(35) 0 −0.26(14) 0.84(6)
Cu4 −0.797(35) 0 −0.26(14) 0.84(6)

not show any increase in the intensity at the (200) Bragg
peak when cooled down below TN . Therefore, Mb was as-
sumed to be zero in the refinement, and indeed it is also
supported by the macroscopic magnetic measurements. A
schematic diagram of the magnetic structure drawn from
the neutron scattering results is presented in fig. 3(b).

Magnetoelectric effect. – We now turn to the ME
effect of α-Cu2V2O7. Let us begin with the definition of
ME tensors. We use x, y, and z to denote the laboratory
axes as opposed to the crystallographic axes a, b, and c.
The ME tensors are defined by

Pi =
3∑

j=1

αijHj +
3∑

k,l=1

βiklHkHl + . . . , (2)

where indices 1, 2, and 3 denote x, y, and z axes,
respectively. The laboratory axes coincide with the crys-
tallographic ones in the present case, and thus these two
sets are interchangeable. As noted in the previous section,
if we consider atomic positions only, the crystal structure
of α-Cu2V2O7 has mm2 point group symmetry. In the
magnetically ordered phase below TN , however, the mag-
netic order of the system change the symmetry from mm2
to m′m′2, where m′ denotes the antisymmetry of mir-
ror reflection followed by time reversal operation. Under

Fig. 4: (a) Magnetization M , pyroelectric current density J ,
and polarization ΔPz (integrated current density) are shown
as a function of temperature. Note that J was measured with
μ0H = 0, while a small field of 50G was used for M measure-
ments. (b) The same quantities are measured as a function of
the magnetic field at fixed temperatures below TN .

m′m′2, the diagonal elements are nonzero and all the off-
diagonal elements are zero in the linear ME tensor, con-
trary to the case of mm2 where only the two off-diagonal
elements α12 and α21 are nonzero. Nonzero components of
the third-order ME tensor are β113, β223, β322, β311, and
β333 for both mm2 and m′m′2. Consequently, the induced
polarization Pz in the ordered phase with a field applied
along the c-direction is given by

Pz(T < TN) = α33Hz + β333H
2
z . (3)

To identify the ME effect of α-Cu2V2O7, we first mea-
sured the electric polarization variation along the c-axis
ΔPz by measuring and integrating the pyrocurrent as a
function of T with H = 0. We then studied the ME effect
by measuring the induced polarization ΔPz as a function
of H ‖ c at fixed T . For pyroelectric measurements, a pol-
ing electric field was applied to a sample well above TN ,
and the sample was cooled to 5 K and the current was mea-
sured on heating. In fig. 4(a) the magnetization M , the
pyroelectric current density J , and ΔPz are presented to-
gether as a function of T . The pyroelectric current density
J was measured without field, while the measuring field
for M was 50 G. Note that a sharp negative peak at TN

is observed on heating in J(T ), and thus the polarization
decreases rapidly in the vicinity of TN . In integrating J
to obtain the polarization ΔPz, the zero point was chosen
arbitrarily at T > TN . It should be emphasized that the
polarization remains nonzero even above TN . We have also
confirmed that the polarization is not switchable by elec-
tric poling up to the field strength of E ≈ 10 kV/cm. This
fact indicates that the α-Cu2V2O7 is pyroelectric rather
than ferroelectric both above and below TN .

If a magnetic field is applied to the system below TN ,
additional polarization due to the ME effect is observed.
In fig. 4(b), the magnetic-field dependence of M , J , and
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ΔPz at fixed temperatures is shown. In converting the
current data J(H) to the polarization change ΔPz , the
H = 0 point was chosen as the reference point. Note that
there is a very rapid change in the current density J in the
immediate vicinity of zero field associated with the low-
field M jump due to domain wall motion. This change
was too fast to follow exactly in the present experimental
setup. The variation of ΔPz over the field variation to
1 T seen in fig. 4(b) is the magnetic-field–induced polar-
ization accompanying the concurrent spin canting. It is
of value to note that the polarization change ΔPz shows
a distinct nonlinear dependence on H and also that ΔPz

is an even function of H . These facts, of course, indi-
cate the importance of β333. From fitting of the data at
33 K, α33 and β333 are estimated to be 42.1 ± 0.1 ps/m
and −5.9±0.1 as/A, respectively. To fully account for the
evenness of the ME response in the presence of nonzero
α33, one must take into account the domain effects [21].

Possible microscopic model for polarization in-
duced by spin canting. – According to the neutron
diffraction results for crystal and magnetic structures of
α-Cu2V2O7, the spin structure of the system is neither of
spiral type nor of collinear striction type. Since the p-d
hybridization mechanism does not impose particular re-
strictions on the magnetic order to generate ME effects,
we attempt to account for the ME effect in α-Cu2V2O7 via
this model. We first identify the local electric polarization
by focusing on the local structure surrounding a Cu ion.
For a single CuO5 polyhedra with the Cu spin S, the local
electric dipole moment within the p-d hybridization model
is given by P α ∝ ∑5

i=1(S
α · eαi)2eαi. Superscripts α and

i designate Cu and O ions, respectively, and eαi is the unit
vector along the bond direction between the Cu ion and O
ion. Since there exist four inequivalent CuO5 polyhedrons
in the unit cell, the polarization P is expressed as a sum
over Cu ions:

P ∝
4∑

α=1

5∑
i=1

(Sα · eαi)2eαi. (4)

In α-Cu2V2O7, unlike the staggered antiferromagnetism
seen in Ba2CoGe2O7, the M variation with magnetic field
is dominated by spin canting along the c-axis for fields
greater than ∼ 10 G. Within the p-d hybridization model
where polarization is proportional to the square of the lo-
cal spin moment, the magnetic-field–induced polarization
would show both linear (α33) and nonlinear (β333) depen-
dence on H . To account for the ME effect quantitatively,
we include the domain effects and assume that each spin
in four Cu-O polyhedrons has the same canting angle θ in
a given domain when H ‖ c as illustrated in fig. 5(a) [21].
In fig. 5(b), we plot the polarization P pd

z as a function of θ
by substituting Cu-O bonding direction and spin direction
into eq. (4). It is noted that the local polarization varia-
tions along the a-axis due to Cu1(Cu3) and Cu2(Cu4) are
the same but opposite in direction to make P pd

x = 0. The
situation is the same in the b-direction and thus P pd

y = 0.

Fig. 5: (Color online) (a) Illustration of the spin structure with
magnetic field along [001] and [001̄]. The number in the cir-
cle corresponds to each CuO5 polyhedra site (Cu1 to Cu4).
(b) Calculated polarization at each Cu site with respect to the
spin canting angle within the p-d hybridization model. We as-
sume here that the canting angle of all spins is the same, that
is, θ for Cu1 and Cu3, π − θ for Cu2 and Cu4 with H ‖ c-axis.
(c) ΔPz calculated polarization due to p-d hybridization is
shown along with experimental data at T = 33 K. (d) Po-
larization Pz as a function of μ0H at 30 K and 33 K. The
offset values at H = 0 are taken from the pyroelectric mea-
surements shown in fig 4. Open circles and solid lines denote
the experimental data and the calculation results, respectively.

Only the c-component of the polarization is nonzero be-
cause in this case all local contributions are identical in
sign and magnitude. The total calculated polarization,
as a function of θ, is shown in fig. 5(b), and this vari-
ation can be expressed as P pd

z (θ) = A sin(2θ + η) + C
with A = 1.15, C = −0.25, and η = 33◦. This result is
consistent with the symmetry analysis: applying a field
H ‖ c does not change the m′m′2 symmetry and the three
diagonal components of the linear ME tensor are expected
to be nonzero. Let us consider P pd

z as a function of the
magnetic field. Since M is already known as a function of
H , it is sufficient to express the canting angle as a func-
tion of M , that is, θ = sin−1(M/Ms) where saturation
Ms = 1 μB/Cu2+. For a given M then, polarization be-
comes P pd

z ∝ sin(2 sin−1(M/Ms) + η). (Constant C can
be absorbed into η.) Introducing canting angles θ1(= θ)
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and θ2 for the two domains separately and putting their
ratio θ1/θ2 = 1/α, we can write M = (M1 + M2)/2 =
(sin(θ)+ sin(αθ))/2. For small θ, M ≈ (1+α)θ/2 and the
polarization change is expressed as

ΔP (M(H)) = A

[
sin

(
M

Ms

4
(α + 1)

+ η

)

+ sin
(

M

Ms

4α

(α + 1)
+ η

)]
+ B. (5)

If the experimental data at T = 33 K are fitted with
eq. (5), α = 0.6 gives an excellent fit as shown in fig. 5(c).
The calculation (blue solid line) matches the experimen-
tal data (red open square) extremely well and the coef-
ficients A and B are estimated to be 3190 ± 5 μC/m2

and −3550 ± 5 μC/m2, respectively. The canting angle
changes from 2 ◦ to 7 ◦ when an applied field changes from
0 to 9 T, corresponding to the hatched region in fig. 5(b).
Figure 5(d) displays the full range of data and calculation
results at 30 K and 33 K.

Conclusions. – We studied the structural, magnetic,
and magnetoelectric properties of α-Cu2V2O7 in both
monocrystalline and polycrystalline forms. The magnetic
measurements revealed, in particular, the underlying mag-
netic structure of canted antiferromagnetism with easy
a-axis and canting c-axis. When an external magnetic
field is applied along the c-direction, additional magne-
tization is induced by further spin canting and the in-
duced magnetization is accompanied by polarization. The
p-d hybridization model adequately accounts for the ob-
served magnetoelectric effect. The present study in turn
implies that the p-d hybridization mechanism would be
quite ubiquitous in oxide materials and polarization can
be induced by spin canting in antiferromagnetic systems.
It is noted that the polarization in the p-d hybridization
scheme is of electronic origin in contrast to the ion dis-
placement type occurring in the spin current mechanism
or exchange striction [22]. We may keep in mind, in the
search for new magnetoelectric materials, that while ma-
terials with particular magnetic structures are frequently
sought after based on the spin current or exchange stric-
tion mechanisms, a reservoir of candidate materials with
p-d hybridization might be far greater.
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