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Norm-attaining operators
Bishop—Phelps—Bollobas theorem

1. Introduction

The celebrated Bishop—Phelps theorem of 1961 [12] states that for a Banach space X,
every element in its dual space X* can be approximated by ones that attain their
norms. Since then, there has been an extensive research to extend this result to bounded
linear operators between Banach spaces [1,14,27,33,34,37] and non-linear mappings
[2,3,8,16,17,29]. On the other hand, Bollobas [13], motivated by problems arising in
the theory of numerical ranges, sharpened the Bishop—Phelps theorem in 1970, and got
what is nowadays called the Bishop—Phelps—Bollobas theorem. Previously to presenting
this result, let us introduce some notations. Given a (real or complex) Banach space X,
we write Bx for the unit ball, Sx for its unit sphere, and X* for the topological dual
space of X. If Y is another Banach space, we write £(X,Y") to denote the space of all
bounded linear operators from X into Y.

Theorem 1.1 (Bishop—Phelps—Bollobds theorem). Let X be a Banach space. If x € Sx
and x* € Sx~ satisfy |z*(x) — 1| < €2 /4, then there exist y € Sx and y* € Sx~ such that
v =1 llz" —y*ll <e and [lz —y| <e.

In 2008, Acosta, Aron, Garcia and Maestre [4] introduced the Bishop—Phelps—Bollobés
property to study extensions of the theorem above to operators between Banach spaces.

Definition 1.2. Let X and Y be Banach spaces. The pair (X,Y) is said to have the
Bishop—Phelps—Bollobds property (BPBp) if for every 0 < € < 1, there is n(g) > 0 such
that for every T € L(X,Y) with ||T|| = 1 and zy € Sx satisfying || T(zo)|| > 1 — n(e),
there exist yo € Sx and S € L(X,Y) with ||S|| = 1 satisfying the following conditions:

[Syoll =1,  llyo— ol <&, and [S—T| <e.
In this case, we also say that the Bishop—Phelps—Bollobds theorem holds for £(X,Y).

This property has been studied by many authors. See for instance [7,9,11,15,18,19,
28,30]. Observe that the BPBp of a pair (X,Y) implies obviously that the set of norm
attaining operators is dense in £(X,Y). However, its converse is false, as shown by the
pair (X,Y) where X is the 2-dimensional Li-space and Y is a strictly, but not uniformly
convex space (see [4] or [11]). Let us also comment that the Bishop—Phelps—Bollobés
theorem states that the pair (X, K) has the Bishop—Phelps—Bollobés property for every
Banach space X (K is the base scalar field R or C).

In this paper we first deal with the problem of when the pair (L,(u), Ly(v)) has the
BPBp. Let us start with a presentation of both already known results and our new



216 Y.S. Choi et al. / Journal of Functional Analysis 267 (2014) 214—-242

results. Iwanik [25] showed in 1979 that the set of norm-attaining operators from Lj (1)
to Ly (v) is dense in the space £(L;1(u), L1(v)) for arbitrary measures p and v. Our first
main result in this paper is that the pair £(L;(u), L1(v)) has the BPBp. This is the
content of Section 3.

On the other hand, Aron et al. [10] showed that if u is a o-finite measure, then the
pair (L1 (pt), Lso[0,1]) has the BPBp, improving a result of Finet and Payd [24] about
the denseness of norm-attaining operators. We generalize this result in Section 4 showing
that (L1 (1), Loo(v)) has the BPBp for every measure p and every localizable measure v.
This is also a strengthening of a result of Payd and Saleh [35] which stated only the
denseness of norm-attaining operators.

One of the tools used to prove the results above is the fact that one can reduce the
proofs to some particular measures. We develop this idea in Section 2, where, as its first
easy application, we extend to arbitrary measures p the result in [18] that (Lq(u), L,(v))
has the BPBp for o-finite measures p.

The following result summarizes all what is known about the BPBp for the pair

(Lp(p); Lg(v)).
Corollary 1.3. The pair (L,(u), Ly(v)) has the BPBp
for all measures p and v if p=1 and 1 < ¢ < o0,

(1)
(2) for any measure u and any localizable measure v if p =1, ¢ = oo,
(3) for all measures pp and v if 1 <p < oo and 1 < g < oo,

(4)

4) for all measures p and v if p = 00, ¢ = 00, in the real case.

(1) and (2) follow from the results of this paper (Corollary 2.3, Theorem 3.1 and
Theorem 4.1). Since L, () is uniformly convex when 1 < p < oo, (3) follows from [7,30]
in the o-finite case, generalized here to arbitrary measures p (Corollary 2.3). Finally, (4)
follows from [5], because every Lo, space is isometrically isomorphic to a C'(K) space.

As far as we know, the cases (Lo (1), Lqg(v)) for 1 < ¢ < oo and the complex case
of (4) remain open.

Let p be a finite measure. Since any L., space is isometrically isomorphic to C(K)
for some compact Hausdorff space K, it is natural to ask when (Lq(u), C(K)) has the
BPBp. Schachermayer [38] showed that the set of all norm-attaining operators is not
dense in L£(L4[0,1],C[0,1]). Hence, (L1]0,1],C[0,1]) cannot have the BPBp. On the
other hand, Johnson and Wolfe [27] proved that if X is a Banach space and if either YV’
or Y*is a Li(u) space, then every compact operator from X into Y can be approximated
by norm-attaining finite-rank operators. They also showed that every weakly compact
operator from L (p) into C'(K) can be approximated by norm-attaining weakly compact
ones. In this direction, Acosta et al. have shown that (L;(x),Y’) has the BPBp for
representable operators (in particular, for weakly compact operators) if (¢1,Y) has the
BPBp, and this is the case of Y = C(K) [6].
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On the other hand, Iwanik [26] studied two classes of bounded linear operators from a
real L1 (1) space to a real C'(K) space such that every element of each class can be approx-
imated by norm-attaining elements, and showed that one of the classes strictly contains
all Bochner representable operators and all weakly compact operators. In Section 5, we
deal with Bishop—Phelps—Bollobés versions of these Iwanik’s results. In particular, we
show that for every 0 < e < 1, there is n(e) > 0 such that if T € L(L1(p), C(K))
with ||T]| = 1 is Bochner representable (resp. weakly compact) and fo € Sz, () satisfy
IT fol| > 1—mn(e), then there is a Bochner representable (resp. weakly compact) operator
S € L(Li(p),C(K)) and f € Sp, () such that [|[Sf| = |IS|| = 1, |[S = T|| < € and
If = foll <e.

Let us finally comment that the proofs presented in Sections 3 and 4 are written for
the complex case. Their corresponding proofs for the real case are easily obtained, even
easier, from the ones presented there.

2. Some preliminary results

We start with some terminologies and known facts about L;(u). Suppose that
(£2,X, ) is an arbitrary measure space and put X = Lj(u). Suppose G is a count-
able subset of X. Since the closed linear span [G] of G is separable, we may assume that
[G] is the closed linear span of a countable set {xg, } of characteristic functions of mea-
surable subsets with finite positive measure. Let E =J, E, and Z = {fxg : f € X}.
Then, Z = Li(u|g), where p|g is restriction of the measure p to the o-algebra
Yle={ENA : A€ X} Since p|g is o-finite, Z is isometrically (lattice) isomor-
phic to Li(m) for some positive finite Borel regular measure m defined on a compact
Hausdorff space by the Kakutani representation theorem (see [32, Theorem 9, § 14] for a
reference). This space Z is called the band generated by G, and the canonical band projec-
tion P : X — Z, defined by P(f) := fxg for f € X, satisfies || f|| = |Pf||+||(Id —P) f]]
for all f € X. For more details, we refer the reader to the classical books [32,39].

Next, we state the following equivalent formulation of the BPBp from [11] which helps
to better understand the property and will be useful for our preliminary results. Given
a pair (X,Y") of Banach spaces, let

I(X,Y)={(2,T) € X x L(X,Y) : |T|| = ||z|| = || Tz|| = 1}
and define, for 0 < e < 1,

n(X,Y)(e) =inf{l—||Tz|| : =€ Sx, T eL(X,)Y),|T|=1,
dist((z,T), II(X,Y)) > e},
where dist((x,T), II(X,Y)) = inf{max{||z — y|, |T — S||} : (y,5) € II(X,Y)}. Equiv-

alently, for every ¢ € (0,1), n(X,Y)(e) is the supremum of those £ > 0 such that
whenever T' € L(X,Y) with ||T|| = 1 and = € Sx satisfy ||[Tz| > 1 —&, then there exists
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(y,8) € II(X,Y) with [T — S|| < € and ||z — y|| < e. It is clear that (X,Y) has the
BPBp if and only if n(X,Y)(e) >0 forall 0 <e < 1.

Our first preliminary result deals with operators acting on an Lq (i) space and shows
that the proof of some results can be reduced to the case when p is a positive finite Borel
regular measure defined on a compact Hausdorff space.

Proposition 2.1. Let Y be a Banach space. Suppose that there is a function n : (0,1) —
(0,00) such that

n(Li(m),Y)(e) =2 n(e) >0 (0<e<1)

for every positive finite Borel reqular measure m defined on a compact Hausdorff space.
Then, for every measure u, the pair (L1(u),Y") has the BPBp with n(L1(pn),Y) = 7.
Moreover, if Y = L1(v) for an arbitrary measure v, then it is enough to show that

n(Li(m1),Li(mg))(e) =n(e) >0 (0<e<1)

for all positive finite Borel reqular measures my and mo defined on Hausdorff compact
spaces in order to get that (L1(p), L1(v)) has the BPBp with n(L1(u), L1(v)) = 0.

Proof. Let 0 < & < 1. Suppose that T € L(L1(p),Y) is a norm-one operator and fo € Sx
satisfy that | T fo|| > 1 —n(e). Let {fn}52, be a sequence in X such that || f,| < 1 for
all n and lim, o ||Tfn]l = ||T]] = 1. The band X; generated by {f, : n > 0} is
isometric to Ly (J, m) for a finite positive Borel regular measure m defined on a compact
Hausdorff space J by the Kakutani representation theorem. Let T7 be the restriction
of T to X;. Then ||T1|| = 1 and ||T1fol] > 1 — n(e). By the assumption, there exist a
norm-one operator Sy : X1 — Y and g € Sx, such that ||Sig|| = 1, |11 — Si|| < ¢
and ||f — g|| < e. Let P denote the canonical band projection from Lj(u) onto Xj.
Then S := S; P + T(Id —P) is a norm-one operator from L;(u) to Y, g can be viewed
as a norm-one element in Sz, (,) (just extending by 0), [|Sgl| = 1, [[S — T < ¢ and
I/ — gll <e. This completes the proof of the first part of the proposition.

In the case when Y = Ly (v), we observe that the image T'(X7) is also contained in a
band Y7 of L (v) which, again, is isometric to L (ms) for a finite positive Borel regular
measure mo on a compact Hausdorff space Jo. Now, we work with the restriction of T’
to X7 with values in Y7, we follow the proof of the first part and finally we consider the
operator S as an operator with values in L;(v) (just composing with the formal inclusion
of Y7 into Ly (v)). O

Since for every positive finite Borel regular measure m defined on a compact Hausdorff
space, Lq(m) is isometric to L;(u) for a probability measure u, we get the following.

Corollary 2.2. Let Y be a Banach space. Suppose that there is a strictly positive function
7:(0,1) — (0,00) such that n(L1(p1),Y) = n for every probability measure py. Then
(L1(w),Y) has the BPBp for every measure p, with n(Ly(pn),Y) = .
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Let us give the first application of the above results. For a o-finite measure p, it is
shown in [18] that (L1(p1),Y) has the BPBp if Y has the Radon—Nikodym property
and (¢1,Y") has the BPBp. By following the proof of [18, Theorem 2.2], we conclude that
there is a strictly positive function ny : (0,1) — (0, 00) such that n(Li(u11),Y) = ny
for every probability measure p;. Therefore, the corollary above provides the same result
without the assumption of o-finiteness. We also recall that Lq(v) is uniformly convex
for all 1 < ¢ < oo and for all measures v, so it has the Radon—Nikodym property and
(41, L4(v)) has the BPBp [4]. Hence we get the following.

Corollary 2.3. Let pu be an arbitrary measure. If Y is a Banach space with the Radon—
Nikodym property and such that (¢1,Y") has the BPBp, then the pair (L1(u),Y) has the
BPBp. In particular, (Li(p), Ly(v)) has the BPBp for all 1 < q < oo and all arbitrary
measures v.

We now deal with operators with values on an f,,-sum of Banach spaces, giving the
following result from [11] which we will use in Section 4. Given a family {Y; : j € J} of
Banach spaces, we denote by [P, ; Yjle., the foc-sum of the family.

Proposition 2.4. (See [11].) Let X be a Banach space and let {Y; : j € J} be a family
of Banach spaces and let Y = [P, ; Yjle,, denote their log-sum. If 1257}()(,3@)(5) >0
J

for all0 < e <1, then (X,Y) has the BPBp with

n(X,Y) = inf (X, Y)).
JjeJ

We will use this result for operators with values in L, (). To present the result, we
fist recall that given a localizable measure v, we have the following representation

Loo(v) = [@jeJ YjL ’ (1)

oo

where each space Y; is either 1-dimensional or of the form La ([0, 1]4) for some finite or
infinite set A and [0, 1]" is endowed with the product measure of the Lebesgue measures.
For its background, see [35] and references therein. With this in mind, the following
corollary follows from the proposition above.

Corollary 2.5. Let X be a Banach space. Suppose that there is a strictly positive function
n:(0,1) — (0,00) such that

(X, Lo ([0, 1]A))(5) >n() (0<e<l)

for every finite or infinite set A. Then the pair (X, Loo(v)) has the BPBp for every
localizable measure v with

n(X,Le(v))(e) = min{n(e),e?/2} (0 <e <1).
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The proof is just an application of Proposition 2.4, the representation formula given
in (1) and the Bishop—Phelps-Bollobas theorem (Theorem 1.1).

Let us comment that the analogue of Proposition 2.4 is false for £;-sums in the domain
space (see [11]), so Proposition 2.1 cannot be derived directly from the decomposition
of Li(u) spaces analogous to (1).

Before finishing this section, we state the following lemma of [4] which we will fre-
quently use afterwards.

Lemma 2.6. (See [4, Lemma 5.3].) Let {c,} be a sequence of complex numbers with
len| < 1 for everyn, and letn > 0 be such that for a convez series Y ay,, ReY > | ancy >
1 —mn. Then for every 0 < r < 1, the set A:= {i € N: Rec; > r}, satisfies the estimate

Zai>1—12r.

i€A

3. The Bishop—Phelps—Bollobas property of (L1 (ut), L1(v))
Our goal in this section is to prove the following result.

Theorem 3.1. Let p and v be arbitrary measures. Then the pair (L1 (p), L1(v)) has the
BPBp. Moreover, there exists a strictly positive function n : (0,1) — (0,00) such that

(La(w), L)) (e) = n(e) (0<e<1).

By Proposition 2.1, it is enough to get the result for finite regular positive Borel
measures defined on compact Hausdorff spaces. Therefore, Theorem 3.1 follows directly
from the next result.

Theorem 3.2. Let my and mso be finite regular positive Borel measures on compact
Hausdorff spaces Ji and Js, respectively. Let 0 < € < 1 and suppose that T €

. . 18
L(Li(m1),Li(mz)) with |T|| = 1 and fo € Sp,(m,) satisfy | T foll > 1 — z5527. Then
there are S € Sp(L,(my),L1(ms)) ANd g € SL,(m,) such that

ISgll=1,  lIf —gll <4e and |T—5| <4Ve.

Prior to presenting the proof of this theorem, we have to recall the following rep-
resentation result for operators from Lj(m;) into Li(msg). As we announced in the
Introduction, we deal with the complex spaces only. The proof of the real case is easier
than the one given by us for the complex case.

Let m; and my be finite regular positive Borel measures on compact Hausdorff spaces
J1 and Js, respectively. For a complex-valued Borel measure p on the product space
Ji x Jo, we define their marginal measures u‘ on J; (i = 1,2) as follows:

pt(A) = p(Ax Jp) and  p*(B) = p(Jy x B),

where A and B are Borel measurable subsets of J; and Js, respectively.
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Let M (m, m2) be the complex Banach lattice consisting of all complex-valued Borel
measures u on the product space J; x Jo such that each |u|* is absolutely continuous
with respect to m; for ¢ = 1,2 with the norm

dlpl*
dm1

o0

It is clear that to each p € M(mq,mg) there corresponds a unique bounded linear
operator T, € L(Ly(m1),L1(m2)) defined by

Loy = [ Fe)oty) dutan)

J1><J2

where f € Li(m1) and g € Lo (me). Iwanik [25] showed that the mapping pu — T}, is
a surjective lattice isomorphism and

dlpl*
1T, = H

Even though he showed this for the real case, it can be easily generalized to the complex
case. For details, see [25, Theorem 1] and [39, TV, Theorem 1.5(ii), Corollary 2].

Since the proof of Theorem 3.2 is complicated, we divide it into the following two
lemmas.

Lemma 3.3. Let 0 < ¢ < 1. Suppose that T), is an element of L(Li(m), L1(m2)) with
[Tyl =1 for some p € M(mi,mso) and that fo € Sp,(m,) is a nonnegative simple func-
tion such that || T, fol > 1 — ;—Z Then there are a norm-one bounded linear operator T,
for some v € M(my,mso) and a nonnegative simple function fi in Sp, (m,) such that

1T, — T <e, Ilf1 = foll < 3e

and we have, for all x € supp(f1),

djv|*
—_— =1.
amy )

P — d|ul* _
roof. As [|T,|| = 1, we have that - (z) < 1 almost everywhere. Let fy =
1
Z;Ll aj%, where {B'}’.‘_1 are mutually disjoint Borel subsets of Ji, a; > 0 and
mi(B;j) >0foralll<j<n, andz 1ozj—l Let D={z € J;: ‘T’T‘LL () >1—-g}h It

is clear that my(D) > 0. Since [T, fol| > 1 — 2—6, there is go € S1__(m,) such that

3

13
Re(T, fo,g0) > 1 — 56
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Let

=4qJ : ! dwlx ma(x
J—{jE{l,...,n} : ml(Bj)/dml( )dmy(x) >

Then we have

Zaj >1—¢e>0.
jeJ
Indeed, since

3
1= & < Re(T,fo,g0)  Re / fo(@)go(w) dia(z, )

26
J1 X Jo

< / | o) dlul (2, ) = / fol) dlul* (2)

J1><J2

9

2
=

1—
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:;O‘jﬁBj)/dWP(x) = Zajm1(13j)/ccli|:1|1 () dmy (),

—
j J B;

we have D ;o

P /d“|1(x)dm1(x)

26 ml(Bj) dm1
_ 1 dlal” y o 1 d|pl*
a ml(Bj) / dml( )d 1( )+ ml(Bj) / dm1
B;ND B;\D
my(B; N D) _e\mu(B;\ D)
m(B) (1 8) m(Bj)
emi(B; \ D)
- g ml(Bj) )

Hence we deduce that, for all j € J,
mi(B,\D) _ <

ml(Bj) = 8.

a]] — for all j € J and define
j € J

LetBj:BjﬁDand,@jzz

_\"p B
fl—jezjﬂjml(Bj)

> 1—¢e>0 by Lemma 2.6. Note also that for each j € J,
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It is clear that f; is a nonnegative element in Sy, (,,,,) and
] XB;
o= sl < | osts - Sa || 5 a2
jedJ ma(B jedJ 1(Bj) Je{l,..n\J ma(B;)
XB, XB. B.
< zaj( ety 3] Rl DOCIRTAE e L DR
i \miBj) mu(B;) jed MBI e T
XB; XE, >
< a; L L + ) Ja;—Bil+e
]EZJ ! <m1(BJ) m1(B;) j;] ! !
XB; XB; >
= Q; - = +1-> a;+e¢
j; ’ (ml(Bj) my(B;) j; ’
ml(BJ ) 3
<2) +26 < =~ + 2 < 3.
ies ml(Bj) 4
Define
dlul*, \ 7
dl/(xvy) = ZXBJ (33) dml (Z‘) du(l‘, y) + X(Jl\B) d/.l/(l‘,y),

where B = Uje ; Bj. Tt is clear that d‘yl —(z) =1 on B and %(@ <

jeJ

also that for all x € Ji,

Hence T, is a norm-one operator such that ||T,,—T,| <, ||f1—fol| < 3¢ and

1 elsewhere. Note

dv—plt o ) dlul*, \7 d|pl*
dm1 (‘T) - Z)(BJ (x) dml (I) 1 dml
jed
S 1-¢/8 8—¢c

for all € supp(f1). O

dIV\

S(@) =1

Lemma 3.4. Let 0 < £ < 1. Suppose that T, is a norm-one operator in L(L1(m1), L1(m2))
and that f is a nonnegative norm-one simple function in Si,(m,) satisfying ||T, f|| >

1- ;—3 and Cg:llll ga:) =

simple function f in S, (m,) and a norm-one operator Ty in L(Li(my), L1(mz)) such
that

1 for all = in the support of f. Then there are a monnegative

ITfl =1 T, —Tsll <3ve If = Fll < 3e.

and
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Proof. Let [ = Z?,l Bj%, where {B-}’? 1 are mutually disjoint Borel subsets of

Ji, Bj = 0 and m(B;) > 0 for all 1 < j <n,and 377, B; = 1. Since || T, f| > 1 —
there is g € Sp__(m,) such that

1— ? < Re(T,f,9g) Zﬂj Re / ZMBZ(BxJ))(g(y)) dv(z,y).

J1><J2
Let J={j€e{l,....n} : Re [, :fff—gg(y) dv(z,y) > 1— g—z} From Lemma 2.6 it
125
follows that

3
Zﬂj>1—%.

jeJ

Let f1 = ZjeJBjm)f(Léj)’ where 3; = Bj/ (> ey B;) for all j € J. Then

> (B - B)— H+ZB] & <e

jeJ jeJ

Ifr = fll <

Note that there is a Borel measurable function h on J; X Jy such that dv(x,y) =
h(z,y)d|v|(z,y) and |h(z,y)| = 1 for all (x,y) € J1 x Jo. Let

C = {(m,y) gz, y) — 1] < 2\3//52}

Define two measures vy and v, as follows:
vi(A) =v(A\C) and v.(A)=v(ANC)
for every Borel subset A of J; x Js. It is clear that

dv = dvy + dv,, dlvs| = hdvy, dlv.| = hdve, and dlv| = dlvs| + dlve|.

Since ‘i‘:llll (z) =1 for all z € Uj_, Bj, we have [v|'(B;) = m1(B;) for all 1 < j < n and
djv|! dlvs|* dlve! "
1= i (z) = dmy (x)+d—m(9c) forallz € B = UBJ"

=1

We claim that ‘Vfl(ggj) < ;—z for all j € J. Indeed, if |g(y)h(z,y) — 1] > 2‘3@, then
Re(g9(y)h(z,y)) <1 — 5. So we have

&3 1
1-— < ——Re / XB;(2)9(y) dv(z,y)

20 = my(B;)
.]1 ><J2



Y.S. Choi et al. / Journal of Functional Analysis 267 (2014) 214-242 225

= ﬁBJ) / X8, (@) Re(g(@)h(z,y)) dv|(z,y)
J1 xJ2
- ml(lBj) / XBj(x) Re(g(y)h(x,y)) dlvs|(x,y)
J1 X J2
+ﬁ3j) / X8, () Re(g(y)h(z,y)) dlve|(z,y)
J1 X J2
_ & ' (B)
24 ml(Bj) ’

This proves our claim.
We also claim that for each j € J, there exists a Borel subset Bj of B; such that
£ ~
(1 - §)m1(Bj) < ma(Bj) < mi(Bj)
and

dlvg|!
dm1

3

(z) < 5

2

for all x € B;. Indeed, set B; = B; N{z € J; : M(w) < 5} Then

dmq

v 1 2
[ Sam@ < [ DL @) i) = 11(8) < Sma(5,)

dm1 22
B]‘\B]‘ B;
This shows that m;(B; \ B;) < 5mq(B;). This proves our second claim.
Now, we define g by g(y) = % if g(y) # 0 and g(y) = 1 if g(y) = 0, and we write

F=Ye, B]":(Léj) Finally, we define the measure

) = 3, T o) (Greb @)+ x stz ),

dm
jeJ 1

~ ~i1 ~ -1
ies Bj. 1t is easy to see that ‘i‘:lll (z) =1on B and 47| (z) < 1 elsewhere.

dm

where B =
Note that

dml

5 = )(e) = 3 x5, o) [T ) (k) o taveie
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If (z,y) € C, then |g(y)| = 1 — 2\3//52 >1— 57 and

PR _ 9(y) o) —
TR 1] = | hte ) —1

lg(y)h(z,y) — 1] |1 —|g(y)l|
STl T )
gh(z,y) — 1] 2 232
% <2%mmEE Ty < 2VE.

<2

Hence, for all (z,y) € C we have

d‘VC‘l -

el 1
( dmy (x)>

— dvel* . 7 dvel* . 7
< _ Z7el _
<[t 1| (Ger @)+ |(Ge@) -
dve|! - dlve|* -
— 1.
< (Ph@) 4| (et

So, we have for all x € J,

dp—ml d|v|* -t d|ve|* -t dlve|t
< S @ 2vE( Bk @) 4| (Geb@) ]| e

JjeJ
+Z d|l/f|1 )
BJ dm1
JjeJ
d|VC dlvg|t
<@ (2ver (15t @)) + s
jeJ jeJ 1
< 2ve+e < 3y/e.

This gives that || T, — T3|| < 3y/e. Note also that, for all j € J,

<T%g> - / | ;fﬂ(‘g?)g(y) dir(x,y)
_ / xgj(f) h(x,y)<d(l:|ll(x))1duc(z,y)
J1 X Jo

J1

(z)

)
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XB( )
m1(B;)

dml( ) 1.

J1

Hence we get (T, f,§) = 1, which implies that |7, f|| = || T5|| = 1. Finally,
IF =< IF = Al + 1 = £l

Zﬂﬂ‘%—zﬁa

&
< Z,ﬁ<HmX<BB> ’ H 7 A

2 (B
<2) B2 1(~j)+€< 766 +e<3. O

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let 0 < & < 1. Suppose that T is a norm-one element in
L(L1(m1), L1(m2)) and there is f € Sz, (n,) such that || Tf]| > 1 — % Then there is
an isometric isomorphism 1 from Lj(m1) onto itself such that ¢(f) = | f|. Using T'ot~*
instead of T', we may assume that f is nonnegative. Since simple functions are dense in
Li(m1), we can choose a nonnegative simple function fo € Sp, (,) arbitrarily close to f
so that

18 e
1T foll >1_W:1_2_é’

where €1 = By Lemma 3.3, there exist a norm-one bounded linear operator 7,

5 27
for some v € M(m1,m2) and a nonnegative simple function f; in Sp, (az,) such that

IT =T, <1, |Ifs — £l < 3e1 and 2L () =1 for all = € supp(f1). Then

6

9
1T Al 2 I T = ITf = T Al = 1T (F = f1) H/l———sl—?m >1-5e1=1-.

Now, by Lemma 3.4, there exist a nonnegative simple function f and an operator Tj in
L(L1(m1), L1 (mz)) such that [|T5f[| = [|Tp]| = 1, [T, — Tp|| < 3v/€ and |[fy — fI| < 3¢
Therefore, ||T —Ty|| < 4y/c and || f — f|| < 4e, which complete the proof. O

4. The Bishop—Phelps—Bollobas property of (L1 (ut), Loo(v))

Our aim now is to show that (L1(u), Leo(v)) has the BPBp for any measure p and
any localizable measure v.
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Theorem 4.1. Let i be an arbitrary measure and let v be a localizable measure. Then the
pair (L1 (u), Loo(v)) has the BPBp. Moreover,

3

8
w0, L)) > (55) 0<e<.

By Corollaries 2.2 and 2.5, it is enough to prove the result in the case where p is
o-finite and v is the product measure on [0, 1]4. Therefore, we just need to prove the
following result.

Theorem 4.2. Assume p is a o-finite measure and v is the product measure of Lebesque
measures on [0,1]1. Let 0 < & < 1/3, let T : Li(n) — Loo(v) be a bounded linear
operator of norm one and let fo € Sp, (. satisfy |T(fo)|lsc > 1 — 3. Then there exist
S € L(L1(1), Loo(v)) with ||S|| =1 and go € Sr,(u) such that

1Sl =1, IT=8ll<2e and |fo—gollx <10e.

Recall that the particular case where A reduces to one point was established in [10].
Actually, our proof is based on the argument given there.

Prior to giving the proof of Theorem 4.2, we state the following representation result
for operators from Lj (i) into Lao([0,1]") and one lemma.

Let (£2, X, 1) be a o-finite measure space and let K = [0,1]4 be the product space
equipped with the product measure v of the Lebesgue measures. Let J be a countable
subset of A and let 7 be the natural projection from K onto [0, 1]7. Fix a sequence (I1,,)
of finite partitions of [0, 1]” into sets of positive measure such that IT,, ;1 is a refinement
of II,, for each n, and the o-algebra generated by (J,-, II,, is the Borel o-algebra of
[0,1]7. For each y € K and n € N, let B(n,7;(y)) be the set in II,, containing m(y).
Then, given a Borel set F of the form Fy x [0, 1]\ with Fy C [0,1])7, define

) L WE 0T Bl () _
““‘heKﬁm v, (Bm s ))) 1}

It is easy to check that 6(F) = §;(Fp) x [0,1]4\, where

— I lim V(le(FomB(n’y)))z
65(Fo) = {y € [0,1]7: n1—>00 V(W}l(B(nvy))) 1}

Using the martingale almost everywhere convergence theorem [22], we have
v(FAS(F)) =0

where FAJ(F') denotes the symmetric difference of the sets F' and §(F).
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On the other hand, it is well-known that the space £(L1(u), Loo(v)) is isometrically
isomorphic to the space Lo (u® ), where p® v denotes the product measure on {2 x K.
More precisely, the operator h corresponding to h € Ly (p ® v) is given by

=)

(H)(t) = / h(w,£) (@) dpa(w)

2

for v-almost every t € K. For a reference, see [20]. For a measurable subset M of 2 x K|
let My ={ye K : (z,y) € M} foreach z € 2 and MY ={z € 2 : (z,y) € M} for
eachy € K.

Lemma 4.3. Let M be a measurable subset of £2 x K with positive measure, 0 < & < 1,
and let fo be a simple function. If || xa1(fo)lleo > 1—¢, then there exists a simple function
go € Sp,(u) such that

[z + @l(90) ||, =1 and [Ifo = golls < 4VEe
for every simple function ¢ in Loo(u ® v) with ||¢llee < 1 and vanishing on M.

Proof. Write fo = >°7", ajf(—% € S1,(u), Where each A; is a measurable subset of (2
with finite positive measure, Ay N A; = 0 for k # [, and «; is a positive real number for
every j = 1,...,m with 377", a; = 1. Since |[Xar(fo)lloo > 1 — ¢, there is a measurable
subset B of K such that 0 < v(B) and

<ﬁ7(fo),%> >1-e

We may assume that there is a countable subset J of A such that M = M, x [0,1]4\/
and B = By x [0,1]"\’ for some measurable subsets My C 2 x [0,1]7 and By C [0,1]7.
For each j € {1,...,m}, we write M; = M N (A; x B) = (M N (A; x By)) x [0,1]4\
and define

H, = {(x,y) cxeAjy€ 5((MJ)E)}

As in the proof of [35, Proposition 5|, the H;’s are disjoint measurable subsets of {2 x K.
We note that for each j € {1,...,m}, we have H; C A; xd(B) and (u®@v)(M;AH;) =0.
Now, by Fubini theorem, we have that

1= < (fu i) 15 )

B ; WJV(B)QX/K Xag, (2,y) d(p @ v)

~—
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=Y e [ e duov)

,_1M
- OxK

<

n(HY)
(A) dv(y)

L«
Z::ly(é

/5
— /i ij dv(y).

So, there exists yo € 6(B) such that

<.

i 0)>1—€

Yo
Let J={j€{1,...,m} : “;&j)) > 1—/e}. For each j € J, we have that u(A;\ H}") <
Veu(A;) and, by Lemma 2.6, we also have oy := ) .., o; > 1 — /e. Define

jed
XHyo
Z/BJ Hyo
JjeJ
where 8; = oj/ay. Then
XA;
g0 = foll < ZB] - a; +1E
HY%) =7 u(4;)
jeJ jeJ
XA XA;
<|| Soam - ol + | S oa I R
2 PiAy) T 2 u(4,)
XH/() XH’O XH’O XA
< Zﬂ] Zﬂj Zﬂg ‘+2f

M(Aj\Hf‘))
< QTAJ) +2Ve <4ye

We claim that a7 + @ attains its norm at go. Let B, = n; " (B(n,7;(yo))) for each n.
Note that for every x € H;® we have (z,yo) € H;, which implies that

lim —V((Mj)r N Bn) =1.

n— o0 1/( Bn)
It follows from the Lebesgue dominated convergence theorem and Fubini theorem that,
for each j € J,
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_ 1 v((Mj)e N Bn)
= i e | ()

L (VM0 (HY x B,))
e p(HP)(B,)

On the other hand, since the simple function ¢ is assumed to vanish on M and ||¢||e < 1,
we have

<$ng5);gb>LWMH%MRJ [ eiwen

H]'.yoxBn
(1@ V)(HP x By)\ M;)
p(H;")v(Bn)
L, wenOLN@Hr xB))
p(H;*)v(By) ’

as n — oo. Therefore,

WV

S . XHYo XB,
> i+ el >t (2 (8 ) ey )
jeJ n
(L@v)(MN(H x By))

=l B )

JjeJ
(n® V)(Mj n (Hyo x By))
> J
> 2 B )
jeJ J

:1,

which shows that X7 + @ attains its norm at go. O
We are now ready to give the proof of the main result in this section.

Proof of Theorem 4.2. Since the set of all simple functions is dense in L (u), we may
assume

Z aa E SLy ()

where each A; is a measurable subset of 2 with finite positive measure, A, N A; = 0
for k # I, and every «; is a nonzero complex number with Z;ﬂ:l laj| = 1. We may
also assume that 0 < a; < 1 for every j = 1,...,m. Indeed, there exists an isometric
isomorphism ¥ : Ly(u) — Li(w) such that ¥(fy) = |fo|. Hence we may replace T
and fo by T o¥~1 and ¥(fy), respectively.
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Let h be the element in Ly (2 X K, u ® v) with ||h]lcc = 1 corresponding to T, that
is, T'= h. We may find a simple function

hOELOO(‘QXK7p’®V)7 ||h0||00:1

such that ||h — holleo < IT(fo)lloo — (1 — &%), hence ||ﬁo(fo)||OO > 1 — &8 We can write

ho = Zle ciXp,, where each D is a measurable subset of {2 x K with positive measure,

DynNDy=0fork#1,|q| <1lforeveryl=1,...,p, and |¢,| =1 for some 1 <y < p
Let B be a Lebesgue measurable subset of K with 0 < v(B) < oo such that

(o)1

Choose 0 € R so that

Set

=t o () 2] -

By Lemma 2.6, we have

OéJ—ZCYJ>1—W:1—E.

jeJ

We define

We have that || f1]]1 = 1,

Yo

jed

1o fills < HZ% o

e

=> a1 —ay) =2(1—ay) <2,
Jj¢J
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and

Let L ={l € {1,...,p} : Re(e?c;) > 1— —} On the other hand, for each j € J, we

have
1_84<Re[ew<ao(;3;)),%>]

Lo (EV(DN (4 x B))
= 2 Rele ) = B

&\ (uen)(DiN (4; x B)
P> (1 2) 1A (B)

le{l,....p}\L

(n®v)(DiN (4, x B))
T A B)
P LI LICEY )]

2 el oL p(A;)v(B)

This implies that for each j € J

Since

for every j € J we have that

(p@v)(DiN(A; x B)) g2 _ 32
D i e S

leL
Set D = J,cp, Di- Then we have
(A; x B))

(Roth) i) = 2(%) D R

leL




234 Y.S. Choi et al. / Journal of Functional Analysis 267 (2014) 214—-242

By Lemma 4.3, there is go € Sp, () such that ||(Xp + ©)(g0)|lcc = 1 and | f1 — gol <
4v/3e2 < 8¢ for every simple function ¢ in Ly (¢ ® v) vanishing on D with ||¢|[c < 1.
Therefore, we have

1fo—golli < [Ifo— fillh + Ilf1 — goll1 < 2e* + 8¢ < 10e.
Define

hi=e" xp +chxpl € Loo(p®v).
I¢L

Let S be the operator in £(L1(), Loo(m)) corresponding to k. Then we get

15(90)|[... = [[P1(90)]].. =1
and

[lho — h1]leo = I}leagilcl - e_m‘ = rlnEaLX‘ewcl — 1.
As Re(e?¢;) > 1 — % for every | € L, we have that
2\ 2 4
(Im(ewcl))2 <1-— (Re(ewcl))2 <1- (1 — E) S %

Since

e =1 =/ (1 = Re(e))” + (Im(eer))°

< Jet/d+ (2 —et/4) =&,

we conclude that
o = halloe <&
and
IT = Sloo < ||h = hollos + ||ho — hilloo < €% + & < 2e. O
5. The Bishop—Phelps—Bollobas Property for some operators from L; (p) into C'(K)

Throughout this section, we consider only a finite measure 4 on a measurable space
(£2,%) and real Banach spaces Li(p) and C(K). Our aim is to obtain the Bishop—
Phelps-Bollobés property for some classes of operators from L; (1) to C(K), sharpening
the results about denseness of norm-attaining operators given by Iwanik in 1982 [26].
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We use the following standard representation of operators into C(K) [23, Theorem 1
on p. 490].

Lemma 5.1. Given a bounded linear operator T : X — C(K), define F : K — X* by
F(s) = T*(ds), where s is the point measure at s € K. Then, for x € X, the relation
Txz(s) = (x,F(s)) defines an isometric isomorphism of L(X,C(K)) onto the space of
weak™ continuous functions from K to X* with the supremum norm. Moreover, compact
operators correspond to norm continuous functions.

Iwanik [26] considered operators T' € L£(L1(u), C(K)) satisfying one of the following
conditions:

(1) The map s — T*d; is continuous in measure.
(2) There exists a co-meager set G C K such that {T%0, : s € G} is norm separable
in Loo(p).

We recall that a subset A is said to be a co-meager subset of K if the set K \ A is meager,
that is, of first category.

Theorem 5.2. Let 0 < ¢ < 1. Suppose that T € L(L1(p), C(K)) (real case) has norm
one and satisfies condition (1). If | Tf]] > 1 — % for some f € Sp (), then there exist
S € L(L1(p), C(K)) with ||S|| =1 and g € S, () such that ||Sg|| =1, |S=T| < e, and
|lf — gl <e. Moreover, S also satisfies condition (1).

Proof. Without loss of generality, we assume that there exists sy € K such that

82

Consider the function G : Lo (1) — Loo(t) given by
G(h)=(hA(1—¢/3))V(-1+¢/3) (h€ Lo(p)).

Since the lattice operation G is continuous in the L., norm and T satisfies condi-
tion (1), we can see that the mapping s — GT*05 is continuous in measure, hence
weak*-continuous. Let S be the element of £(L;(u), C(K)) represented by the function
F(s) := GT*05. Then

IS =71l = sup | F(s) = T°6,]| < <.
seK

Let

C= {w €2« sign(f(w)T"0s(w) > 1 %}
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and define S = S/||S|| and g = f|c/||flc|l, where f|c is the restriction of f to the
subset C. It is easy to see that S satisfies condition (1) and

IS =Tl < IS =S+ 1S =Tl =[S = 1[+ IS =TI < 2|S - T|| <&

Moreover, we get
2

1= 5 < Tf(o0) = (10, 1) = [ 176, @) (@) dn
2

:/sign(f(w))T*5 w)| f(w)| dp + / sign (f(w))T*8s, ()| f(w)] dpe

\c

/!f s (1-5) [ 156 dn

o\C
—1-5 [ Is@ldn

2\C
which implies that
5
/ | f(2)| dp < 7
o\c
Therefore,
lg = £l < llg = Flell + Ifle = fll = 2(1 = [ fell)
=2 / |f(z)|dp < e
2\c
On the other hand, we see that Sg(sg) = (S*ds,, g) = 1 because S*05, (w) = sign(f(z)) =

sign(g(w)) for every w € C. This completes the proof. O

We do not know, and it is clearly of interest, for which topological compact Hausdorff
spaces K all operators in £(L;(u), C(K)) satisfy condition (1).

We recall that a bounded linear operator T from L;(u) into a Banach space X is
said to be Bochner representable if there is a bounded strongly measurable function
g : {2 — X such that

Tf = /f Wydu(w) (f € Li(w).

The Dunford—Pettis—Phillips Theorem [21, Theorem 12, p. 75] says that T' € L(L1(p), X)
is weakly compact if and only if 7" is Bochner representable by a function g which has
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an essentially relatively weakly compact range. Iwanik [26] showed that every Bochner
representable operator from L;(u) into C(K) satisfies condition (1). Moreover, we get
the following result which has been independently obtained in [6, Corollary 2.4].

Corollary 5.3. Let 0 < & < 1. Suppose that T € L(L1(p), C(K)) (real case) has norm-one
and it is Bochner representable (resp. weakly compact). If |Tf|| > 1 — % for some
f € Sr,(u), then there exist a Bochner representable (resp. weakly compact) operator
S € L(L1(p), C(K)) with ||S|| =1 and g € S, () such that ||Sg|| =1, |S—=T| < e, and
17— gl <e.

Proof. By Theorem 5.2, it is enough to show that if T is a Bochner representable op-
erator from L;(p) into C'(K), then F(s) = T*d, is continuous in measure and that the
operator S defined in the proof is Bochner representable.

Let g : 2 — C(K) be a bounded strongly measurable function which represents T
It is easy to check that F(s) = g(-)(s) for all s € K. Since the range of g is separable, the
range of T is separable and contained in a separable sub-algebra A of C'(K) with unit.
By the Gelfand representation theorem, A is isometrically isomorphic to C'(K) for some
compact metrizable space K. So, we may assume that K is metrizable. To show that the
mapping F(s) = T%0s = g(w)(s) is continuous in measure, assume that a sequence (s)
converges to s in K. Then for all w € 2,

lim |g(w)(sn) — g(w)(s)| =0.

n—oo

By the dominated convergence theorem, we have that

lim swp [ ) (9)(50) — )(5)) due)

e feSLoo(M)

< Jim [ Jg@)(sa) = 9@)()] dutw) =0,
Hence the sequence (g(-)(sn))n converges to g(-)(s) in measure. That is, (F(s,))n con-
verges to F'(s).

We note that the operator S in the proof of Theorem 5.2 is determined by GT*6, =
G(g(-)(s)). Since the mapping

s — G(g()(s)) (W) = (g(w)(s) A (1 —¢/3)) V(=1 +¢/3)

is continuous for each w € 2, the operator S is Bochner representable by this mapping.
Finally, if T' is weakly compact, then the proof is done by the Dunford—Pettis—Phillips
theorem. O

As observed in [26], the operator 1" : L;[0,1] — C[0, 1] determined by T*ds = X0,
is not Bochner representable, but satisfies condition (1).
For condition (2), we have the following result.



238 Y.S. Choi et al. / Journal of Functional Analysis 267 (2014) 214—-242

Theorem 5.4. Let 0 < € < 1. Suppose that T € L(L1(u), C(K)) (real case) has norm-one
and satisfies condition (2). If |Tf] > 1 — % for some f € Sp (., then there exist
S € L(Li(p), C(K)) with ||S|| =1 and g € Sp, () such that ||Sg|| =1, |S=T| < e, and
I — gll < e. Moreover, S also satisfies condition (2).

Proof. By using a suitable isometric isomorphism, we may first assume that f is non-
negative. Let G be the co-meager set in the condition (2) and (T*d;,); be a sequence
which is || - ||eo-dense in the closure of {T%d, : s € G} C Loo(ut). Observe that the sets

{weR:a<T*, (w) <b}

where a,b € Q and k > 1, form a countable family {A;}; of measurable subsets of (2.
We define, for each i, the functions

u;(s) = essinf{T*6,(w) 1w € A;} and wv;(s) = ess.sup{T*8s(w) : w € A4;}.
Let U; and V; be the set of all continuity points of u; and v; for all 7, respectively. Let
F be the intersection of all subsets U;’s and V;’s. We claim that the functions u;’s are

upper semi-continuous and the functions v;’s are lower semi-continuous. Indeed, recall
(see [36, 3.7 Definition] for a reference) that

vi(s) =inf{A e R: p{w € 4; : T*6,(w) > A} =0},

where inf ) = co and inf R = —oco. To show that the set {s: A < v;(s)} is open in K for
all A € R, suppose that v;(sg) > A¢ for some sy € K and )y € R. It suffices to prove
that there is an open neighborhood V of sg such that V' C {s : v;(s) > Ao}. We note
that pu{w € A; : T*05,(w) > Ao} > 0 and there exists A\; > Ag such that

u{w €A : T s, (w) > )\1} > 0.

Let E={w € A; : T*0s,(w) > A1}. Then

1 *
5 E/ T*5,, (w)dp(w) > A1 > Ao,

Since the map s —— T*J, is weak™® continuous on L. (1), the set

V= {s eK: ﬁ /T*és(w)du(w) > /\1}
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is an open subset containing so. We note that p{w € A; : T*0s(w) > A1} > 0 for all
s € V. Otherwise, there is s; € V such that u{w € A; : T*ds,(w) > A1} = 0. Then
T*05, (w) < A\ almost everywhere w € A; and

1 *
mE/T 0s, (w)du(w) < A1

This is a contradiction to the fact that s; is an element of V', which implies that v;(s) > Ao
forall s € V and V C {s: v;(s) > Ao}. This gives the lower semi-continuity of v;. The
upper semi-continuity of u; follows from the fact that —u; is lower semi-continuous. The
claim is proved.

We deduce then that the set F' is co-meager (cf. see [31, § 32 II, p. 400]). Since the
set {s : s€ K, |Tf(s)] >1— %} is nonempty and open, there exists so € F' NG such
that |Tf(so)] > 1— %. Without loss of generality, we may assume that

2

Tf(s0) = (T*6sy, f) > 1 — %.

Because of the denseness of the sequence (T*d,, )i, there exists kg € N such that

2

Tf(sr,) = (T8, f) > 1= 5 and [ 770, =170, || < 2

Z.
Fixqe(@suchthat1—%6<q<1—%andlet
C = {wGQ : T*ésko(w) >q}.

Then

2
1- % <AT* 6y, f) = /T*ésko (W) f(w) du

n

= [ 15, @f@dut [ T, ) (w) du

o\Cc

C
</f@wm+<1§)/"ﬂMdu
C

o\C

—1-5 [ rwan

o\c

Hence we have that

/f(w)du<g and /f(w)d,u>1—g.
o\c c
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Let B, ={w : ¢ <T*6
such that

(w) < n} for each n. Then C = J.~, B, and there exists ng

Sko

/f(w)du>l—§.
B

Hence B,, = A;, for some ig and p(A;,) > 0. This implies that u;,(sg,) > ¢ and
uio(s0) = ¢ — § > 1 —e. Setting A = A, , it is also clear that

fla
— fll <e.
H 1f ]l
Since u;, is continuous at sg, there exist an open neighborhood U of sy and a continuous
function h : K — [0, 1] such that u;,(s) > 1—¢ for all s € U, h(sg) = 1 and h(U¢) = 0.
We define a weak*-continuous map M : K — Lo, (p) by

M(s)(w) = T*6s(w) + xa(W)h(s)(1 = T*6s5(w)) (we 2, s€K).
We note that M (sp) = 1 for all w € A. It is also easy to get that

HM(S)(W) - T*és(w)H = HXA(w)h(s)(l - T*5s(w))H <& and SEEHM(S)H =1

Let S be the operator represented by the function M. Then S satisfies condition (2),

S(HAp)(s0) = Tand [|S—T| <e. O

As shown in [26], the Dunford—Pettis—Phillips Theorem implies that every weakly
compact operator T in from L (u) to an arbitrary Banach space Y has separable range,
hence the range of its weakly compact adjoint T is also separable and so T satisfies
condition (2). On the other hand, there are Bochner representable operators which do
not satisfy the condition (2) (see [26]). Indeed, let © be a strictly positive probability
measure on N and consider the operator T € £(L1 (), C({0,1}Y)) defined by Tf(s) =
[ f(n)m,(s) du(n), where m, be the n-th natural projection on {0, 1}". Then 7" is Bochner
representable, while {T%0s : s € G} is non-separable in Lo, () for every uncountable
subset G of {0, 1},

Finally, let us comment that it is also observed in [26] that if K has a countable
dense subset of isolated points, then condition (2) is automatically satisfied for all T' €
L(L1(p),C(K)). Actually, in this case, C(K) has the so-called property () and then
the pair (X, C(K)) has the BPBp for all Banach spaces X [4, Theorem 2.2].

It would be of interest to characterize those topological Hausdorff compact spaces K
such that (X, C(K)) has the BPBp for every Banach space X.
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