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Norm-attaining operators
Bishop–Phelps–Bollobás theorem

1. Introduction

The celebrated Bishop–Phelps theorem of 1961 [12] states that for a Banach space X,
every element in its dual space X∗ can be approximated by ones that attain their
norms. Since then, there has been an extensive research to extend this result to bounded
linear operators between Banach spaces [1,14,27,33,34,37] and non-linear mappings
[2,3,8,16,17,29]. On the other hand, Bollobás [13], motivated by problems arising in
the theory of numerical ranges, sharpened the Bishop–Phelps theorem in 1970, and got
what is nowadays called the Bishop–Phelps–Bollobás theorem. Previously to presenting
this result, let us introduce some notations. Given a (real or complex) Banach space X,
we write BX for the unit ball, SX for its unit sphere, and X∗ for the topological dual
space of X. If Y is another Banach space, we write L(X,Y ) to denote the space of all
bounded linear operators from X into Y .

Theorem 1.1 (Bishop–Phelps–Bollobás theorem). Let X be a Banach space. If x ∈ SX

and x∗ ∈ SX∗ satisfy |x∗(x)−1| < ε2/4, then there exist y ∈ SX and y∗ ∈ SX∗ such that
y∗(y) = 1, ‖x∗ − y∗‖ < ε and ‖x− y‖ < ε.

In 2008, Acosta, Aron, García and Maestre [4] introduced the Bishop–Phelps–Bollobás
property to study extensions of the theorem above to operators between Banach spaces.

Definition 1.2. Let X and Y be Banach spaces. The pair (X,Y ) is said to have the
Bishop–Phelps–Bollobás property (BPBp) if for every 0 < ε < 1, there is η(ε) > 0 such
that for every T ∈ L(X,Y ) with ‖T‖ = 1 and x0 ∈ SX satisfying ‖T (x0)‖ > 1 − η(ε),
there exist y0 ∈ SX and S ∈ L(X,Y ) with ‖S‖ = 1 satisfying the following conditions:

‖Sy0‖ = 1, ‖y0 − x0‖ < ε, and ‖S − T‖ < ε.

In this case, we also say that the Bishop–Phelps–Bollobás theorem holds for L(X,Y ).

This property has been studied by many authors. See for instance [7,9,11,15,18,19,
28,30]. Observe that the BPBp of a pair (X,Y ) implies obviously that the set of norm
attaining operators is dense in L(X,Y ). However, its converse is false, as shown by the
pair (X,Y ) where X is the 2-dimensional L1-space and Y is a strictly, but not uniformly
convex space (see [4] or [11]). Let us also comment that the Bishop–Phelps–Bollobás
theorem states that the pair (X,K) has the Bishop–Phelps–Bollobás property for every
Banach space X (K is the base scalar field R or C).

In this paper we first deal with the problem of when the pair (Lp(μ), Lq(ν)) has the
BPBp. Let us start with a presentation of both already known results and our new
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results. Iwanik [25] showed in 1979 that the set of norm-attaining operators from L1(μ)
to L1(ν) is dense in the space L(L1(μ), L1(ν)) for arbitrary measures μ and ν. Our first
main result in this paper is that the pair L(L1(μ), L1(ν)) has the BPBp. This is the
content of Section 3.

On the other hand, Aron et al. [10] showed that if μ is a σ-finite measure, then the
pair (L1(μ), L∞[0, 1]) has the BPBp, improving a result of Finet and Payá [24] about
the denseness of norm-attaining operators. We generalize this result in Section 4 showing
that (L1(μ), L∞(ν)) has the BPBp for every measure μ and every localizable measure ν.
This is also a strengthening of a result of Payá and Saleh [35] which stated only the
denseness of norm-attaining operators.

One of the tools used to prove the results above is the fact that one can reduce the
proofs to some particular measures. We develop this idea in Section 2, where, as its first
easy application, we extend to arbitrary measures μ the result in [18] that (L1(μ), Lp(ν))
has the BPBp for σ-finite measures μ.

The following result summarizes all what is known about the BPBp for the pair
(Lp(μ), Lq(ν)).

Corollary 1.3. The pair (Lp(μ), Lq(ν)) has the BPBp

(1) for all measures μ and ν if p = 1 and 1 � q < ∞,
(2) for any measure μ and any localizable measure ν if p = 1, q = ∞,
(3) for all measures μ and ν if 1 < p < ∞ and 1 � q � ∞,
(4) for all measures μ and ν if p = ∞, q = ∞, in the real case.

(1) and (2) follow from the results of this paper (Corollary 2.3, Theorem 3.1 and
Theorem 4.1). Since Lp(μ) is uniformly convex when 1 < p < ∞, (3) follows from [7,30]
in the σ-finite case, generalized here to arbitrary measures μ (Corollary 2.3). Finally, (4)
follows from [5], because every L∞ space is isometrically isomorphic to a C(K) space.

As far as we know, the cases (L∞(μ), Lq(ν)) for 1 � q < ∞ and the complex case
of (4) remain open.

Let μ be a finite measure. Since any L∞ space is isometrically isomorphic to C(K)
for some compact Hausdorff space K, it is natural to ask when (L1(μ), C(K)) has the
BPBp. Schachermayer [38] showed that the set of all norm-attaining operators is not
dense in L(L1[0, 1], C[0, 1]). Hence, (L1[0, 1], C[0, 1]) cannot have the BPBp. On the
other hand, Johnson and Wolfe [27] proved that if X is a Banach space and if either Y

or Y ∗ is a L1(μ) space, then every compact operator from X into Y can be approximated
by norm-attaining finite-rank operators. They also showed that every weakly compact
operator from L1(μ) into C(K) can be approximated by norm-attaining weakly compact
ones. In this direction, Acosta et al. have shown that (L1(μ), Y ) has the BPBp for
representable operators (in particular, for weakly compact operators) if (�1, Y ) has the
BPBp, and this is the case of Y = C(K) [6].
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On the other hand, Iwanik [26] studied two classes of bounded linear operators from a
real L1(μ) space to a real C(K) space such that every element of each class can be approx-
imated by norm-attaining elements, and showed that one of the classes strictly contains
all Bochner representable operators and all weakly compact operators. In Section 5, we
deal with Bishop–Phelps–Bollobás versions of these Iwanik’s results. In particular, we
show that for every 0 < ε < 1, there is η(ε) > 0 such that if T ∈ L(L1(μ), C(K))
with ‖T‖ = 1 is Bochner representable (resp. weakly compact) and f0 ∈ SL1(μ) satisfy
‖Tf0‖ > 1−η(ε), then there is a Bochner representable (resp. weakly compact) operator
S ∈ L(L1(μ), C(K)) and f ∈ SL1(μ) such that ‖Sf‖ = ‖S‖ = 1, ‖S − T‖ < ε and
‖f − f0‖ < ε.

Let us finally comment that the proofs presented in Sections 3 and 4 are written for
the complex case. Their corresponding proofs for the real case are easily obtained, even
easier, from the ones presented there.

2. Some preliminary results

We start with some terminologies and known facts about L1(μ). Suppose that
(Ω,Σ, μ) is an arbitrary measure space and put X = L1(μ). Suppose G is a count-
able subset of X. Since the closed linear span [G] of G is separable, we may assume that
[G] is the closed linear span of a countable set {χEn

} of characteristic functions of mea-
surable subsets with finite positive measure. Let E =

⋃
n En and Z = {fχE : f ∈ X}.

Then, Z = L1(μ|E), where μ|E is restriction of the measure μ to the σ-algebra
Σ|E = {E ∩ A : A ∈ Σ}. Since μ|E is σ-finite, Z is isometrically (lattice) isomor-
phic to L1(m) for some positive finite Borel regular measure m defined on a compact
Hausdorff space by the Kakutani representation theorem (see [32, Theorem 9, § 14] for a
reference). This space Z is called the band generated by G, and the canonical band projec-
tion P : X −→ Z, defined by P (f) := fχE for f ∈ X, satisfies ‖f‖ = ‖Pf‖+‖(Id−P )f‖
for all f ∈ X. For more details, we refer the reader to the classical books [32,39].

Next, we state the following equivalent formulation of the BPBp from [11] which helps
to better understand the property and will be useful for our preliminary results. Given
a pair (X,Y ) of Banach spaces, let

Π(X,Y ) =
{
(x, T ) ∈ X × L(X,Y ) : ‖T‖ = ‖x‖ = ‖Tx‖ = 1

}
and define, for 0 < ε < 1,

η(X,Y )(ε) = inf
{
1 − ‖Tx‖ : x ∈ SX , T ∈ L(X,Y ), ‖T‖ = 1,

dist
(
(x, T ), Π(X,Y )

)
� ε

}
,

where dist((x, T ), Π(X,Y )) = inf{max{‖x− y‖, ‖T − S‖} : (y, S) ∈ Π(X,Y )}. Equiv-
alently, for every ε ∈ (0, 1), η(X,Y )(ε) is the supremum of those ξ � 0 such that
whenever T ∈ L(X,Y ) with ‖T‖ = 1 and x ∈ SX satisfy ‖Tx‖ � 1− ξ, then there exists
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(y, S) ∈ Π(X,Y ) with ‖T − S‖ � ε and ‖x − y‖ � ε. It is clear that (X,Y ) has the
BPBp if and only if η(X,Y )(ε) > 0 for all 0 < ε < 1.

Our first preliminary result deals with operators acting on an L1(μ) space and shows
that the proof of some results can be reduced to the case when μ is a positive finite Borel
regular measure defined on a compact Hausdorff space.

Proposition 2.1. Let Y be a Banach space. Suppose that there is a function η : (0, 1) −→
(0,∞) such that

η
(
L1(m), Y

)
(ε) � η(ε) > 0 (0 < ε < 1)

for every positive finite Borel regular measure m defined on a compact Hausdorff space.
Then, for every measure μ, the pair (L1(μ), Y ) has the BPBp with η(L1(μ), Y ) � η.

Moreover, if Y = L1(ν) for an arbitrary measure ν, then it is enough to show that

η
(
L1(m1), L1(m2)

)
(ε) � η(ε) > 0 (0 < ε < 1)

for all positive finite Borel regular measures m1 and m2 defined on Hausdorff compact
spaces in order to get that (L1(μ), L1(ν)) has the BPBp with η(L1(μ), L1(ν)) � η.

Proof. Let 0 < ε < 1. Suppose that T ∈ L(L1(μ), Y ) is a norm-one operator and f0 ∈ SX

satisfy that ‖Tf0‖ > 1 − η(ε). Let {fn}∞n=1 be a sequence in X such that ‖fn‖ � 1 for
all n and limn→∞ ‖Tfn‖ = ‖T‖ = 1. The band X1 generated by {fn : n � 0} is
isometric to L1(J,m) for a finite positive Borel regular measure m defined on a compact
Hausdorff space J by the Kakutani representation theorem. Let T1 be the restriction
of T to X1. Then ‖T1‖ = 1 and ‖T1f0‖ > 1 − η(ε). By the assumption, there exist a
norm-one operator S1 : X1 −→ Y and g ∈ SX1 such that ‖S1g‖ = 1, ‖T1 − S1‖ < ε

and ‖f − g‖ < ε. Let P denote the canonical band projection from L1(μ) onto X1.
Then S := S1P + T (Id−P ) is a norm-one operator from L1(μ) to Y , g can be viewed
as a norm-one element in SL1(μ) (just extending by 0), ‖Sg‖ = 1, ‖S − T‖ < ε and
‖f − g‖ < ε. This completes the proof of the first part of the proposition.

In the case when Y = L1(ν), we observe that the image T (X1) is also contained in a
band Y1 of L1(ν) which, again, is isometric to L1(m2) for a finite positive Borel regular
measure m2 on a compact Hausdorff space J2. Now, we work with the restriction of T
to X1 with values in Y1, we follow the proof of the first part and finally we consider the
operator S as an operator with values in L1(ν) (just composing with the formal inclusion
of Y1 into L1(ν)). �

Since for every positive finite Borel regular measure m defined on a compact Hausdorff
space, L1(m) is isometric to L1(μ) for a probability measure μ, we get the following.

Corollary 2.2. Let Y be a Banach space. Suppose that there is a strictly positive function
η : (0, 1) −→ (0,∞) such that η(L1(μ1), Y ) � η for every probability measure μ1. Then
(L1(μ), Y ) has the BPBp for every measure μ, with η(L1(μ), Y ) � η.
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Let us give the first application of the above results. For a σ-finite measure μ1, it is
shown in [18] that (L1(μ1), Y ) has the BPBp if Y has the Radon–Nikodým property
and (�1, Y ) has the BPBp. By following the proof of [18, Theorem 2.2], we conclude that
there is a strictly positive function ηY : (0, 1) −→ (0,∞) such that η(L1(μ1), Y ) � ηY
for every probability measure μ1. Therefore, the corollary above provides the same result
without the assumption of σ-finiteness. We also recall that Lq(ν) is uniformly convex
for all 1 < q < ∞ and for all measures ν, so it has the Radon–Nikodým property and
(�1, Lq(ν)) has the BPBp [4]. Hence we get the following.

Corollary 2.3. Let μ be an arbitrary measure. If Y is a Banach space with the Radon–
Nikodým property and such that (�1, Y ) has the BPBp, then the pair (L1(μ), Y ) has the
BPBp. In particular, (L1(μ), Lq(ν)) has the BPBp for all 1 < q < ∞ and all arbitrary
measures ν.

We now deal with operators with values on an �∞-sum of Banach spaces, giving the
following result from [11] which we will use in Section 4. Given a family {Yj : j ∈ J} of
Banach spaces, we denote by [

⊕
j∈J Yj ]�∞ the �∞-sum of the family.

Proposition 2.4. (See [11].) Let X be a Banach space and let {Yj : j ∈ J} be a family
of Banach spaces and let Y = [

⊕
j∈J Yj ]�∞ denote their �∞-sum. If inf

j∈J
η(X,Yj)(ε) > 0

for all 0 < ε < 1, then (X,Y ) has the BPBp with

η(X,Y ) = inf
j∈J

η(X,Yj).

We will use this result for operators with values in L∞(ν). To present the result, we
fist recall that given a localizable measure ν, we have the following representation

L∞(ν) ≡
[⊕

j∈J
Yj

]
�∞

, (1)

where each space Yj is either 1-dimensional or of the form L∞([0, 1]Λ) for some finite or
infinite set Λ and [0, 1]Λ is endowed with the product measure of the Lebesgue measures.
For its background, see [35] and references therein. With this in mind, the following
corollary follows from the proposition above.

Corollary 2.5. Let X be a Banach space. Suppose that there is a strictly positive function
η : (0, 1) −→ (0,∞) such that

η
(
X,L∞

(
[0, 1]Λ

))
(ε) � η(ε) (0 < ε < 1)

for every finite or infinite set Λ. Then the pair (X,L∞(ν)) has the BPBp for every
localizable measure ν with

η
(
X,L∞(ν)

)
(ε) � min

{
η(ε), ε2/2

}
(0 < ε < 1).
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The proof is just an application of Proposition 2.4, the representation formula given
in (1) and the Bishop–Phelps–Bollobás theorem (Theorem 1.1).

Let us comment that the analogue of Proposition 2.4 is false for �1-sums in the domain
space (see [11]), so Proposition 2.1 cannot be derived directly from the decomposition
of L1(μ) spaces analogous to (1).

Before finishing this section, we state the following lemma of [4] which we will fre-
quently use afterwards.

Lemma 2.6. (See [4, Lemma 3.3].) Let {cn} be a sequence of complex numbers with
|cn| � 1 for every n, and let η > 0 be such that for a convex series

∑
αn, Re

∑∞
n=1 αncn >

1 − η. Then for every 0 < r < 1, the set A := {i ∈ N : Re ci > r}, satisfies the estimate∑
i∈A

αi � 1 − η

1 − r
.

3. The Bishop–Phelps–Bollobás property of (L1(μ), L1(ν))

Our goal in this section is to prove the following result.

Theorem 3.1. Let μ and ν be arbitrary measures. Then the pair (L1(μ), L1(ν)) has the
BPBp. Moreover, there exists a strictly positive function η : (0, 1) −→ (0,∞) such that

η
(
L1(μ), L1(ν)

)
(ε) � η(ε) (0 < ε < 1).

By Proposition 2.1, it is enough to get the result for finite regular positive Borel
measures defined on compact Hausdorff spaces. Therefore, Theorem 3.1 follows directly
from the next result.

Theorem 3.2. Let m1 and m2 be finite regular positive Borel measures on compact
Hausdorff spaces J1 and J2, respectively. Let 0 < ε < 1 and suppose that T ∈
L(L1(m1), L1(m2)) with ‖T‖ = 1 and f0 ∈ SL1(m1) satisfy ‖Tf0‖ > 1 − ε18

53227 . Then
there are S ∈ SL(L1(m1),L1(m2)) and g ∈ SL1(m1) such that

‖Sg‖ = 1, ‖f − g‖ < 4ε and ‖T − S‖ < 4
√
ε.

Prior to presenting the proof of this theorem, we have to recall the following rep-
resentation result for operators from L1(m1) into L1(m2). As we announced in the
Introduction, we deal with the complex spaces only. The proof of the real case is easier
than the one given by us for the complex case.

Let m1 and m2 be finite regular positive Borel measures on compact Hausdorff spaces
J1 and J2, respectively. For a complex-valued Borel measure μ on the product space
J1 × J2, we define their marginal measures μi on Ji (i = 1, 2) as follows:

μ1(A) = μ(A× J2) and μ2(B) = μ(J1 ×B),

where A and B are Borel measurable subsets of J1 and J2, respectively.
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Let M(m1,m2) be the complex Banach lattice consisting of all complex-valued Borel
measures μ on the product space J1 × J2 such that each |μ|i is absolutely continuous
with respect to mi for i = 1, 2 with the norm∥∥∥∥d|μ|1dm1

∥∥∥∥
∞
.

It is clear that to each μ ∈ M(m1,m2) there corresponds a unique bounded linear
operator Tμ ∈ L(L1(m1), L1(m2)) defined by

〈
Tμ(f), g

〉
=

∫
J1×J2

f(x)g(y) dμ(x, y),

where f ∈ L1(m1) and g ∈ L∞(m2). Iwanik [25] showed that the mapping μ 	−→ Tμ is
a surjective lattice isomorphism and

‖Tμ‖ =
∥∥∥∥d|μ|1dm1

∥∥∥∥
∞
.

Even though he showed this for the real case, it can be easily generalized to the complex
case. For details, see [25, Theorem 1] and [39, IV, Theorem 1.5(ii), Corollary 2].

Since the proof of Theorem 3.2 is complicated, we divide it into the following two
lemmas.

Lemma 3.3. Let 0 < ε < 1. Suppose that Tμ is an element of L(L1(m1), L1(m2)) with
‖Tμ‖ = 1 for some μ ∈ M(m1,m2) and that f0 ∈ SL1(m1) is a nonnegative simple func-
tion such that ‖Tμf0‖ > 1 − ε3

26 . Then there are a norm-one bounded linear operator Tν

for some ν ∈ M(m1,m2) and a nonnegative simple function f1 in SL1(m1) such that

‖Tμ − Tν‖ < ε, ‖f1 − f0‖ < 3ε

and we have, for all x ∈ supp(f1),

d|ν|1
dm1

(x) = 1.

Proof. As ‖Tμ‖ = 1, we have that d|μ|1
dm1

(x) � 1 almost everywhere. Let f0 =∑n
j=1 αj

χBj

m1(Bj) , where {Bj}nj=1 are mutually disjoint Borel subsets of J1, αj � 0 and

m1(Bj) > 0 for all 1 � j � n, and
∑n

j=1 αj = 1. Let D = {x ∈ J1 : d|μ|1
dm1

(x) > 1− ε
8}. It

is clear that m1(D) > 0. Since ‖Tμf0‖ > 1 − ε3

26 , there is g0 ∈ SL∞(m2) such that

Re〈Tμf0, g0〉 > 1 − ε3
.
26
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Let

J =
{
j ∈ {1, . . . , n} : 1

m1(Bj)

∫
Bj

d|μ|1
dm1

(x) dm1(x) > 1 − ε2

26

}
.

Then we have
∑
j∈J

αj � 1 − ε > 0.

Indeed, since

1 − ε3

26 < Re〈Tμf0, g0〉 = Re
∫

J1×J2

f0(x)g0(y) dμ(x, y)

�
∫

J1×J2

∣∣f0(x)
∣∣ d|μ|(x, y) =

∫
J1

f0(x) d|μ|1(x)

=
n∑

j=1
αj

1
m1(Bj)

∫
Bj

d|μ|1(x) =
n∑

j=1
αj

1
m1(Bj)

∫
Bj

d|μ|1
dm1

(x) dm1(x),

we have
∑

j∈J αj � 1 − ε > 0 by Lemma 2.6. Note also that for each j ∈ J ,

1 − ε2

26 <
1

m1(Bj)

∫
Bj

d|μ|1
dm1

(x) dm1(x)

= 1
m1(Bj)

∫
Bj∩D

d|μ|1
dm1

(x) dm1(x) + 1
m1(Bj)

∫
Bj\D

d|μ|1
dm1

(x) dm1(x)

� m1(Bj ∩D)
m1(Bj)

+
(

1 − ε

8

)
m1(Bj \D)
m1(Bj)

= 1 − ε

8
m1(Bj \D)
m1(Bj)

.

Hence we deduce that, for all j ∈ J ,

m1(Bj \D)
m1(Bj)

� ε

8 .

Let B̃j = Bj ∩D and βj = αj∑
j∈J αj

for all j ∈ J and define

f1 =
∑

βj

χB̃j

m1(B̃j)
.

j∈J
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It is clear that f1 is a nonnegative element in SL1(m1) and

‖f0 − f1‖ �
∥∥∥∥∑

j∈J

αj

χBj

m1(Bj)
−
∑
j∈J

βj

χB̃j

m1(B̃j)

∥∥∥∥ +
∥∥∥∥ ∑

j∈{1,...,n}\J
αj

χBj

m1(Bj)

∥∥∥∥
�

∥∥∥∥∑
j∈J

αj

(
χBj

m1(Bj)
−

χB̃j

m1(B̃j)

)∥∥∥∥ +
∥∥∥∥∑

j∈J

(αj − βj)
χB̃j

m1(B̃j)

∥∥∥∥ +
∑

j∈{1,...,n}\J
αj

<

∥∥∥∥∑
j∈J

αj

(
χBj

m1(Bj)
−

χB̃j

m1(B̃j)

)∥∥∥∥ +
∑
j∈J

|αj − βj | + ε

=
∥∥∥∥∑

j∈J

αj

(
χBj

m1(Bj)
−

χB̃j

m1(B̃j)

)∥∥∥∥ + 1 −
∑
j∈J

αj + ε

� 2
∑
j∈J

αj
m1(Bj \D)
m1(Bj)

+ 2ε � ε

4 + 2ε < 3ε.

Define

dν(x, y) =
∑
j∈J

χB̃j
(x)

(
d|μ|1
dm1

(x)
)−1

dμ(x, y) + χ(J1\B̃) dμ(x, y),

where B̃ =
⋃

j∈J B̃j . It is clear that d|ν|1
dm1

(x) = 1 on B̃ and d|ν|1
dm1

(x) � 1 elsewhere. Note
also that for all x ∈ J1,

d|ν − μ|1
dm1

(x) =
∑
j∈J

χB̃j
(x)

((
d|μ|1
dm1

(x)
)−1

− 1
)
d|μ|1
dm1

� 1
1 − ε/8 − 1 = ε

8 − ε
< ε.

Hence Tν is a norm-one operator such that ‖Tμ−Tν‖ < ε, ‖f1−f0‖ < 3ε and d|ν|1
dm1

(x) = 1
for all x ∈ supp(f1). �
Lemma 3.4. Let 0 < ε < 1. Suppose that Tν is a norm-one operator in L(L1(m1), L1(m2))
and that f is a nonnegative norm-one simple function in SL1(m1) satisfying ‖Tνf‖ >

1 − ε6

27 and d|ν|1
dm1

(x) = 1 for all x in the support of f . Then there are a nonnegative
simple function f̃ in SL1(m1) and a norm-one operator Tν̃ in L(L1(m1), L1(m2)) such
that

‖Tν̃ f̃‖ = 1, ‖Tν − Tν̃‖ < 3
√
ε and ‖f − f̃‖ < 3ε.



224 Y.S. Choi et al. / Journal of Functional Analysis 267 (2014) 214–242
Proof. Let f =
∑n

j=1 βj
χBj

m1(Bj) , where {Bj}nj=1 are mutually disjoint Borel subsets of
J1, βj � 0 and m1(Bj) > 0 for all 1 � j � n, and

∑n
j=1 βj = 1. Since ‖Tνf‖ > 1 − ε6

27 ,
there is g ∈ SL∞(m2) such that

1 − ε6

27 < Re〈Tνf, g〉 =
n∑

j=1
βj Re

∫
J1×J2

χBj
(x)

m1(Bj)
(
g(y)

)
dν(x, y).

Let J = {j ∈ {1, . . . , n} : Re
∫
J1×J2

χBj
(x)

m1(Bj)g(y) dν(x, y) > 1 − ε3

26 }. From Lemma 2.6 it
follows that

∑
j∈J

βj > 1 − ε3

2 .

Let f1 =
∑

j∈J β̃j
χBj

m1(Bj) , where β̃j = βj/(
∑

j∈J βj) for all j ∈ J . Then

‖f1 − f‖ �
∥∥∥∥∑

j∈J

(β̃j − βj)
χBj

m1(Bj)

∥∥∥∥ +
∑
j∈J

βj � ε3 < ε.

Note that there is a Borel measurable function h on J1 × J2 such that dν(x, y) =
h(x, y) d|ν|(x, y) and |h(x, y)| = 1 for all (x, y) ∈ J1 × J2. Let

C =
{

(x, y) :
∣∣g(y)h(x, y) − 1

∣∣ < √
ε

23/2

}
.

Define two measures νf and νc as follows:

νf (A) = ν(A \ C) and νc(A) = ν(A ∩ C)

for every Borel subset A of J1 × J2. It is clear that

dν = dνf + dνc, d|νf | = h̄dνf , d|νc| = h̄dνc, and d|ν| = d|νf | + d|νc|.

Since d|ν|1
dm1

(x) = 1 for all x ∈
⋃n

j=1 Bj , we have |ν|1(Bj) = m1(Bj) for all 1 � j � n and

1 = d|ν|1
dm1

(x) = d|νf |1
dm1

(x) + d|νc|1
dm1

(x) for all x ∈ B =
n⋃

j=1
Bj .

We claim that |νf |1(Bj)
m1(Bj) � ε2

22 for all j ∈ J . Indeed, if |g(y)h(x, y) − 1| �
√
ε

23/2 , then
Re(g(y)h(x, y)) � 1 − ε

24 . So we have

1 − ε3

26 � 1
m1(Bj)

Re
∫

χBj(x)g(y) dν(x, y)

J1×J2
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= 1
m1(Bj)

∫
J1×J2

χBj(x) Re
(
g(y)h(x, y)

)
d|ν|(x, y)

= 1
m1(Bj)

∫
J1×J2

χBj(x) Re
(
g(y)h(x, y)

)
d|νf |(x, y)

+ 1
m1(Bj)

∫
J1×J2

χBj(x) Re
(
g(y)h(x, y)

)
d|νc|(x, y)

� 1
m1(Bj)

((
1 − ε

24

)
|νf |1(Bj) + |νc|1(Bj)

)

= 1 − ε

24
|νf |1(Bj)
m1(Bj)

.

This proves our claim.
We also claim that for each j ∈ J , there exists a Borel subset B̃j of Bj such that(

1 − ε

2

)
m1(Bj) � m1(B̃j) � m1(Bj)

and

d|νf |1
dm1

(x) � ε

2

for all x ∈ B̃j . Indeed, set B̃j = Bj ∩ {x ∈ J1 : d|νf |1
dm1

(x) � ε
2}. Then

∫
Bj\B̃j

ε

2 dm1(x) �
∫
Bj

d|νf |1
dm1

(x) dm1(x) = |ν1
f |(Bj) �

ε2

22m1(Bj).

This shows that m1(Bj \ B̃j) � ε
2m1(Bj). This proves our second claim.

Now, we define g̃ by g̃(y) = g(y)
|g(y)| if g(y) �= 0 and g̃(y) = 1 if g(y) = 0, and we write

f̃ =
∑

j∈J β̃j

χB̃j

m1(B̃j)
. Finally, we define the measure

dν̃(x, y) =
∑
j∈J

χB̃j
(x)g̃(y)h(x, y)dνc(x, y)

(
d|νc|1
dm1

(x)
)−1

+ χJ1\B̃(x)dν(x, y),

where B̃ =
⋃

j∈J B̃j . It is easy to see that d|ν̃|1
dm1

(x) = 1 on B̃ and d|ν̃|1
dm1

(x) � 1 elsewhere.
Note that

d(ν̃ − ν)(x, y) =
∑
j∈J

χB̃j
(x)

[
g̃(y)h(x, y)

(
d|νc|1
dm1

(x)
)−1

− 1
]
dνc(x, y)

−
∑

χB̃j
(x)dνf (x, y).
j∈J
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If (x, y) ∈ C, then |g(y)| � 1 −
√
ε

23/2 � 1 − 1
23/2 and

∣∣g̃(y)h(x, y) − 1
∣∣ =

∣∣∣∣ g(y)|g(y)|h(x, y) − 1
∣∣∣∣

� |g(y)h(x, y) − 1|
|g(y)| + |1 − |g(y)||

|g(y)|

� 2 |g(y)h(x, y) − 1|
|g(y)| � 2

√
ε

23/2
23/2

23/2 − 1
� 2

√
ε.

Hence, for all (x, y) ∈ C we have

∣∣∣∣g̃(y)h(x, y)
(
d|νc|1
dm1

(x)
)−1

− 1
∣∣∣∣

�
∣∣g̃(y)h(x, y) − 1

∣∣(d|νc|1
dm1

(x)
)−1

+
∣∣∣∣
(
d|νc|1
dm1

(x)
)−1

− 1
∣∣∣∣

� 2
√
ε

(
d|νc|1
dm1

(x)
)−1

+
∣∣∣∣
(
d|νc|1
dm1

(x)
)−1

− 1
∣∣∣∣.

So, we have for all x ∈ J1,

d|ν̃ − ν|1
dm1

(x) �
∑
j∈J

χB̃j
(x)

[
2
√
ε

(
d|νc|1
dm1

(x)
)−1

+
∣∣∣∣
(
d|νc|1
dm1

(x)
)−1

− 1
∣∣∣∣
]
d|νc|1
dm1

(x)

+
∑
j∈J

χB̃j
(x)d|νf |

1

dm1
(x)

�
∑
j∈J

χB̃j
(x)

(
2
√
ε +

(
1 − d|νc|1

dm1
(x)

))
+
∑
j∈J

χB̃j
(x)

(
d|νf |1
dm1

(x)
)

� 2
√
ε + ε < 3

√
ε.

This gives that ‖Tν − Tν̃‖ < 3
√
ε. Note also that, for all j ∈ J ,

〈
Tν̃

χB̃j

m1(B̃j)
, g̃

〉
=

∫
J1×J2

χB̃j
(x)

m1(B̃j)
g̃(y) dν̃(x, y)

=
∫

J1×J2

χB̃j
(x)

m1(B̃j)
h(x, y)

(
d|νc|1
dm1

(x)
)−1

dνc(x, y)

=
∫ χB̃j

(x)
m1(B̃j)

(
d|νc|1
dm1

(x)
)−1

d|νc|1(x)

J1
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=
∫
J1

χB̃j
(x)

m1(B̃j)
dm1(x) = 1.

Hence we get 〈Tν̃ f̃ , g̃〉 = 1, which implies that ‖Tν̃ f̃‖ = ‖Tν̃‖ = 1. Finally,

‖f̃ − f‖ � ‖f̃ − f1‖ + ‖f1 − f‖

=
∥∥∥∥∑

j∈J

β̃j

χB̃j

m1(B̃j)
−
∑
j∈J

β̃j

χBj

m1(Bj)

∥∥∥∥ + ε

�
∑
j∈J

β̃j

(∥∥∥∥ χB̃j

m1(B̃j)
−

χBj

m1(B̃j)

∥∥∥∥ +
∥∥∥∥ χBj

m1(B̃j)
−

χBj

m1(Bj)

∥∥∥∥
)

+ ε

= 2
∑
j∈J

β̃j
m1(Bj \ B̃j)

m1(B̃j)
+ ε

� 2
∑
j∈J

β̃j

ε
2m1(Bj)
m1(B̃j)

+ ε � ε

1 − ε/2 + ε < 3ε. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let 0 < ε < 1. Suppose that T is a norm-one element in
L(L1(m1), L1(m2)) and there is f ∈ SL1(m1) such that ‖Tf‖ > 1 − ε18

53227 . Then there is
an isometric isomorphism ψ from L1(m1) onto itself such that ψ(f) = |f |. Using T ◦ψ−1

instead of T , we may assume that f is nonnegative. Since simple functions are dense in
L1(m1), we can choose a nonnegative simple function f0 ∈ SL1(m1) arbitrarily close to f

so that

‖Tf0‖ > 1 − ε18

53227 = 1 − ε3
1

26 ,

where ε1 = ε6

5·27 . By Lemma 3.3, there exist a norm-one bounded linear operator Tν

for some ν ∈ M(m1,m2) and a nonnegative simple function f1 in SL1(M1) such that
‖T − Tν‖ < ε1, ‖f1 − f‖ < 3ε1 and d|ν|1

dm1
(x) = 1 for all x ∈ supp(f1). Then

‖Tνf1‖ � ‖Tf‖ − ‖Tf − Tνf‖ −
∥∥Tν(f − f1)

∥∥ � 1 − ε3
1

26 − ε1 − 3ε1 � 1 − 5ε1 = 1 − ε6

27 .

Now, by Lemma 3.4, there exist a nonnegative simple function f̃ and an operator Tν̃ in
L(L1(m1), L1(m2)) such that ‖Tν̃ f̃‖ = ‖Tν̃‖ = 1, ‖Tν − Tν̃‖ � 3

√
ε and ‖f1 − f̃‖ � 3ε.

Therefore, ‖T − Tν̃‖ < 4
√
ε and ‖f − f̃‖ < 4ε, which complete the proof. �

4. The Bishop–Phelps–Bollobás property of (L1(μ), L∞(ν))

Our aim now is to show that (L1(μ), L∞(ν)) has the BPBp for any measure μ and
any localizable measure ν.
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Theorem 4.1. Let μ be an arbitrary measure and let ν be a localizable measure. Then the
pair (L1(μ), L∞(ν)) has the BPBp. Moreover,

η
(
L1(μ), L∞(ν)

)
(ε) �

(
ε

10

)8

(0 < ε < 1).

By Corollaries 2.2 and 2.5, it is enough to prove the result in the case where μ is
σ-finite and ν is the product measure on [0, 1]Λ. Therefore, we just need to prove the
following result.

Theorem 4.2. Assume μ is a σ-finite measure and ν is the product measure of Lebesgue
measures on [0, 1]Λ. Let 0 < ε < 1/3, let T : L1(μ) −→ L∞(ν) be a bounded linear
operator of norm one and let f0 ∈ SL1(μ) satisfy ‖T (f0)‖∞ > 1 − ε8. Then there exist
S ∈ L(L1(μ), L∞(ν)) with ‖S‖ = 1 and g0 ∈ SL1(μ) such that

∥∥S(g0)
∥∥
∞ = 1, ‖T − S‖ < 2ε and ‖f0 − g0‖1 < 10ε.

Recall that the particular case where Λ reduces to one point was established in [10].
Actually, our proof is based on the argument given there.

Prior to giving the proof of Theorem 4.2, we state the following representation result
for operators from L1(μ) into L∞([0, 1]Λ) and one lemma.

Let (Ω,Σ, μ) be a σ-finite measure space and let K = [0, 1]Λ be the product space
equipped with the product measure ν of the Lebesgue measures. Let J be a countable
subset of Λ and let πJ be the natural projection from K onto [0, 1]J . Fix a sequence (Πn)
of finite partitions of [0, 1]J into sets of positive measure such that Πn+1 is a refinement
of Πn for each n, and the σ-algebra generated by

⋃∞
n=1 Πn is the Borel σ-algebra of

[0, 1]J . For each y ∈ K and n ∈ N, let B(n, πJ (y)) be the set in Πn containing πJ(y).
Then, given a Borel set F of the form F0 × [0, 1]Λ\J with F0 ⊂ [0, 1]J , define

δ(F ) =
{
y ∈ K : lim

n→∞

ν(F ∩ π−1
J (B(n, πJ(y)))

ν(π−1
J (B(n, πJ(y)))

= 1
}
.

It is easy to check that δ(F ) = δJ(F0) × [0, 1]Λ\J , where

δJ(F0) =
{
y ∈ [0, 1]J : lim

n→∞

ν(π−1
J (F0 ∩B(n, y)))
ν(π−1

J (B(n, y)))
= 1

}
.

Using the martingale almost everywhere convergence theorem [22], we have

ν
(
FΔδ(F )

)
= 0

where FΔδ(F ) denotes the symmetric difference of the sets F and δ(F ).
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On the other hand, it is well-known that the space L(L1(μ), L∞(ν)) is isometrically
isomorphic to the space L∞(μ⊗ν), where μ⊗ν denotes the product measure on Ω×K.
More precisely, the operator ĥ corresponding to h ∈ L∞(μ⊗ ν) is given by

ĥ(f)(t) =
∫
Ω

h(ω, t)f(ω) dμ(ω)

for ν-almost every t ∈ K. For a reference, see [20]. For a measurable subset M of Ω×K,
let Mx = {y ∈ K : (x, y) ∈ M} for each x ∈ Ω and My = {x ∈ Ω : (x, y) ∈ M} for
each y ∈ K.

Lemma 4.3. Let M be a measurable subset of Ω ×K with positive measure, 0 < ε < 1,
and let f0 be a simple function. If ‖χ̂M (f0)‖∞ > 1−ε, then there exists a simple function
g0 ∈ SL1(μ) such that

∥∥[χ̂M + ϕ̂](g0)
∥∥
∞ = 1 and ‖f0 − g0‖1 < 4

√
ε

for every simple function ϕ in L∞(μ⊗ ν) with ‖ϕ‖∞ � 1 and vanishing on M .

Proof. Write f0 =
∑m

j=1 αj
χAj

μ(Aj) ∈ SL1(μ), where each Aj is a measurable subset of Ω
with finite positive measure, Ak ∩Al = ∅ for k �= l, and αj is a positive real number for
every j = 1, . . . ,m with

∑m
j=1 αj = 1. Since ‖χ̂M (f0)‖∞ > 1 − ε, there is a measurable

subset B of K such that 0 < ν(B) and
〈
χ̂M (f0),

χB

ν(B)

〉
> 1 − ε.

We may assume that there is a countable subset J of Λ such that M = M0 × [0, 1]Λ\J

and B = B0 × [0, 1]Λ\J for some measurable subsets M0 ⊂ Ω × [0, 1]J and B0 ⊂ [0, 1]J .
For each j ∈ {1, . . . ,m}, we write Mj = M ∩ (Aj × B) = (M0 ∩ (Aj × B0)) × [0, 1]Λ\J

and define

Hj =
{
(x, y) : x ∈ Aj , y ∈ δ

(
(Mj)x

)}
.

As in the proof of [35, Proposition 5], the Hj ’s are disjoint measurable subsets of Ω×K.
We note that for each j ∈ {1, . . . ,m}, we have Hj ⊂ Aj×δ(B) and (μ⊗ν)(MjΔHj) = 0.

Now, by Fubini theorem, we have that

1 − ε <

〈
χ̂M (f0),

χB

ν(B)

〉

=
m∑
j=1

αj

μ(Aj)ν(B)

∫
χMj

(x, y) d(μ⊗ ν)

Ω×K
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=
m∑
j=1

αj

μ(Aj)ν(B)

∫
Ω×K

χHj
(x, y) d(μ⊗ ν)

=
m∑
j=1

αj

ν(B)

∫
δ(B)

μ(Hy
j )

μ(Aj)
dν(y)

= 1
ν(δ(B))

∫
δ(B)

m∑
j=1

αj

μ(Hy
j )

μ(Aj)
dν(y).

So, there exists y0 ∈ δ(B) such that

m∑
j=1

αj

μ(Hy0
j )

μ(Aj)
> 1 − ε.

Let J = {j ∈ {1, . . . ,m} : μ(Hy0
j )

μ(Aj) > 1−√
ε}. For each j ∈ J , we have that μ(Aj \Hy0

j ) <√
εμ(Aj) and, by Lemma 2.6, we also have αJ :=

∑
j∈J αj > 1 −√

ε. Define

g0 =
∑
j∈J

βj

χH
y0
j

μ(Hy0
j ) ,

where βj = αj/αJ . Then

‖g0 − f0‖ <

∥∥∥∥∑
j∈J

βj

χH
y0
j

μ(Hy0
j ) −

∑
j∈J

αj

χAj

μ(Aj)

∥∥∥∥ +
√
ε

�
∥∥∥∥∑

j∈J

βj

χH
y0
j

μ(Hy0
j ) −

∑
j∈J

βj

χAj

μ(Aj)

∥∥∥∥ +
∥∥∥∥∑

j∈J

βj

χAj

μ(Aj)
−
∑
j∈J

αj

χAj

μ(Aj)

∥∥∥∥ +
√
ε

�
∥∥∥∥∑

j∈J

βj

χH
y0
j

μ(Hy0
j ) −

∑
j∈J

βj

χH
y0
j

μ(Aj)

∥∥∥∥ +
∥∥∥∥∑

j∈J

βj

χH
y0
j

μ(Aj)
−
∑
j∈J

βj

χAj

μ(Aj)

∥∥∥∥ + 2
√
ε

� 2
μ(Aj \Hy0

j )
μ(Aj)

+ 2
√
ε � 4

√
ε

We claim that χ̂M + ϕ̂ attains its norm at g0. Let Bn = π−1
J (B(n, πJ (y0))) for each n.

Note that for every x ∈ Hy0
j we have (x, y0) ∈ Hj , which implies that

lim
n→∞

ν((Mj)x ∩Bn)
ν(Bn) = 1.

It follows from the Lebesgue dominated convergence theorem and Fubini theorem that,
for each j ∈ J ,
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1 = lim
n→∞

1
μ(Hy0

j )

∫
H

y0
j

ν((Mj)x ∩Bn)
ν(Bn) dμ(x)

= lim
n→∞

(μ⊗ ν)(Mj ∩ (Hy0
j ×Bn))

μ(Hy0
j )ν(Bn) .

On the other hand, since the simple function ϕ is assumed to vanish on M and ‖ϕ‖∞ � 1,
we have ∣∣∣∣

〈
ϕ̂

( χH
y0
j

μ(Hy0
j )

)
,
χBn

ν(Bn)

〉∣∣∣∣ =
∣∣∣∣ 1
μ(Hy0

j )ν(Bn)

∫
H

y0
j ×Bn

ϕ d(μ⊗ ν)
∣∣∣∣

�
(μ⊗ ν)((Hy0

j ×Bn) \Mj)
μ(Hy0

j )ν(Bn)

= 1 −
(μ⊗ ν)(Mj ∩ (Hy0

j ×Bn))
μ(Hy0

j )ν(Bn) −→ 0,

as n → ∞. Therefore,

1 �
∥∥[χ̂M + ϕ̂](g0)

∥∥
∞ � lim

n→∞

∣∣∣∣
〈

(χ̂M + ϕ̂)
(∑

j∈J

βj

χH
y0
j

μ(Hy0
j )

)
,
χBn

ν(Bn)

〉∣∣∣∣
= lim

n→∞

∑
j∈J

βj

(μ⊗ ν)(M ∩ (Hy0
j ×Bn))

μ(Hy0
j )ν(Bn)

� lim
n→∞

∑
j∈J

βj

(μ⊗ ν)(Mj ∩ (Hy0
j ×Bn))

μ(Hy0
j )ν(Bn) = 1,

which shows that χ̂M + ϕ̂ attains its norm at g0. �
We are now ready to give the proof of the main result in this section.

Proof of Theorem 4.2. Since the set of all simple functions is dense in L1(μ), we may
assume

f0 =
m∑
j=1

αj

χAj

μ(Aj)
∈ SL1(μ),

where each Aj is a measurable subset of Ω with finite positive measure, Ak ∩ Al = ∅
for k �= l, and every αj is a nonzero complex number with

∑m
j=1 |αj | = 1. We may

also assume that 0 < αj � 1 for every j = 1, . . . ,m. Indeed, there exists an isometric
isomorphism Ψ : L1(μ) −→ L1(μ) such that Ψ(f0) = |f0|. Hence we may replace T

and f0 by T ◦ Ψ−1 and Ψ(f0), respectively.
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Let h be the element in L∞(Ω ×K,μ ⊗ ν) with ‖h‖∞ = 1 corresponding to T , that
is, T = ĥ. We may find a simple function

h0 ∈ L∞(Ω ×K,μ⊗ ν), ‖h0‖∞ = 1

such that ‖h − h0‖∞ < ‖T (f0)‖∞ − (1 − ε8), hence ‖ĥ0(f0)‖∞ > 1 − ε8. We can write
h0 =

∑p
l=1 clχDl

, where each Dl is a measurable subset of Ω×K with positive measure,
Dk ∩Dl = ∅ for k �= l, |cl| � 1 for every l = 1, . . . , p, and |cl0 | = 1 for some 1 � l0 � p.

Let B be a Lebesgue measurable subset of K with 0 < ν(B) < ∞ such that
∣∣∣∣
〈
ĥ0(f0),

χB

ν(B)

〉∣∣∣∣ > 1 − ε8.

Choose θ ∈ R so that

1 − ε8 <

∣∣∣∣
〈
ĥ0(f0),

χB

ν(B)

〉∣∣∣∣
= eiθ

〈
ĥ0(f0),

χB

ν(B)

〉

=
m∑
j=1

αj eiθ
〈
ĥ0

(
χAj

μ(Aj)

)
,
χB

ν(B)

〉
.

Set

J =
{
j ∈ {1, . . . ,m} : Re

[
eiθ

〈
ĥ0

(
χAj

μ(Aj)

)
,
χB

ν(B)

〉]
> 1 − ε4

}
.

By Lemma 2.6, we have

αJ =
∑
j∈J

αj > 1 − ε8

1 − (1 − ε4) = 1 − ε4.

We define

f1 =
∑
j∈J

(
αj

αJ

)
χAj

μ(Aj)
.

We have that ‖f1‖1 = 1,

‖f0 − f1‖1 �
∥∥∥∥∑

j /∈J

αj

χAj

μ(Aj)

∥∥∥∥
1

+
(

1
αJ

− 1
)∥∥∥∥∑

j∈J

αj

χAj

μ(Aj)

∥∥∥∥
1

=
∑

αj + (1 − αJ ) = 2(1 − αJ ) < 2ε4,

j /∈J



Y.S. Choi et al. / Journal of Functional Analysis 267 (2014) 214–242 233
and ∣∣∣∣
〈
ĥ0(f1),

χB

ν(B)

〉∣∣∣∣ � Re
[
eiθ

〈
ĥ0(f1),

χB

ν(B)

〉]

= 1
αJ

∑
j∈J

αj Re
[
eiθ

〈
ĥ0

(
χAj

μ(Aj)

)
,
χB

ν(B)

〉]

>
1
αJ

∑
j∈J

αj

(
1 − ε4) = 1 − ε4.

Let L = {l ∈ {1, . . . , p} : Re(eiθcl) > 1 − ε2

2 }. On the other hand, for each j ∈ J , we
have

1 − ε4 < Re
[
eiθ

〈
ĥ0

(
χAj

μ(Aj)

)
,
χB

ν(B)

〉]

=
p∑

l=1

Re
(
eiθcl

) (μ⊗ ν)(Dl ∩ (Aj ×B))
μ(Aj)ν(B)

�
∑

l∈{1,...,p}\L

(
1 − ε2

2

)
(μ⊗ ν)(Dl ∩ (Aj ×B))

μ(Aj)ν(B)

+
∑
l∈L

(μ⊗ ν)(Dl ∩ (Aj ×B))
μ(Aj)ν(B)

� 1 − ε2

2
∑

l∈{1,...,p}\L

(μ⊗ ν)(Dl ∩ (Aj ×B))
μ(Aj)ν(B) .

This implies that for each j ∈ J

∑
l∈{1,...,p}\L

(μ⊗ ν)(Dl ∩ (Aj ×B))
μ(Aj)ν(B) � 2ε2.

Since
p∑

l=1

(μ⊗ ν)(Dl ∩ (Aj ×B))
μ(Aj)ν(B) > 1 − ε4,

for every j ∈ J we have that

∑
l∈L

(μ⊗ ν)(Dl ∩ (Aj ×B))
μ(Aj)ν(B) �

(
1 − ε4 − 2ε2) � 1 − 3ε2.

Set D =
⋃

l∈L Dl. Then we have〈
χ̂D(f1),

χB

ν(B)

〉
=

∑(
αj

αJ

)
·
∑ μ⊗ ν(Dl ∩ (Aj ×B))

μ(Aj)ν(B) � 1 − 3ε2.

j∈J l∈L
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By Lemma 4.3, there is g0 ∈ SL1(μ) such that ‖(χ̂D + ϕ̂)(g0)‖∞ = 1 and ‖f1 − g0‖ <

4
√

3ε2 < 8ε for every simple function ϕ in L∞(μ ⊗ ν) vanishing on D with ‖ϕ‖∞ � 1.
Therefore, we have

‖f0 − g0‖1 � ‖f0 − f1‖1 + ‖f1 − g0‖1 � 2ε4 + 8ε < 10ε.

Define

h1 = e−iθ χD +
∑
l/∈L

clχDl
∈ L∞(μ⊗ ν).

Let S be the operator in L(L1(μ), L∞(m)) corresponding to h1. Then we get
∥∥S(g0)

∥∥
∞ =

∥∥ĥ1(g0)
∥∥
∞ = 1

and

‖h0 − h1‖∞ = max
l∈L

∣∣cl − e−iθ
∣∣ = max

l∈L

∣∣eiθcl − 1
∣∣.

As Re(eiθcl) > 1 − ε2

2 for every l ∈ L, we have that

(
Im

(
eiθcl

))2 � 1 −
(
Re

(
eiθcl

))2
< 1 −

(
1 − ε2

2

)2

= ε2 − ε4

4 .

Since

∣∣eiθcl − 1
∣∣ =

√(
1 − Re

(
eiθcl

))2 +
(
Im

(
eiθcl

))2
<

√
ε4/4 +

(
ε2 − ε4/4

)
= ε,

we conclude that

‖h0 − h1‖∞ < ε

and

‖T − S‖∞ � ‖h− h0‖∞ + ‖h0 − h1‖∞ < ε8 + ε < 2ε. �
5. The Bishop–Phelps–Bollobás Property for some operators from L1(μ) into C(K)

Throughout this section, we consider only a finite measure μ on a measurable space
(Ω,Σ) and real Banach spaces L1(μ) and C(K). Our aim is to obtain the Bishop–
Phelps-Bollobás property for some classes of operators from L1(μ) to C(K), sharpening
the results about denseness of norm-attaining operators given by Iwanik in 1982 [26].
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We use the following standard representation of operators into C(K) [23, Theorem 1
on p. 490].

Lemma 5.1. Given a bounded linear operator T : X −→ C(K), define F : K −→ X∗ by
F (s) = T ∗(δs), where δs is the point measure at s ∈ K. Then, for x ∈ X, the relation
Tx(s) = 〈x, F (s)〉 defines an isometric isomorphism of L(X,C(K)) onto the space of
weak∗ continuous functions from K to X∗ with the supremum norm. Moreover, compact
operators correspond to norm continuous functions.

Iwanik [26] considered operators T ∈ L(L1(μ), C(K)) satisfying one of the following
conditions:

(1) The map s 	−→ T ∗δs is continuous in measure.
(2) There exists a co-meager set G ⊂ K such that {T ∗δs : s ∈ G} is norm separable

in L∞(μ).

We recall that a subset A is said to be a co-meager subset of K if the set K \A is meager,
that is, of first category.

Theorem 5.2. Let 0 < ε < 1. Suppose that T ∈ L(L1(μ), C(K)) (real case) has norm
one and satisfies condition (1). If ‖Tf‖ > 1 − ε2

6 for some f ∈ SL1(μ), then there exist
S ∈ L(L1(μ), C(K)) with ‖S‖ = 1 and g ∈ SL1(μ) such that ‖Sg‖ = 1, ‖S−T‖ < ε, and
‖f − g‖ < ε. Moreover, S also satisfies condition (1).

Proof. Without loss of generality, we assume that there exists s0 ∈ K such that

Tf(s0) > 1 − ε2

6 .

Consider the function G : L∞(μ) −→ L∞(μ) given by

G(h) =
(
h ∧ (1 − ε/3)

)
∨ (−1 + ε/3)

(
h ∈ L∞(μ)

)
.

Since the lattice operation G is continuous in the L∞ norm and T satisfies condi-
tion (1), we can see that the mapping s 	−→ GT ∗δs is continuous in measure, hence
weak∗-continuous. Let S̄ be the element of L(L1(μ), C(K)) represented by the function
F (s) := GT ∗δs. Then

‖S̄ − T‖ = sup
s∈K

∥∥F (s) − T ∗δs
∥∥ � ε

3 .

Let

C =
{
ω ∈ Ω : sign

(
f(ω)

)
T ∗δs(ω) > 1 − ε

}

3
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and define S = S/‖S‖ and g = f |C/‖f |C‖, where f |C is the restriction of f to the
subset C. It is easy to see that S satisfies condition (1) and

‖S − T‖ � ‖S − S‖ + ‖S − T‖ =
∣∣‖S̄‖ − 1

∣∣ + ‖S̄ − T‖ � 2‖S̄ − T‖ < ε.

Moreover, we get

1 − ε2

6 < Tf(s0) =
〈
T ∗δs0 , f

〉
=

∫
Ω

T ∗δs0(ω)f(ω) dμ

=
∫
C

sign
(
f(ω)

)
T ∗δs0(ω)

∣∣f(ω)
∣∣ dμ +

∫
Ω\C

sign
(
f(ω)

)
T ∗δs0(ω)

∣∣f(ω)
∣∣ dμ

�
∫
C

∣∣f(x)
∣∣ dμ +

(
1 − ε

3

) ∫
Ω\C

∣∣f(ω)
∣∣ dμ

= 1 − ε

3

∫
Ω\C

∣∣f(x)
∣∣dμ,

which implies that ∫
Ω\C

∣∣f(x)
∣∣ dμ <

ε

2 .

Therefore,

‖g − f‖ � ‖g − f |C‖ + ‖f |C − f‖ = 2
(
1 − ‖fC‖

)
= 2

∫
Ω\C

∣∣f(x)
∣∣dμ < ε

On the other hand, we see that Sg(s0) = 〈S∗δs0 , g〉 = 1 because S∗δs0(ω) = sign(f(x)) =
sign(g(ω)) for every ω ∈ C. This completes the proof. �

We do not know, and it is clearly of interest, for which topological compact Hausdorff
spaces K all operators in L(L1(μ), C(K)) satisfy condition (1).

We recall that a bounded linear operator T from L1(μ) into a Banach space X is
said to be Bochner representable if there is a bounded strongly measurable function
g : Ω −→ X such that

Tf =
∫

f(ω)g(ω) dμ(ω)
(
f ∈ L1(μ)

)
.

The Dunford–Pettis–Phillips Theorem [21, Theorem 12, p. 75] says that T ∈ L(L1(μ), X)
is weakly compact if and only if T is Bochner representable by a function g which has
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an essentially relatively weakly compact range. Iwanik [26] showed that every Bochner
representable operator from L1(μ) into C(K) satisfies condition (1). Moreover, we get
the following result which has been independently obtained in [6, Corollary 2.4].

Corollary 5.3. Let 0 < ε < 1. Suppose that T ∈ L(L1(μ), C(K)) (real case) has norm-one
and it is Bochner representable (resp. weakly compact). If ‖Tf‖ > 1 − ε2

6 for some
f ∈ SL1(μ), then there exist a Bochner representable (resp. weakly compact) operator
S ∈ L(L1(μ), C(K)) with ‖S‖ = 1 and g ∈ SL1(μ) such that ‖Sg‖ = 1, ‖S−T‖ < ε, and
‖f − g‖ < ε.

Proof. By Theorem 5.2, it is enough to show that if T is a Bochner representable op-
erator from L1(μ) into C(K), then F (s) = T ∗δs is continuous in measure and that the
operator S defined in the proof is Bochner representable.

Let g : Ω −→ C(K) be a bounded strongly measurable function which represents T .
It is easy to check that F (s) = g(·)(s) for all s ∈ K. Since the range of g is separable, the
range of T is separable and contained in a separable sub-algebra A of C(K) with unit.
By the Gelfand representation theorem, A is isometrically isomorphic to C(K̄) for some
compact metrizable space K̄. So, we may assume that K is metrizable. To show that the
mapping F (s) = T ∗δs = g(ω)(s) is continuous in measure, assume that a sequence (sn)
converges to s in K. Then for all ω ∈ Ω,

lim
n→∞

∣∣g(ω)(sn) − g(ω)(s)
∣∣ = 0.

By the dominated convergence theorem, we have that

lim
n→∞

sup
f∈SL∞(μ)

∫
f(ω)

(
g(ω)(sn) − g(ω)(s)

)
dμ(ω)

� lim
n→∞

∫ ∣∣g(ω)(sn) − g(ω)(s)
∣∣ dμ(ω) = 0.

Hence the sequence (g(·)(sn))n converges to g(·)(s) in measure. That is, (F (sn))n con-
verges to F (s).

We note that the operator S̄ in the proof of Theorem 5.2 is determined by GT ∗δs =
G(g(·)(s)). Since the mapping

s 	−→ G
(
g(·)(s)

)
(ω) =

(
g(ω)(s) ∧ (1 − ε/3)

)
∨ (−1 + ε/3)

is continuous for each ω ∈ Ω, the operator S̄ is Bochner representable by this mapping.
Finally, if T is weakly compact, then the proof is done by the Dunford–Pettis–Phillips
theorem. �

As observed in [26], the operator T : L1[0, 1] −→ C[0, 1] determined by T ∗δs = χ[0,s]
is not Bochner representable, but satisfies condition (1).

For condition (2), we have the following result.
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Theorem 5.4. Let 0 < ε < 1. Suppose that T ∈ L(L1(μ), C(K)) (real case) has norm-one
and satisfies condition (2). If ‖Tf‖ > 1 − ε2

4 for some f ∈ SL1(μ), then there exist
S ∈ L(L1(μ), C(K)) with ‖S‖ = 1 and g ∈ SL1(μ) such that ‖Sg‖ = 1, ‖S−T‖ < ε, and
‖f − g‖ < ε. Moreover, S also satisfies condition (2).

Proof. By using a suitable isometric isomorphism, we may first assume that f is non-
negative. Let G be the co-meager set in the condition (2) and (T ∗δsk)k be a sequence
which is ‖ · ‖∞-dense in the closure of {T ∗δs : s ∈ G} ⊂ L∞(μ). Observe that the sets

{
ω ∈ Ω : a < T ∗δsk(ω) < b

}
where a, b ∈ Q and k � 1, form a countable family {Ai}i of measurable subsets of Ω.
We define, for each i, the functions

ui(s) = ess.inf
{
T ∗δs(ω) : ω ∈ Ai

}
and vi(s) = ess.sup

{
T ∗δs(ω) : ω ∈ Ai

}
.

Let Ui and Vi be the set of all continuity points of ui and vi for all i, respectively. Let
F be the intersection of all subsets Ui’s and Vi’s. We claim that the functions ui’s are
upper semi-continuous and the functions vi’s are lower semi-continuous. Indeed, recall
(see [36, 3.7 Definition] for a reference) that

vi(s) = inf
{
λ ∈ R : μ

{
ω ∈ Ai : T ∗δs(ω) > λ

}
= 0

}
,

where inf ∅ = ∞ and inf R = −∞. To show that the set {s : λ < vi(s)} is open in K for
all λ ∈ R, suppose that vi(s0) > λ0 for some s0 ∈ K and λ0 ∈ R. It suffices to prove
that there is an open neighborhood V of s0 such that V ⊂ {s : vi(s) > λ0}. We note
that μ{ω ∈ Ai : T ∗δs0(ω) > λ0} > 0 and there exists λ1 > λ0 such that

μ
{
ω ∈ Ai : T ∗δs0(ω) > λ1

}
> 0.

Let E = {ω ∈ Ai : T ∗δs0(ω) > λ1}. Then

1
μ(E)

∫
E

T ∗δs0(ω)dμ(ω) > λ1 > λ0.

Since the map s 	−→ T ∗δs is weak∗ continuous on L∞(μ), the set

V :=
{
s ∈ K : 1

μ(E)

∫
T ∗δs(ω)dμ(ω) > λ1

}

E
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is an open subset containing s0. We note that μ{ω ∈ Ai : T ∗δs(ω) > λ1} > 0 for all
s ∈ V . Otherwise, there is s1 ∈ V such that μ{ω ∈ Ai : T ∗δs1(ω) > λ1} = 0. Then
T ∗δs1(ω) � λ1 almost everywhere ω ∈ Ai and

1
μ(E)

∫
E

T ∗δs1(ω)dμ(ω) � λ1.

This is a contradiction to the fact that s1 is an element of V , which implies that vi(s) > λ0
for all s ∈ V and V ⊂ {s : vi(s) > λ0}. This gives the lower semi-continuity of vi. The
upper semi-continuity of ui follows from the fact that −ui is lower semi-continuous. The
claim is proved.

We deduce then that the set F is co-meager (cf. see [31, § 32 II, p. 400]). Since the
set {s : s ∈ K, |Tf(s)| > 1 − ε2

4 } is nonempty and open, there exists s0 ∈ F ∩ G such
that |Tf(s0)| > 1 − ε2

4 . Without loss of generality, we may assume that

Tf(s0) =
〈
T ∗δs0 , f

〉
> 1 − ε2

4 .

Because of the denseness of the sequence (T ∗δsk)k, there exists k0 ∈ N such that

Tf(sk0) =
〈
T ∗δsk0

, f
〉
> 1 − ε2

4 and
∥∥T ∗δs0 − T ∗δsk0

∥∥ <
ε

4 .

Fix q ∈ Q such that 1 − 3
4ε < q < 1 − ε

2 and let

C =
{
ω ∈ Ω : T ∗δsk0

(ω) > q
}
.

Then

1 − ε2

4 <
〈
T ∗δsk0

, f
〉

=
∫
Ω

T ∗δsk0
(ω)f(ω) dμ

=
∫
C

T ∗δsk0
(ω)f(ω) dμ +

∫
Ω\C

T ∗δsk0
(ω)f(ω) dμ

�
∫
C

f(ω) dμ +
(

1 − ε

2

) ∫
Ω\C

f(ω) dμ

= 1 − ε

2

∫
Ω\C

f(ω) dμ.

Hence we have that ∫
f(ω) dμ <

ε

2 and
∫

f(ω) dμ > 1 − ε

2 .

Ω\C C
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Let Bn = {ω : q < T ∗δsk0
(ω) < n} for each n. Then C =

⋃∞
n=1 Bn and there exists n0

such that
∫

Bn0

f(ω) dμ > 1 − ε

2 .

Hence Bn0 = Ai0 for some i0 and μ(Ai0) > 0. This implies that ui0(sk0) � q and
ui0(s0) � q − ε

4 > 1 − ε. Setting A = Ai0 , it is also clear that

∥∥∥∥ f |A
‖f |A‖

− f

∥∥∥∥ < ε.

Since ui0 is continuous at s0, there exist an open neighborhood U of s0 and a continuous
function h : K −→ [0, 1] such that ui0(s) > 1− ε for all s ∈ U , h(s0) = 1 and h(U c) = 0.
We define a weak∗-continuous map M : K −→ L∞(μ) by

M(s)(ω) = T ∗δs(ω) + χA(ω)h(s)
(
1 − T ∗δs(ω)

)
(ω ∈ Ω, s ∈ K).

We note that M(s0) = 1 for all ω ∈ A. It is also easy to get that

∥∥M(s)(ω) − T ∗δs(ω)
∥∥ =

∥∥χA(ω)h(s)
(
1 − T ∗δs(ω)

)∥∥ < ε and sup
s∈K

∥∥M(s)
∥∥ = 1.

Let S be the operator represented by the function M . Then S satisfies condition (2),
S( f |A

‖f |A‖ )(s0) = 1 and ‖S − T‖ < ε. �
As shown in [26], the Dunford–Pettis–Phillips Theorem implies that every weakly

compact operator T in from L1(μ) to an arbitrary Banach space Y has separable range,
hence the range of its weakly compact adjoint T ∗ is also separable and so T satisfies
condition (2). On the other hand, there are Bochner representable operators which do
not satisfy the condition (2) (see [26]). Indeed, let μ be a strictly positive probability
measure on N and consider the operator T ∈ L(L1(μ), C({0, 1}N)) defined by Tf(s) =∫
f(n)πn(s) dμ(n), where πn be the n-th natural projection on {0, 1}N. Then T is Bochner

representable, while {T ∗δs : s ∈ G} is non-separable in L∞(μ) for every uncountable
subset G of {0, 1}N.

Finally, let us comment that it is also observed in [26] that if K has a countable
dense subset of isolated points, then condition (2) is automatically satisfied for all T ∈
L(L1(μ), C(K)). Actually, in this case, C(K) has the so-called property (β) and then
the pair (X,C(K)) has the BPBp for all Banach spaces X [4, Theorem 2.2].

It would be of interest to characterize those topological Hausdorff compact spaces K

such that (X,C(K)) has the BPBp for every Banach space X.
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