
J. Math. Anal. Appl. 409 (2014) 1107–1127

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa

Restriction of the Fourier transform to some complex curves
Jong-Guk Bak a,∗, Seheon Ham b,∗

a Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
b Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic of Korea

a r t i c l e i n f o

Article history:
Received 20 March 2013
Available online 11 August 2013
Submitted by R.H. Torres

Keywords:
Fourier transforms of measures
Complex curves
Fourier restriction problem
Affine arclength measure

a b s t r a c t

Thepurpose of this paper is to prove a Fourier restriction estimate for certain 2-dimensional
surfaces in R2d, d ≥ 3. These surfaces are defined by a complex curve γ (z) of simple type,
which is given by a mapping of the form

z → γ (z) =

z, z2, . . . , zd−1, φ(z)


where φ(z) is an analytic function on a domainΩ ⊂ C. This is regarded as a real mapping
z = (x, y) → γ (x, y) fromΩ ⊂ R2 to R2d.

Our results cover the case φ(z) = zN for any nonnegative integer N , in all dimensions
d ≥ 3. Themain result is a uniform estimate, validwhen d = 3,whereφ(z)may be taken to
be an arbitrary polynomial of degree at most N . It is uniform in the sense that the operator
norm is independent of the coefficients of the polynomial. These results are analogues of
the uniform restricted strong type estimates in [5], valid for polynomial curves of simple
type and some other classes of curves in Rd, d ≥ 3.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let us consider a ‘complex curve’ of simple type in Cd, d ≥ 2. By this we mean a mapping of the following form:

z → γ (z) =

z, z2, . . . , zd−1, φ(z)


, z ∈ Ω (1.1)

where φ(z) is an analytic function on a domain Ω ⊂ C. We will regard this mapping as a 2-dimensional surface in R2d,
given by the real mapping

z = (x, y) → γ (x, y) =

x, y, x2 − y2, 2xy, . . . , Re (φ(z)), Im (φ(z))


∈ R6.

In what follows we use C and R2 interchangeably whenever there is no danger of confusion.
Let us consider a Fourier restriction estimate of the following form:

R2
|f (γ (z))|qw(z) dµ(z)1/q

≤ Cp ∥f ∥Lp(R2d) (1.2)

wheref (ξ) denotes the Fourier transform of f ∈ Lp(R2d), and the weight functionw(z) is given by

w(z) = |τ(z)|4/(d
2
+d), where τ(z) = det(γ ′(z), . . . , γ (d)(z)). (1.3)

Also, dµ denotes the surface measure given by dµ(z) = dµ(γ (z)) = dxdy for z = x+ iy. Here,f (γ (z)) stands forf (γ (x, y)).
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For γ given by (1.1), we have τ(z) = cd φ(d)(z)with cd = 2! · · · (d−1)!. The expressionw(z) dµ(z) = |τ(z)|4/(d
2
+d)dµ(z)

is an analogue of the affine arclength measure for real curves (cf. [18,19,3]). See Section 2 for the optimality of this choice of
measure.

When d = 2, Oberlin [23] proved the following.

Theorem 1.1 ([23]; Theorem 4 and Example 3). Let γ (z) = (z, φ(z)), where φ(z) is an analytic function on an open set D ⊂ C.
Suppose that φ′(z) and the map (z1, z2) → (z1 − z2, φ(z1) − φ(z2)) both have generic multiplicities at most N on D and D2,
respectively.1 Then there is a constant Cp(N) < ∞ so that for all f ∈ Lp(R4),

D
|f (γ (z))|q |φ′′(z)|2/3dµ(z)

1/q

≤ Cp(N)∥f ∥Lp(R4) (1.4)

whenever 1/p + 1/(3q) = 1, 1 ≤ p < 4/3.

See [10] for a related result for some 2-dimensional surfaces in R4 which are not necessarily given by holomorphic
functions, butwhich satisfy a certain nondegeneracy condition. (See also [17] for an analogous result for some k-dimensional
surfaces in Rd, where d = 2k.)

In this paper we obtain some positive results in higher dimensions. First let us assume that γ (z) is in the form (1.1),
where φ(z) = zN , z ∈ C, for an integer N ≥ 0.

Theorem 1.2. Given integers d ≥ 3 and N ≥ 0, let γ (z) be as in (1.1), with φ(z) = zN . Then there is a constant C(N) < ∞ so
that for all f ∈ Lpd,1(R2d),

R2
|f (γ (z))|pd w(z) dµ(z)1/pd

≤ C(N)∥f ∥Lpd,1(R2d) (1.5)

wherew(z) = |φ(d)(z)|4/(d
2
+d) and pd = (d2 + d + 2)/(d2 + d).

Moreover, there is a constant Cp(N) < ∞ such that
R2

|f (γ (z))|qw(z) dµ(z)1/q

≤ Cp(N)∥f ∥Lp(R2d) (1.6)

whenever 1/p + 2/[(d2 + d)q] = 1, 1 ≤ p < pd.

These estimates (as well as those in the next theorem) are expected to be optimal on the Lorentz scale of exponents, in view
of the analogous results in the real case (see [3] and Theorems 1.4 and 1.5). However, this seems to be quite difficult to show
in the present context, where the (real) dimension of the surface is k = 2. For instance, it is unknown if the estimate (1.15),
which is dual to (1.6), fails for q ≤ qd, d ≥ 3, even when f is a bump function and we are in the nondegenerate case (with
w = 1). This is related to the unsolved problem of determining the convergence exponent for themulti-dimensional Tarry’s
problem. In this connection, compare the statements of Theorem 1.3 (for k = 1) and Theorem 1.9 (for k ≥ 2) in [1]. Notice
that no information is available for the divergence of the integral in Theorem 1.9 (in [1]), while Theorem 1.3 (in [1]) gives
the complete answer in the 1-dimensional case.

We show the sharpness of the condition 1/p + 2/[(d2 + d)q] = 1 at the end of this section (see under the heading ‘‘A
homogeneity argument’’), and we also prove in Section 2 the optimality of the weight functionw(z), given after (1.5).

When d = 3, we get a uniform estimate valid for an arbitrary polynomial φ(z) of degree at most N .2 This is an exact
analogue of Theorem 1.5 for (real) curves, stated below.

Theorem 1.3. For d = 3 and N ≥ 0, let γ (z) = (z, z2, φ(z)), where φ(z) is an arbitrary polynomial of degree at most N. Then
there is a constant C(N) < ∞, independent of the coefficients of φ(z), so that for all f ∈ L7/6,1(R6),

R2
|f (γ (z))|7/6w(z) dµ(z)6/7

≤ C(N)∥f ∥L7/6,1(R6) (1.7)

wherew(z) = |φ′′′(z)|1/3.
Moreover, there is a constant Cp(N) < ∞, independent of the coefficients of φ(z), such that

R2
|f (γ (z))|qw(z) dµ(z)1/q

≤ Cp(N)∥f ∥Lp(R6)

whenever 1/p + 1/(6q) = 1, 1 ≤ p < p3 = 7/6.

1 Recall that F : D ⊂ Rk
→ Rk is said to have generic multiplicity N if card[F−1(y)] ≤ N for almost all y ∈ Rk . Here, card[E] denotes the cardinality of

the set E.
2 It will be interesting if one can show a version of Theorem 1.3 for higher dimensions (d ≥ 4) as well as an analogue of Theorem 1.4 for complex curves.
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One can show that the weight functions w(z) in (1.5) and (1.7) are sharp up to a multiplicative constant, as in the real
case. See Proposition 2.1.

To put things in perspective, let us now recall some analogous earlier results for curves in Rd.
Real curves. Let t → γ (t) be a curve in Rd, defined on an interval I in R. Let us consider a Fourier restriction estimate of

the following form:
I
|f (γ (t))|qw(t) dt1/q

≤ C∥f ∥Lp(Rd) (1.8)

wheref (ξ) denotes the Fourier transform of f ∈ Lp(Rd) and

w(t) = |τ(t)|
2

d2+d , with τ(t) = det(γ ′(t), . . . , γ (d)(t)). (1.9)
Here themeasurew(t) dt is called the ‘affine arclengthmeasure’ (cf. [18,19,3]).We aremostly interested inuniform estimates
for (1.8), that is, we would like to take the constant C to be uniform over given classes of curves. Also, whenever appropriate
we would like to prove global estimates, that is, for I = R or (0,∞).

For the history of this problem we refer the reader to [16,3,5] and the references therein. The endpoint versions of the
Fourier restriction estimates (1.8) for some classes of curves were established in [5].We shall now describe two such results.
The first concerns the case of ‘monomial’ curves of the form

t → γa(t) = (ta1 , ta2 , . . . , tad), 0 < t < ∞ (1.10)
where a = (a1, . . . , ad) is a d-tuple of arbitrary real numbers. For d ≥ 2, let pd = (d2 + d+ 2)/(d2 + d). The endpoint result
is the following.

Theorem 1.4 ([5]). Let w(t) dt = wa(t) dt denote the affine arclength measure for the curve (1.10), where w(t) is given
by (1.9) with γ = γa. Then, for d ≥ 3, there is a constant C(d) < ∞ such that for all f ∈ Lpd,1(Rd),

∞

0
|f (γa(t))|pd wa(t) dt

1/pd

≤ C(d)∥f ∥Lpd,1(Rd). (1.11)

The constant in (1.11) is uniform in the sense that it does not depend on a1, a2, . . . , ad. We would like to point out that
the versions of (1.11) fail when d = 2 (for p2 = 4/3), even in the nondegenerate case and even when the target space is
replaced by L1(I;wdt) for a finite interval I . (See [6]; see also Section 1 in [3].)

The (Lp, Lq) estimates, in the optimal range 1 ≤ p < pd, q = 2p′/(d2 + d), follow by interpolating (1.11) and the
(L1, L∞) estimate. These estimates were proved earlier in [3], following the work in [19]. (For a general result in R2 see, for
instance, [25] and the references therein.)

Similar results have been proved for some other classes of curves including the polynomial curves of ‘simple’ type given
by

Γb(t) =

t, t2, . . . , td−1, Pb(t)


, t ∈ R (1.12)

in Rd, where Pb is an arbitrary polynomial of degree N ≥ 0, with the coefficients (b0, . . . , bN) = b ∈ RN+1. Namely,
Pb(t) =

N
j=0 bjt

j. The affine arclength measure is given by Wb(t) dt , where Wb(t) = |τ(t)|2/(d
2
+d)

= |cd P
(d)
b (t)|2/(d

2
+d)

with cd = 2! · · · (d − 1)!. The endpoint estimate in this case is the following.

Theorem 1.5 ([5]). For d ≥ 3, there is a constant C(N) < ∞ so that for all f ∈ Lpd,1(Rd) and b ∈ RN+1,
∞

−∞

|f (Γb(t))|pd Wb(t) dt
1/pd

≤ C(N)∥f ∥Lpd,1(Rd). (1.13)

Both Theorems 1.4 and 1.5 are optimal with respect to the two Lorentz exponents occurring on both sides, if we consider
them as weighted Lorentz norm estimates: Lpd,1(Rd) → Lpd,pd(w dt). In particular, the strong type (Lpd , Lpd) estimate fails.
This fact is an easy consequence of the corresponding result in [3] for the nondegenerate case, where it was shown that
Lpd,1(Rd)was the smallest possible space and Lpd,pd(w dt) the largest possible space on the scale of Lorentz spaces.Moreover,
the weight functionsw (= wa or Wb) are sharp up to a multiplicative constant. (See [5,24] and Section 2.)

Remark 1.6. One can also consider general polynomial curves of the form γ (t) = (P1(t), . . . , Pd(t)), where each Pj is a
polynomial of degree at most N . Dendrinos and Wright [14] established the uniform Jacobian estimate for the mapping
(t1, . . . , td) →

d
j=1 γ (tj). This implies a uniform restriction estimate in the reduced range 1 ≤ p < pc(d) =

d2+2d
d2+2d−2

. (This
range is commonly referred to as ‘Christ’s range’ of exponents.) This is the range where one does not need the ‘method of
offspring curves’, hence the torsion bound is not needed here. In [5] (see Proposition 8.1 there) this range was extended a
little by combining an argument of Drury [16] with a result of Stovall [27] on averaging operators.

The main obstacle for obtaining a uniform estimate in the full range, by means of the method of offspring curves, is that
the second crucial estimate concerning the torsion of the offspring curves (as described in the beginning of Section 6) breaks
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down for curves of non-simple type. At the moment the only known approach that gives the full range 1 ≤ p < pd (and also
the restricted strong type for p = pd) for curves of non-simple type is the method based on ‘exponential parametrization’,
which originated in [19] andwas used in [5] to prove Theorem1.4. (See also [13] and the remark at the end of Section 6 of [5].)

The dual estimate of (1.5). Let p′ denote the Hölder conjugate exponent, i.e. 1/p + 1/p′
= 1. The dual estimate of (1.5) is

the following weak type (qd, qd) estimate for qd = p′

d = (d2 + d + 2)/2:

∥Tf ∥Lqd,∞(R2d) ≤ C(N)∥f ∥Lqd (wdµ) (1.14)

where T is given by

Tf (x) =


R2

eix·γ (z)f (z)w(z)dµ(z), x ∈ R2d.

Recall that the mapping z → γ (z) is regarded as a 2-dimensional surface (x, y) → γ (x, y) in R2d. In particular, x · γ (z)
denotes the dot product in R2d.

By interpolating (1.14) with the (L1, L∞) estimate it follows that

∥Tf ∥Lq(R2d) ≤ Cq(N)∥f ∥Lp(wdµ) (1.15)

for 1/p + (d2 + d)/(2q) = 1, q > qd = p′

d = (d2 + d + 2)/2.
A homogeneity argument. To see the necessity of the condition 1/p + (d2 + d)/(2q) = 1 for (1.15) or (1.14) to hold, we

use the usual homogeneity argument. That is, we take f = χBR , where BR = B(0, R) is a ball in R2. We see that

|Tf (x)| ≥ cR
4(N−d)
(d2+d)

+2
χER(x/a)

for some small constant a > 0, where ER = [−R−1, R−1
]
2
× [−R−2, R−2

]
2
× · · · × [−R−(d−1), R−(d−1)

]
2
× [−R−N , R−N

]
2.

Hence, if (1.14) or (1.15) holds, then we must have

R
4(N−d)
d2+d

+2
R−

2
q (

d(d−1)
2 +N)

≤ CR
(
4(N−d)
d2+d

+2) 1p , ∀R > 0.

Thus, it follows that 1/p + (d2 + d)/(2q) = 1.
Organization of this paper. The optimality of theweight functionw(z) in Theorem1.2 or Theorem1.3 is proved in Section 2.

Section 3 contains the proof of a lower bound for a Jacobian arising in the proof of Theorem 1.2. A uniform lower bound for
the Jacobian associated to curves of simple type with arbitrary polynomials φ(z) is proved in Section 4. There is also a short
discussion about a sublevel set estimate for the complex Vandermonde determinant at the end of Section 4. In Section 5 we
state an interpolation theorem proved in [5]. Theorem 1.3 is proved in Section 6. Finally, in Section 7 we indicate how to
modify the latter argument to prove Theorem 1.2.

Notation. Adopting the usual convention, we let C or c represent strictly positive constants whose values may not be the
same at each occurrence. These constants may usually depend on N , d and p, but they will always be independent of f . (In
addition, they are uniform over the class of γ (z) given in Theorem 1.3. In particular, they are independent of the coefficients
of the polynomial φ(z) throughout the proof of that result.) Their dependence on the parameters is sometimes indicated by
a subscript or shown in parentheses. We write A . B or B & A to mean A ≤ CB, and A ≈ B means both A . B and B . A.

2. Optimality of the weight function

Let d ≥ 2. Here we shall consider the more general mapping γ (z) = (φ1(z), . . . , φd(z)), where each φj is an analytic
function on Ω ⊂ C. We continue to use the notation τ(z) = det(γ ′(z), . . . , γ (d)(z)). The following result is analogous to
the one found in Section 2 of [5], which in turn is based on an argument in [24].

Proposition 2.1. Assume that for some p ∈ (1, pd] and q(p) = 2p′/(d2 +d) there is a constant B such that for all f ∈ Lp,1(R2d),
Ω

|f (γ (z))|q(p) ω(z) dµ(z)1/q(p)

≤ B∥f ∥Lp,1(R2d) (2.1)

where ω(z) is a nonnegative, locally integrable weight function onΩ . Then there is a constant Cd such that

ω(z) ≤ Cd Bq(p)
|τ(z)|

4
d2+d a.e. z ∈ Ω. (2.2)

When γ (z) is as in (1.1), then we have τ(z) = cd φ(d)(z), so that the last inequality becomes ω(z) ≤ Cd Bq(p)

|φ(d)(z)|4/(d
2
+d), as we wanted to show.

Proof. Let P = AQ +b be a parallelepiped in R2d, where Q = [−
1
2 ,

1
2 ]

2d, b ∈ R2d and A is an invertible linear transformation
on R2d. Takef (ξ) = exp(−π |A−1(ξ − b)|2). Then |f (ξ)| ≥ c0 > 0 for ξ ∈ P , and f (x) = e2π ib·x|det(A)| · exp(−π |At x|2).
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Since |P| = |det(A)|, we have ∥f ∥p,1 ≈ |P|
1/p′

. Hence, (2.1) implies that
R2
χP(γ (z)) ω(z) dµ(z) ≤ C(d) Bq(p)

|P|
2/(d2+d). (2.3)

Since each φj(z) is analytic onΩ , so is τ(z). Thus, we may assume τ(z) has only isolated zeros. So, it is enough to show
(2.2) at points where τ(z) ≠ 0. (Otherwise, τ(z) is identically zero. We comment on this case at the end of this section.)

Fix a ∈ Ω . We have

γ (a + z) = γ (a)+

d
j=1

z j

j!
γ (j)(a)+ O(|z|d+1) (2.4)

for z near the origin. Now consider the linear mapping

(z1, . . . , zd) → Φ(z1, . . . , zd) = γ (a)+

d
j=1

zj
j!
γ (j)(a). (2.5)

Write zj = xj + iyj. For ε > 0, let E = {(z1, . . . , zd) : |xj| ≤ 2 εj, |yj| ≤ 2 εj, 1 ≤ j ≤ d} denote a rectangular box in R2d. The
image P1 of E under this mapping is a parallelepiped in R2d. Its volume |P1| is given by

|P1| = 22d εd
2
+d

· JRΦ = 22d εd
2
+d

· |detJCΦ|
2

= 22d εd
2
+d

· |(2! · · · d!)−1 det(γ ′(a), . . . , γ (d)(a))|2

= 22d(2! · · · d!)−2 εd
2
+d

· |τ(a)|2.

Weused here the fact that the Jacobian of (2.5) as a realmapping is given by JRΦ = |detJCΦ|
2, where JCΦ is the holomorphic

Jacobian matrix of the mapping (2.5). This is a consequence of Proposition 1.4.10 on p. 51 in [22].
If τ(a) ≠ 0, and if ε = ε(a) > 0 is sufficiently small, then we have γ (a + z) ∈ P1 when |z| ≤ ε. In fact, since

γ ′(a), . . . , γ (d)(a) span Cd, it follows from (2.4) that

γ (a + z) = γ (a)+

d
j=1

z j + zdgj(z, a)
j!

γ (j)(a) (2.6)

for some functions gj(z, a) such that gj(z, a) → 0 as z → 0 for j = 1, 2, . . . , d.
Therefore, it follows from (2.3) that

lim sup
ε→0

1
πε2


|z|≤ε

ω(a + z) dµ(z) ≤ Cd Bq(p)
|τ(a)|4/(d

2
+d).

So the conclusion (2.2) follows by the Lebesgue differentiation theorem.
On the other hand, when τ(a) = 0, a slight modification of the above argument shows that

|z|≤ε
ω(a + z) dµ(z) = o(ε2), as ε → 0.

Thus, when τ(z) ≡ 0, we may conclude that ω(z) is zero almost everywhere. (See Section 2 of [5] for more details.) �

3. A lower bound for the Jacobian

Let us begin by making a definition.

Definition 3.1. LetN be a nonnegative integer and let z1, . . . , zd be complex numbers. Let QN denote a homogeneousmonic
polynomial of degree N in z1, . . . , zd, given by

QN(z1, . . . , zd) =


α1+···+αd=N

zα11 · · · zαdd .

Here, α1, . . . , αd are nonnegative integers.

Thus, QN is a symmetric polynomial. We have the following properties of QN .

Lemma 3.2. Let d ≥ 2 and N ≥ 1. Then
(i) Q0(zd, . . . , z1) = 1;
(ii) QN(z3, z1)− QN(z2, z1) = (z3 − z2)QN−1(z3, z2, z1);
(iii) QN(zd, zd−1, . . . , z1) = QN(zd, . . . , z2)+ QN−1(zd, . . . , z2)z1 + · · · + Q1(zd, . . . , z2)zN−1

1 + zN1 .
(iv)Moreover, we have

QN(zd+1, zd−1, . . . , z1)− QN(zd, zd−1, . . . , z1) = (zd+1 − zd)QN−1(zd+1, . . . , z1).
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Proof. The properties (i)–(iii) are straightforward. To see that (iv) holds, we use induction on d. First, (ii) gives the case
d = 2. Now suppose that (iv) holds with d replaced by d − 1. That is, we assume

QN(zd, zd−2, . . . , z1)− QN(zd−1, zd−2, . . . , z1) = (zd − zd−1)QN−1(zd, . . . , z1)

holds for some d ≥ 3 and for N ≥ 1. It follows from (iii) and this induction hypothesis that

QN(zd+1, zd−1, . . . , z1)− QN(zd, zd−1, . . . , z1) = QN(zd+1, zd−1, . . . , z2)+ QN−1(zd+1, zd−1, . . . , z2)z1 + · · · + zN1
− [QN(zd, zd−1, . . . , z2)+ QN−1(zd, zd−1, . . . , z2)z1 + · · · + zN1 ]

= (zd+1 − zd)

QN−1(zd+1, zd, . . . , z2)+ QN−2(zd+1, zd, . . . , z2)z1

+ · · · + Q1(zd+1, zd, . . . , z2)zN−2
1 + zN−1

1


= (zd+1 − zd)QN−1(zd+1, . . . , z1)

which is the case d of (iv). Hence, (iv) holds for all d ≥ 2 and N ≥ 1.

We now turn to the proof of a lower bound for the Jacobian of a transformation that arises in the proof of Theorem 1.2.
Let J(z1, . . . , zd) = JC(z1, . . . , zd) denote the determinant of the holomorphic Jacobian matrix of the mapping

(z1, . . . , zd) → 0(z1, . . . , zd) =

d
k=1

Γb(zk)

with zk = z + hk, h1 = 0. Here, Γb(z) = m−1m
j=1 γ (z + bj), where m ∈ N, and b = (b1, . . . , bm) ∈ Cm, with b1 = 0.

For h = (h1, . . . , hd) ∈ Cd, let v(h) = v(h1, . . . , hd) =


1≤i<j≤d |hi − hj| denote the absolute value of the (complex)
Vandermonde determinant.

Lemma 3.3. Let γ (z) be given by (1.1) with φ(z) = zN for an integer N ≥ d with d ≥ 2, and let Γb(z) be defined as above. Set

J(z1, . . . , zd) = JC(z1, . . . , zd) = det(Γ ′

b(z1), . . . ,Γ
′

b(zd))

where zj = z + hj ∈ C, 1 ≤ j ≤ d, and h1 = 0. Then C may be written as the union (ignoring a null-set) of C(d,N) sectors∆ℓ
with vertex at the origin such that for each 1 ≤ ℓ ≤ C(d,N), and for each integer m ≥ 1, we have

|J(z1, . . . , zd)| ≥ c(d,N) v(h) max

1
m

m
j=1

|φ(d)(z + bj + hk)| : 1 ≤ k ≤ d


(3.1)

where z + bj + hk ∈ ∆ℓ. Here, C(d,N) and c(d,N) are positive constants depending only on d and N.

Note that v(h) = v(z1, . . . , zd), since zi − zj = hi − hj.

Proof. Let us write zjk = z + bj + hk. Since h1 = 0, we have zj1 = z + bj. If we abbreviate
m

j=1 as


, we get

J(z1, . . . , zd) = det(Γ ′

b(z + h1), . . . ,Γ
′

b(z + hd))

=
(d − 1)!N

md−1



1 1 · · · 1
(zj1)


(zj2) · · ·


(zjd)

(zj1)2


(zj2)2 · · ·


(zjd)2

...
...

. . .
...

(zj1)d−2


(zj2)d−2
· · ·


(zjd)d−2

(zj1)N−1


(zj2)N−1
· · ·


(zjd)N−1



=
(d − 1)!N

md−1



1 0 · · · 0
(zj1) mh2 · · · mhd
(zj1)2 h2


Q1(zj2, zj1) · · · hd


Q1(zjd, zj1)

...
...

. . .
...

(zj1)d−2 h2


Qd−3(zj2, zj1) · · · hd


Qd−3(zjd, zj1)

(zj1)N−1 h2


QN−2(zj2, zj1) · · · hd


QN−2(zjd, zj1)


.
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Note that the value of this determinant equals

mh2 mh3 · · · mhd

h2


Q1(zj2, zj1) h3


Q1(zj3, zj1) · · · hd


Q1(zjd, zj1)

h2


Q2(zj2, zj1) h3


Q2(zj3, zj1) · · · hd


Q2(zjd, zj1)

...
...

. . .
...

h2


Qd−3(zj2, zj1) h3


Qd−3(zj3, zj1) · · · hd


Qd−3(zjd, zj1)

h2


QN−2(zj2, zj1) h3


QN−2(zj3, zj1) · · · hd


QN−2(zjd, zj1)


= mh2h3 · · · hd

×



1 0 · · · · · · 0
Q1(zj2, zj1) m(h3 − h2) · · · · · · m(hd − h2)
Q2(zj2, zj1) (h3 − h2)


Q1(zj3, zj2, zj1) · · · · · · (hd − h2)


Q1(zjd, zj2, zj1)

...
...

. . .
. . .

...
Qd−3(zj2, zj1) (h3 − h2)


Qd−4(zj3, zj2, zj1) · · · · · · (hd − h2)


Qd−4(zjd, zj2, zj1)

QN−2(zj2, zj1) (h3 − h2)


QN−3(zj3, zj2, zj1) · · · · · · (hd − h2)


QN−3(zjd, zj2, zj1)


by the properties of QN stated in Lemma 3.2.

Continuing in this way, we see that

J(z1, . . . , zd) = (d − 1)!Nm−1(h2 · · · hd) · · · (hd−1 − hd−2)(hd − hd−2)

×

 1 1
QN−d+1(zj,d−1, zj,d−2, . . . , zj1)


QN−d+1(zj,d, zj,d−2, . . . , zj1)


=
(d − 1)!N

m


1≤k<l≤d

(hl − hk)

m
j=1

QN−d(zj,d, zj,d−1, . . . , zj1).

Hence, if we write Lj for QN−d(zjd, . . . , zj1), we obtain

|J(z1, . . . , zd)| ≥
(d − 1)!N

m
v(h) ·

 m
j=1

Lj

.
By rotation, it suffices to consider the case when ∆ℓ = ∆ = {reiθ : r ≥ 0, and θ ∈ (0, ε)}, for some small

ε = ε(d,N) > 0. (Indeed, we may express the elements of ∆ℓ in the form z ′
= az, for z ∈ ∆ and some fixed complex

number awith |a| = 1. By homogeneity, the powers of a may be factored out of each row of the Jacobian.)
Recalling that zjk = z + bj + hk, let us write xjk = Re(zjk) and yjk = Im(zjk). Then for each j, we have the lower bound

|Re(Lj)| ≥ QN−d(xj1, xj2, . . . , xjd)+ Ej

where Ej is a sum of C(d,N) terms similar to the expression preceding it but with one or more factors xjk replaced by cjk yjk.
Here, |cjk| ≤ C ′(d,N). Note that 0 < yjk . ε xjk. Hence the last expression is bounded below by

1
2
QN−d(xj1, xj2, . . . , xjd) &

d
k=1

xN−d
jk ≈

d
k=1

|φ(d)(z + bj + hk)|

provided that ε = ε(d,N) > 0 is chosen sufficiently small. This implies that

|J(z1, . . . , zd)| ≥ c(d,N) v(h)
1
m

d
k=1

m
j=1

|φ(d)(z + bj + hk)|

whenever z + bj + hk ∈ ∆. This finishes the proof of Lemma 3.3. �

4. Jacobian bound for polynomial curves of simple type in C3

A version of the following lemma may be found in [20] (Lemma 3.1), where it is stated and proved for polynomials of
a real variable. (See also [8,9].) But the same proof works for polynomials of a complex variable, since it only relies on the
triangle inequality.
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Lemma 4.1. Given a complex number D ≠ 0, let P(z) = D
N

j=1(z − zj) =
N

k=0 νk z
k be a polynomial of degree N. Assume

that the roots zj are ordered so that |z1| ≤ · · · ≤ |zN |. Let Gj = {z ∈ C : A|zj| ≤ |z| ≤ A−1
|zj+1|} for 1 ≤ j ≤ N − 1, and

GN = {z ∈ C : |z| ≥ A|zN |}. Then there exists a constant C = C(N) > 1 such that for any A ≥ C(N) and 1 ≤ j ≤ N, if Gj is
nonempty, then

(i) |P(z)| ≈ |νj||z|j for z ∈ Gj;

(ii) for 1 ≤ j ≤ N − 1, we have |νj| ≈ |D|
N
ℓ=j+1 |zℓ|. (For j = N, we have νN = D. In particular, νj ≠ 0, 1 ≤ j ≤ N.)

The idea of this lemma helps us prove a uniform lower bound, i.e. Lemma 4.2, for the Jacobian associated to complex curves
of simple type in C3, when φ(z) is an arbitrary polynomial. This result may be of some independent interest. For instance, it
is likely to have some implications for the related averaging operators. (See e.g. [12,27].)

Lemma 4.2. Let γ (z) = (z, z2, . . . , zd−1, φ(z)), where φ(z) is a polynomial of degree at most N. Let J(z1, . . . , zd) =

JC(z1, . . . , zd) be the determinant of the holomorphic Jacobian of the transformation (z1, . . . , zd) →
d

i=1 γ (zj).
If d = 3, then there exist a constant c(d,N) > 0, a positive integer M = M(d,N), and a collection of pairwise disjoint,

convex open sets B1, . . . , BM , such that C = ∪
M
ℓ=1 Bℓ, ignoring a null-set, and such that for 1 ≤ ℓ ≤ M,

|J(z1, . . . , zd)| ≥ c(N) v(z1, . . . , zd) max
1≤i≤d

|φ(d)(zi)| (4.1)

whenever zj ∈ Bℓ, 1 ≤ j ≤ d.

Recall that v(z1, . . . , zd) =


1≤i<j≤d |zi − zj|. Thus, v(z1, z2, z3) = |z1 − z2| · |z1 − z3| · |z2 − z3|, when d = 3.

Remark 4.3. If γ (z) in Lemma 4.2 is replaced by (an offspring curve)

Γ (z) = (P1(z), . . . , Pd−1(z), φ(z))

where Pj(z) = z j + lower order terms as in (6.1), then the Jacobian of the corresponding mapping is the same as that for
γ (z)when they have the same φ(z). So, we should obtain the same conclusion (4.1) in this case. For example, when d = 3,
the new Jacobian J(z1, z2, z3) is again given by the formula (4.6).

Proof of Lemma 4.2. Let d = 3. If 0 ≤ N ≤ 2, then φ′′′
≡ 0 and J ≡ 0. Moreover, if N = 3, then φ′′′(z) is a non-zero

constant and J(z1, z2, z3) is a constant multiple of v(z1, z2, z3). Thus, we may assume that N ≥ 4 and φ′′′(z) has at least one
zero. Our goal is to decompose C into a collection {B} ofM(N) pairwise disjoint, convex open sets so that the inequality (4.1)
holds on each B. To this end, we will represent J(z1, z2, z3) as an integral as in (4.6). It may be worthwhile to point out that,
compared to the real case, the complex case is more delicate, because it is necessary to control carefully the argument of the
integrand as well as the magnitude, in order to get a good lower bound for the multiple integral of a function of a complex
variable.

For the sake of clarity we will divide the rest of the proof into four steps.
Step 1. Preliminary decompositions of C.
To get a decomposition ofC, we begin by fixing a zero b of φ′′′(z), putting S = S(b) = {z ∈ C : |z−b| < |z−b′

|,∀b′
≠ b}

as in [14], where {b′
} is the zero set of φ′′′(z). Then C =


b:φ′′′(z)=0 S(b), except for a null-set. We will show how to

decompose S(b) further in four different ways.
By a translation, we may assume that b = 0. Let us write φ′′′(z) = Dza1

m
j=2(z − ηj)

aj , where 0 and ηj are the distinct
roots of φ′′′(z), with multiplicity aj, so that N − 3 = a1 + · · · + am.

(1.a)Decomposition into gap annuli and dyadic annuli. Let us rewriteφ′′′(z) = D
N

j=1(z−zj) =
N

k=0 νk z
k as in Lemma4.1,

with zj, νj and Gj as in that lemma. (By abuse of notation wewill write N , instead of N −3, for deg(φ′′′). Thus, we have N ≥ 1
in this new notation.) Since a constant factor in φ(z) can be canceled from both sides of the inequality (4.1), wemay assume
that D = 1. Since φ′′′(0) = 0, we have z1 = 0. The region Gj may be called a ‘gap annulus’ in analogy with the terminology
‘gap interval’ in [14]. From Lemma 4.1 it follows that |φ′′′(z)| ≈ |νj||z|j for z ∈ Gj. Also, define the ‘dyadic annuli’ by

Dj = {z ∈ C : A−1
1 |zj| < |z| < A1|zj|}, 2 ≤ j ≤ N − 1,

for some A1 > 0 chosen slightly larger than A. Thus, there is a small overlap between the regions Gj and Dj, which will help
us define certain convex open sets B contained in them, cutting off some parts of the non-convex regions (annuli) Gj and Dj.
(See the second paragraph under the heading ‘Decomposition of Gj’ below.)

(1.b) Decomposition into sectors. By dividing C into narrow sectors {∆} with vertex at 0, and then by using rotation, we
may assume 0 < y < εx in∆, for some ε = ε(N), where we have written z = x + iy. (See the proof of Theorem 3.3.) Then
we have |φ′′′(z)| ≈ |νj| · |z|j ≈ |νj| · xj, for z ∈ ∆ ∩ Gj.
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Step 2. Further decompositions of the regions.
Fix j and let z ∈ ∆ ∩ Gj. Recall that φ′′′(z) =

N
j=1(z − zj)with z1 = 0. Let us rewrite it in the form

φ′′′(z) = g(z)(−1)N−j z j
N

ℓ=j+1

zℓ (4.2)

where

g(z) =

j
i=1


1 −

zi
z

 N
ℓ=j+1


1 −

z
zℓ


.

We want to decompose the range of g(z), contained in an annulus, into small radial sectors. By considering the pre-images
of the sectors we want to decompose S ∩∆ ∩ Gj and S ∩∆ ∩ Dj further into convex sets {B} with the following property.

After multiplying by a unit complex number if necessary, g(z) can be put in the form g(z) = ξ(z)+ iη(z)with

0 < b0 |η(z)| ≤ ξ(z) (4.3)

for all z ∈ B ⊂ S ∩ ∆ ∩ Ej (with Ej = Gj or Dj), where b0 > 0 is a large absolute constant to be chosen later. If this holds,
then we have ξ(z) ≤ |g(z)| ≤ (1 + b−2

0 )
1/2ξ(z) for z ∈ B.

To achieve this goal, we need to decompose Gj and Dj further. This can be done separately for Gj and Dj as follows.
(2.a) Decomposition of Gj. If z ∈ S ∩ ∆ ∩ Gj, we have A|zj| ≤ |z| ≤ |zj+1|/A. We may assume zj+1 ≠ 0, since otherwise

Gj = {0} and there is nothing to prove. Since 1−zi/z = 1+O(1/A), 1 ≤ i ≤ j, and also 1−z/zℓ = 1+O(1/A), j+1 ≤ ℓ ≤ N ,
taking A = C0N gives g(z) = 1 + O(C−1

0 ). In fact, it is easy to see that |g(z)− 1| ≤ 2 C−1
0 , which yields the condition (4.3) if

we choose C0 ≥ 3 b0, say.
It only remains to cut S ∩ ∆ ∩ Gj into a few convex open sets B so that their union covers all of S ∩ ∆ ∩ Gj, except for a

null set and some little pieces which lie in the intersections Di ∩ Gj ∩ S ∩∆, for i = j and i = j + 1. (The remaining parts of
the sets Di ∩ Gj ∩ S ∩∆, for i = j, j + 1, will be covered by the B’s arising from the decomposition of Di, which is described
next.)

(2.b)Decomposition of Dj. If z ∈ S∩∆∩Dj, we have A−1
1 |zj| < |z| < A1|zj|, where A1 = (1+δ0)A = C1N = (1+δ0)C0N for

some small δ0 > 0. (Recall that the purpose of introducing A1 > A is to create some overlap between the regions (S1∩∆∩Dj
and S1 ∩∆∩Gj) in order to facilitate the decomposition of C into convex regions. It would be difficult to decompose annular
regions into convex regions.)

We may assume zj ≠ 0 here, since otherwise Dj is empty. Let us recall φ′′′(z) = g(z)(−1)N−j z j
N
ℓ=j+1 zℓ, as in (4.2).

Note that |(z − zi)/z| ≥ 1 for all i if z ∈ S, and also |(zℓ − z)/zℓ| ≥ (1/2) for all ℓ if z ∈ S. In fact, the second inequality
follows from the first, since |zℓ| ≤ |z − zℓ| + |z| ≤ 2|z − zℓ| if z ∈ S. From this it follows that

|g(z)| ≥ 2j−N
≥ 22−N

∀z ∈ S ∩∆ ∩ Dj, 2 ≤ j ≤ N. (4.4)

The inequality (4.4) gives a separation from the origin, which is needed to obtain a small angular support for g(B) so that
(4.3) holds, where B is to be specified shortly.

Moreover, we have |∂r(1 − zi/z)| ≤ |zi|/r2 ≤ |zj|/r2 ≤ A2
1/|zj| (for i ≤ j) and |∂r(1 − z/zℓ)| ≤ 1/|zℓ| ≤ 1/|zj| (for ℓ ≥ j).

Hence,

|∂r(g(r, θ))| ≤ N(1 + A1)
N+1

|zj|−1.

Likewise, we get |∂θ (1 − zi/z)| ≤ |zi|/r ≤ |zj|/r ≤ A1 (for i ≤ j) and |∂θ (1 − z/zℓ)| ≤ r/|zℓ| ≤ r/|zj| ≤ A1 (for ℓ ≥ j). So,
|∂θ (g(r, θ))| ≤ N(1 + A1)

N .
Hence, we can divide the r-interval, given by A−1

1 |zj| < r < A1|zj|, into C(N) pieces of length L ≤ C(N)−1A1|zj| so that

|∂r(g(r, θ))| · L ≤ N(1 + A1)
N+1

|zj|−1
× C(N)−1A1|zj|

≤ C(N)−1N(1 + A1)
N+2. (4.5)

(Note that the two factors involving |zj| cancel out.)
Similarly, if we divide the θ-interval into C(N) pieces of angle Θ , then we have |∂θ (g(r, θ))| · Θ . N(1 + A1)

N
×

ε(N) C(N)−1. Since this is smaller than the previous estimate, for simplicity we can use the same number C(N) here.
This allows us to choose C(N)2 pairwise disjoint, convex open sets {B} in S ∩∆∩Dj such that g(B) is contained in a small

disk of diameter . C(N)−1N(1 + A1)
N+2. We can do this in such a way that the collection {B}, which consists of all the B’s

from this step (for Dj, 2 ≤ j ≤ N) and the previous one (for Gj, 1 ≤ j ≤ N), covers all of S ∩∆, except for a null-set.
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The estimates (4.4) and (4.5) imply that the angular support of g(B) (when the angle is measured from 0) is bounded by

C2 C(N)−1N(1 + A1)
N+2

c0 22−N
=

C2 2NN(1 + C1N)N+2

4 c0 C(N)
<

1
2 b0

if C(N) is chosen so that C(N) > b0 c−1
0 C2 2N−1N(1 + C1N)N+2. Therefore, we obtain (4.3) for every z ∈ B ⊂ S ∩∆ ∩ Dj.

Step 3. A lower bound for the Jacobian.
We begin with an integral representation of the Jacobian. Assume that U is a convex open set. (We will take U = b + B

later.) Let u, v, w ∈ U . Let θ be the largest of the interior angles of the triangle uvw. Then π/3 ≤ θ ≤ π . By renaming the
points if necessary, we may assume that the angle at v equals θ and that |v − u| ≤ |w − v|. We have the representation

J(u, v, w) =

 v

u

 w

v

 s2

s1
φ′′′(z) dz ds2 ds1 (4.6)

where each integral is regarded as a line integral over a line segment. (This is where we need the convexity of U .)
By factoring out a unit complex number, wemay also assume that v−u is a positive real number. This amounts to having

the vector −→uv horizontal and pointing to the right. We parametrize the line integrals above by setting s1 = u + (v − u)t1,
s2 = v + (w − v)t2, and z = s1 + (s2 − s1)t3, with 0 ≤ tj ≤ 1, to obtain

J(u, v, w) = (v − u)(w − v)

 1

0

 1

0

 1

0
[s2(t2)− s1(t1)]φ′′′(z(t1, t2, t3)) dt3 dt2 dt1.

Let us now put s2 − s1 = s2(t2)− s1(t1) = α + iβ and Hj · z j = a + iδ, where Hj =
N
ℓ=j+1 |zℓ|. Thus, we have

φ′′′(z) = ±(a + iδ)(ξ + iη).

By our assumptions, β is single-signed. Let us assume β ≥ 0 for the sake of definiteness. Since |δ| ≤ c εa when z ∈ B ⊂ ∆,
we have

Re [(s2 − s1)φ′′′(z)] = (αa − βδ)ξ − (βa + αδ)η
= αaξ − βaη + O(ε|s2 − s1| a ξ); (4.7)

Im [(s2 − s1)φ′′′(z)] = (αa − βδ)η + (βa + αδ)ξ
= αaη + βaξ + O(ε|s2 − s1| a ξ). (4.8)

Note that the signs of (4.7) and (4.8) do not affect our argument, because we estimate the absolute value of the Jacobian
J(u, v, w) from below as follows:

|J(u, v, w)| & |v − u||w − v| ·

  1

0

 1

0

 1

0
Im [(s2 − s1)φ′′′(z)] dt3dt2dt1

.
Fix a set B as above and assume that u, v,w ∈ B ⊂ (S ∩∆ ∩ Ej), with Ej = Gj or Dj.
Let us now consider the following two cases separately: (3.i) π/3 ≤ θ < π/2, and (3.ii) π/2 ≤ θ ≤ π . (Recall that θ is

the interior angle at the vertex v of the triangle uvw.)
The case (3.i): π/3 ≤ θ < π/2. We claim that

{β≥|α|/2}
β aξ ≥ c G

where we put

G =

 1

0

 1

0

 1

0
|s2 − s1| · Hj · xj ξ dt3dt2dt1.

Recall that Hj =
N

k=j+1 |zk| and z = x + iy.
This may be seen as follows. Fix t1 ∈ [0, 1]. Let t2(t1) be the smallest value of t2 ∈ [0, 1] such that β ≥ α/2 > 0,

i.e. Im (s2(t2)− s1(t1)) ≥ (1/2) Re (s2(t2)− s1(t1)) > 0 for t2 ≥ t2(t1). If |w− v| is much larger than |v − u|, then the term
xj = [Re (z)]j, which is comparable to Re [z j] for z ∈ ∆, may vary a lot in the triangle uvw. Thus, we split the integral into
two parts. (This splitting is not necessary when |w − v| ≤ 2|v − u|, say.)

By our assumptions it follows that 1 − t2(t1) ≥ t2(t1) for t1 ∈ [0, 1]. Note that the triangle with vertices at u, v and
s2(2 t2(0)) is contained in the ball B(v, 2|v|ε), centered at v. Also, for all z ∈ B(v, 2|v|ε), we have x ≈ |v|. Thus, for t1 ∈ [0, 1],
we have

[t2(t1), 1]

 1

0
|s2 − s1|Hj · xj ξ dt3dt2 ≥


[2t2(t1), 1]

 1

0
|s2 − s1|Hj · xj ξ dt3dt2

+ c


[t2(t1), 2t2(t1)]

 1

0
|s2 − s1|Hj · |v|j ξ dt3dt2 =: J1 + cJ2. (4.9)
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Given s1 = s1(t1), let L = L(t1) be the distance from s1 to the segment vw. Then the lengths of segments [s1, s2] with
s2 = s2(t2) for any t2 ∈ [0, 2t2(t1)] are all comparable to L. In fact, L ≤ |s1 − s2| ≤ 2L. Also, we have ξ ≈ |g(z)| ≈ 1 on B,
where the implied constants depend only on N . These facts imply that

J2 ≈


[0, t2(t1)]

 1

0
|s2 − s1|Hj · xj ξ dt3dt2 =: J3.

Thus, integrating both sides of the inequality (4.9) in t1 ∈ [0, 1] gives
{β≥α/2>0}

βaξ &

 1

0
J1 + c

 1

0
J2 ≥

 1

0
J1 +

c
2

 1

0
J2 +

c
2

 1

0
c1J3 & G

since G ≈
 1
0 (J1 + J2 + J3) dt1.

Hence, it follows from (4.3) that 1

0

 1

0

 1

0
Im [(s2 − s1)φ′′′(z)] dt3 dt2 dt1 =


βaξ +


αaη + O(εG)

≥


{β≥α/2>0}

βaξ − b−1
0


|α|aξ + O(εG) ≥ c2 G − b−1

0 C3G + O(εG)

≥ (c2 − b−1
0 C3 − C4ε)G ≥

c2
2
G

if b0 is chosen sufficiently large and ε sufficiently small. Therefore, we may conclude that

|J(u, v, w)| & |v − u||w − v|

  1

0

 1

0

 1

0
|s2 − s1| · Hj · xj dt3dt2dt1


& |v − u||w − v| ·

  1

0

 1

0

 1

0
(s2 − s1) · Hj · z j dt3dt2dt1


= Hj ·

  v

u

 w

v

 s2

s1
z j dzds2ds1

. (4.10)

Here we used the fact that ξ ≈ 1.
Next, observe that the last integral is precisely (a constant multiple of) the determinant of the Jacobian of the

transformation (u, v, w) → Γ (u) + Γ (v) + Γ (w), when we take Γ (z) = (z, z2, z j+3). Therefore, one can use Lemma 3.3
(with d = 3,m = 1) to show that the last integral is bounded below by a constant multiple of

Hj · v(u, v, w) max{|u|j, |v|j, |w|
j
}.

This is equivalent to

v(u, v, w)max{|φ′′′(u)|, |φ′′′(v)|, |φ′′′(w)|}

for u, v,w ∈ Bwith B ⊂ S ∩∆ ∩ Ej, when Ej = Gj (by Lemma 4.1) or when Ej = Dj (by the representation (4.2) and the fact
that |z| ≈ |zj| on Dj). This yields the desired lower bound (4.1) when π/3 ≤ θ < π/2. (Recall that θ is the interior angle at
the vertex v of the triangle uvw.)

The case (3.ii): π/2 ≤ θ ≤ π . In this case, we have α ≥ 0 and β ≥ 0 (or β ≤ 0). This case is easier than
the previous one, since there is no cancellation in either of the integrals


αaξ or


βaξ . Hence, in this case we have

αaξ + |

βaξ | =


αaξ +


|β|aξ ≥ c G. If


|β|aξ ≥ (c/2)G, then we get |


Im [(s2 − s1)φ′′′(z)]| & G, as before.

If not, then we have

αaξ ≥ (c/2)G, and so we would get |


Re [(s2 − s1)φ′′′(z)]| & G, instead. In either case, we obtain

(4.10) for ui ∈ b + B ⊂ b + (S ∩∆ ∩ Ej), 1 ≤ i ≤ 3, and the rest of the argument is the same as the previous case (3.i).
Step 4. Completion of the proof of Lemma 4.2.
We will finish the argument by stating how to make up the collection {B} to cover C. The sets {B}, which arose from all

the decomposition steps above, need to be translated by b, and then one gets b + S = ∪(b + B), except for a null-set. To be
precise, each distinct root b of φ′′′(z) contributes its own collection {b + B} to cover b + S, where S = S(b) depends on b. In
fact, b + S(b) = {z ∈ C : |z − b| < |z − b′

|, ∀b′
≠ b}, where {b′

} is the zero set of φ′′′(z). Finally, the collection of all these
sets gives the desired decomposition of C, i.e. C = ∪b[b + S(b)] = ∪b ∪B⊂S(b)(b + B), ignoring a null-set. It just remains to
rename the sets b + B as B so that C = ∪B, except for a null-set. This completes the proof of Lemma 4.2. �

A sublevel set estimate. We also need the following simple observation on the complex form of the Vandermonde
determinant.
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Lemma 4.4. Let v(h) = v(h1, h2, . . . , hd) =


1≤i<j≤d |hi − hj|. Then there is a constant Cd such that for each fixed h1 ∈ C,

|{h = (h1, h′) = (h1, h2, . . . , hd) ∈ Cd
: v(h) ≤ u}| ≤ Cd u4/d, ∀u > 0,

where | · | denotes the 2(d − 1)-dimensional Lebesgue measure.

Proof. Without loss of generality we may assume h1 = 0, by making a translation. Write x = (x2, . . . , xd) and y =

(y2, . . . , yd), where xj = Re (hj) and yj = Im (hj). Then the set G = {h′
= (h2, . . . , hd) ∈ Cd−1

: |v(0, h′)| ≤ u} is contained
in {x ∈ Rd−1

: |v(0, x)| ≤ u} × {y ∈ Rd−1
: |v(0, y)| ≤ u}, since |v(0, h′)| ≥ |v(0, x)| and |v(0, h′)| ≥ |v(0, y)|. Thus it

follows from the corresponding result in the real case (cf. [18,3]) that themeasure |G| in R2(d−1) is bounded by Cd(u2/d)2. �

5. Interpolation of multilinear operators with symmetries

The following lemma was proved in [5]. It is a variant of an interpolation theorem for r-convex spaces obtained in [3].
The original version for Banach spaces, sometimes called the ‘multilinear trick’, goes back to Christ [10].

For a complete quasi-normed space X , let ℓpα(X) be the space of the vector-valued sequences f = {fj}j∈Z such that

∥f ∥ℓpα(X) =


j∈Z

[2αj∥fj∥X ]
p
1/p

< ∞.

Theorem 5.1. Let n ≥ 3 be an integer and let 0 < r ≤ 1. Suppose that δ1, . . . , δn are real numbers so that the δi are not all
equal for i ≥ 2. Let V be an r-convex3 Lorentz space, and let X = (X0, X1) be a couple of compatible complete quasi-normed
spaces. Let T be a multilinear operator defined on n-tuples of (X0 +X1)-valued sequences and suppose that for every permutation
π on n letters we have the inequality

∥T (fπ(1), . . . , fπ(n))∥V ≤ ∥f1∥ℓrδ1 (X1)
n

i=2

∥fi∥ℓrδi (X0)
. (5.1)

Then there is a constant C such that

∥T (f1, . . . , fn)∥V ≤ C
n

i=1

∥fi∥
ℓnrσ


X 1

n ,nr

, σ =
1
n

n
i=1

δi. (5.2)

6. Proof of Theorem 1.3

About this proof. We will assume that the conclusion (4.1) of Lemma 4.2 is valid for a given d ≥ 3, and then formally
deduce from this assumption the d-dimensional version of (1.7), which is in the same form as (1.5). Actually, we will prove
the dual estimate (1.14). Since Lemma 4.2 has been established for d = 3, this shows Theorem 1.3. We decided to present
the proof in this way, showing most steps in general dimension d ≥ 3, since they are needed again in the next section to
prove Theorem 1.2 for all d ≥ 3.

Offspring curves.Write γ (z) = (z, z2, . . . , zd−1, φ(z)), where φ(z) =
N

i=0 αi z i, αi ∈ C. Let us put

Γ (z) = (P1(z), . . . , Pd−1(z), φ(z)) (6.1)

where Pj(z) = z j+ lower order terms, and φ(z) =
N

i=0 αi z i with some new coefficients αi ∈ C.
The expression Γ (z) is an analogue of the ‘offspring curves’ in the terminology of [15,18]. For instance, if Γ (z) is as above

with |αi| ≤ 1 and |hj| ≤ 2, for 1 ≤ j ≤ d, then the expression Γ1(z, h) = d−1d
j=1 Γ (z + hj) is again in the form (6.1), and

the coefficientsαi of the last component φ1(z) of Γ1(z, h) satisfy |αi| ≤ C(d,N) for some constant C(d,N). (See (7.4).)
Two crucial lower bounds. As in [5] (see Section 4), the following two lower bounds will play crucial roles here. The

first lower bound concerns the (real) Jacobian JR(z1, . . . , zd) of the transformation (z1, . . . , zd) →
d

j=1 Γ (zj), considered
as a real mapping, while the second one is about the torsion τ(z, h) of the offspring curves given by z → Γ (z, h) =d

j=1 Γ (z + hj), for fixed h = (h1, . . . , hd).
(i) The Jacobian bound:

JR(z1, . . . , zd) ≥ c(d,N) v(z1, . . . , zd)2 max
j=1,...,d

w(zj)
d2+d

2 (6.2)

where v(z1, . . . , zd) =


1≤i<j≤d |zi − zj|.

3 This means that there is a constant C such that ∥
M

j=1 fj∥
r
V ≤ C

M
j=1 ∥fj∥r

V for allM ≥ 1 and fj ∈ V . It is crucial that C is independent ofM . The Lorentz
space Lr,∞ is known to be r-convex for 0 < r < 1. (cf. [21,26])
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(ii) The torsion bound:

|w(z, h)| = |τ(z, h)|4/(d
2
+d)

≥ c(d,N) max
j=1,...,d

w(z + hj) (6.3)

for zj = z + hj ∈ B, whenever B is one of the sets in Lemma 4.2. Here, h = (h1, . . . , hd) with hj ∈ C, h1 = 0, and w(z) is
given by (1.3) with γ (z) replaced by Γ (z).

These are (6.18) and (6.13), respectively. The precise statements can be found there.We emphasize that for our argument
to work (more precisely, for the use of Lemma 5.1 to be valid), at least one of these two lower bounds must be in the
stronger form where, on the right-hand side of the inequality, instead of the usual geometric mean the arithmetic mean (or
equivalently, themaximum as written above) of the relevant terms is used.

The following proof is an adaptation of an argument used already in [5]. It is arranged somewhat differently here, because
unlike in [5] we cannot assume that the result is known for the ‘nondegenerate’ case (see [3]) in this context. Thus, both
the nondegenerate and degenerate cases are treated simultaneously here. We give the proof in some detail, for some of the
necessary changes may not be obvious. But our presentation will be somewhat sketchy at places. We refer the reader to
Sections 4 and 5 of [5] for more details on such points.

Observe that it suffices to consider the case N ≥ d, since for 0 ≤ N < d, we have γ (d)(z) ≡ 0, and so w(z) ≡ 0 and
there is nothing to prove. By a scaling argument it suffices to prove the estimate for functions f supported in a fixed ball,
say, B(0, 1) in C or R2.

Define

w(z) = |det(Γ ′(z), Γ ′′(z), . . . , Γ (d)(z))|4/(d
2
+d).

A calculation shows that

w(z)
d2+d

4 = cd |φ(d)(z)| (6.4)

where cd = 2! · · · (d − 1)!.
Now, for λ > 1, define

TΓλ f (x) = ψ(x)

B(1)

eiλx·Γ (z)f (z) w(z)dµ(z), x ∈ R2d, (6.5)

where ψ(x) is a nonnegative cutoff function and B(r) = B(0, r), r > 0.
Put Q = qd = (d2 + d + 2)/2, and define

Aλ = λ2d/Q · sup
Γ

∥TΓλ ∥LQ (B(1), wdµ)→LQ ,∞(R2d) (6.6)

where the supremum is taken over all offspring curves Γ as in (6.1) with |αi| ≤ 1. Recall that Γ is given by (6.1) and
φ(z) =

N
i=0 αi z i. (Notice that the cutoff functionψ(x) in (6.5) may be replaced by a translationψ(x−x0)without affecting

the norm bound, since a factor of the form eiλx0·Γ (z) may be absorbed into the function f (z).)
Let us first see that Aλ < ∞ for each λ > 1. By Hölder’s inequality and (6.4) we have

∥w∥L1(B(1), dµ) ≤ |B(1)|
d2+d−4
d2+d · ∥w

d2+d
4 ∥

4
d2+d
L1(B(1), dµ)

≤ |B(1)|
d2+d−4
d2+d · (cd)

4
d2+d ∥φ(d)∥

4
d2+d
L1(B(1), dµ)

≤ Cd,N

for some constant Cd,N uniform in the coefficients α = (α0, . . . , αN) of φ(z)with |αi| ≤ 1, 0 ≤ i ≤ N .
So, by Hölder’s inequality we obtain

∥f ∥L1(B(1), wdµ) ≤ ∥w∥
1/Q ′

L1(B(1), dµ)
∥f ∥LQ (B(1), wdµ) ≤ C1/Q ′

d,N ∥f ∥LQ (B(1), wdµ).

Since |TΓλ f (x)| ≤ |ψ(x)| · ∥f ∥L1(B(1), wdµ), the last inequality implies that

∥TΓλ f ∥LQ ,∞(R2d) ≤ ∥ψ∥LQ ,∞(R2d)∥f ∥L1(B(1), wdµ)

≤ ∥ψ∥LQ ,∞(R2d) · C
1/Q ′

d,N ∥f ∥LQ (B(1), wdµ).

Hence, it follows that for each λ > 1,

Aλ ≤ λ2d/Q · C1/Q ′

d,N ∥ψ∥LQ ,∞(R2d) < ∞. (6.7)

Our goal is to show that Aλ ≤ C(d,N), independent of λ > 1. This, in turn, would imply that

∥TΓλ f ∥LQ ,∞(R2d) ≤ C(d,N) λ−2d/Q
∥f ∥LQ (B(1), wdµ), λ > 1 (6.8)
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uniformly in α = (α0, . . . , αN) with |αi| ≤ 1, 0 ≤ i ≤ N , if f is supported in B(1). Assuming (6.8), it is easy to finish the
proof of (1.14). First we take Γ (z) = γ (z). Then we make a change of variables x → λ−1x to remove the factor λ−2d/Q , and
next we take the limit as λ → ∞ to remove the cutoff function ψ(x). Finally, summing over the B’s, where the B are as in
Lemma 4.2, we obtain (1.14) for f supported in B(1). Then a scaling argument extends (1.14) to functions f supported in C.

It remains to show Aλ ≤ C(d,N), and consequently (6.8). Fix λ > 1. Also fix Γ (z) as in (6.1) with α = (α0, . . . , αN),
αi ∈ C and |αi| ≤ 1, 0 ≤ i ≤ N . Let |hj| ≤ 2, 1 ≤ j ≤ d. Put Γ (z, h) =

d
j=1 Γ (z + hj). Then Γ (z, h) is in the form

Γ (z, h) = (d · P1(z), . . . , d · Pd−1(z), φ1(z)) (6.9)

where the Pj(z) are as in (6.1), with the leading coefficient 1, but some new coefficients for the lower order terms, and
φ1(z) =

N
i=0 ãi z

i with |α̃i| ≤ c∗ = C(d,N). The constants d, . . . , d, c∗ and c∗ can be factored from Γ (z, h) and
incorporated into x. Namely, we may rewrite

x · Γ (z, h) = y · Γ1(z, h).

Here, y = (d x1, . . . , d xd−2, c∗ xd−1, c∗ xd) = xL, where L is a d × d diagonal matrix, and

Γ1(z, h) = (P1(z), . . . , Pd−1(z), c−1
∗
φ2(z))

is an offspring curve as in (6.1), of which the last component has coefficientsαi with |αi| ≤ 1. The change of variables x → y
changes the cutoff function to

ψ(y L−1) = ψ


y1
d
, . . . ,

yd−2

d
,
yd−1

c∗
,
yd
c∗


.

Since ψ(y L−1) is bounded by the sum of no more than C(d,N) translates of ψ(y), we may apply the definition of Aλ. This
only increases the constant by a factor C(d,N).

By writing B(1) = B(0, 1) as a union of the sets B(1) ∩ B, where the B are as in Lemma 4.2, we may assume that f is
supported in B. We may also assume that B ⊂ B(1). (Otherwise, replace Bwith B(1) ∩ B.) Thus, we may rewrite

TΓλ f (x) = ψ(x)

B
eiλx·Γ (z)f (z) w(z) dµ(z), x ∈ R2d. (6.10)

Let us put

Mλ(f1, . . . , fd)(x) =

d
j=1

(TΓλ fj)(x) = ψ(x)d

Bd

eiλx·
d

i=1 Γ (zj)
d

j=1

[(fjw)(zj)] dµ(z1) · · · dµ(zd)

= ψ(x)d

B(2)d−1


Bh

eiλx·Γ (z,h)
d

j=1

[(fjw)(z + hj)] dµ(z) dµ(h2) · · · dµ(hd).

Here, Bh is the intersection of the sets B − hj (translates of B) over the indices j = 1, . . . , d.
Next, as in [2] we define the decomposed operators

Mλ,k(f1, . . . , fd)(x) = ψ(x)d

Sk


Bh

eiλx·Γ (z,h)
d

j=1

[(fjw)(z + hj)] dµ(z) dµ(h2) · · · dµ(hd) (6.11)

where

Sk = {h′
= (h2, . . . , hd) ∈ B(2)d−1

: 2−k−1 < v(0, h′) ≤ 2−k
}

for k ∈ Z. Recall that v(h) =


1≤i<j≤d |hi − hj|.
An estimate at q = Q . By the considerations aboutΓ (z, h) given in the paragraph containing (7.4) and from the definition

(6.6) of Aλ, it follows thatψ(x) 
Bh

eiλx·Γ (z,h)f (z) · w(z, h) dµ(z)

Q ,∞

. λ
−

2d
Q Aλ∥f ∥LQ (Bh, w(z,h)dµ) (6.12)

uniformly in h. Here,w(z, h) = |τ(z, h)|4/(d
2
+d), and

τ(z, h) = det(Γ ′(z, h), . . . ,Γ (d)(z, h)).

We have

|τ(z, h)| = dd−12! · · · (d − 1)! ·
 d

j=1

φ(d)(z + hj)

.
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Thus, as in the proof of Lemma 4.2 (or Lemma 3.3) we obtain

|τ(z, h)| ≥ cd,N
d

i=1

φ(d)(z + hi)
 ≥ cd,N max

1≤i≤d
w(z + hi)

(d2+d)/4 (6.13)

for z + hi ∈ B. Here we used (6.4). Now set

w∗(z, h) :=

d
i=1

w(z + hi)
ai

for some constants ai ∈ [0, 1] with
d

i=1 ai = 1. We will choose ai suitably later so that the condition δ2 ≠ δ3 (the δj are
to be defined later) is satisfied, which will allow us to apply the interpolation theorem, Theorem 5.1. (See the paragraph
containing (6.23).) Thus, as was mentioned in the first paragraph of this section, the fact that we have an arithmetic mean
instead of a geometric mean as the lower bound in (6.13) plays a key role in our argument.

The inequality (6.13) implies that

w(z, h) ≥ c w∗(z, h) (6.14)

for z ∈ Bh, where c = c(d,N) > 0 is a constant independent of z, h. (Recall that Bh is the intersection of the sets −hj + B,
j = 1, . . . , d.)

If we writew∗(z, h) = g(z, h)w(z, h) for some nonnegative function g(z, h) ≤ c , then we may apply (6.12) with f (z, h)
replaced by f (z, h)g(z, h). Since g(z, h)Q ≤ Cg(z, h), this givesψ(x) 

Bh
eiλx·Γ (z,h)f (z) · w∗(z, h) dµ(z)


Q ,∞

≤ Cλ−
2d
Q Aλ∥f ∥LQ (w∗(z,h)dµ).

(See Observation 5.1 in [5] for more details about this argument.)
It follows then from an analogue of Minkowski’s inequality, by using an equivalent ‘norm’ on LQ ,∞ for this purpose (see

Section 4 of [5]), that

∥Mλ,k(f1, f2, . . . , fd)∥Q ,∞ ≤ C

Sk

ψ(x) 
Bh

eiλx·Γ (t,h)
d

j=1

[fj(z + hj)w(z + hj)
1−aj ] · w∗(z, h) dµ(z)


Q ,∞

× dµ(h2) · · · dµ(hd)

≤ C λ−
2d
Q Aλ


Sk

 d
j=1

[fj(z + hj)w(z + hj)
1−aj ]


LQ (w∗(z,h)dµ)

dµ(h2) · · · dµ(hd)

= C λ−
2d
Q Aλ


Sk

 d
j=1


fj(z + hj)w(z + hj)

1−
aj
Q ′


LQ (dµ)

dµ(h2) · · · dµ(hd).

Wewill now apply Hölder’s inequality to bound the inner norm and also use the sublevel set estimate in Lemma 4.4 with
u = 2−k. This gives

∥Mλ,k(f1, . . . , fd)∥Q ,∞ ≤ C λ−
2d
Q Aλ · 2−

4k
d

d
j=1

fjw1−
aj
Q ′


Lqj (dµ)

(6.15)

where
d

j=1 1/qj = 1/Q for some numbers qj, 1 ≤ qj ≤ ∞, to be chosen later.
Let us now put

Ωi = {z ∈ C : 2i−1
≤ w(z) < 2i

}, i ∈ Z.

The triangle inequality implies that

∥f wα∥Lp(dµ) =


i∈Z

χΩi f w
α


Lp(dµ)

≤ C

i∈Z

2iα
∥fχΩi∥Lp(dµ)

for α ∈ R. Hence, it follows that

∥Mλ,k(f1, . . . , fd)∥Q ,∞ ≤ Cλ−
2d
Q Aλ · 2−

4k
d

d
j=1

∥fj∥ℓ1αj (L
qj (dµ)) (6.16)

where we put αj = 1 − aj/Q ′. Here the expression ∥f ∥ℓpα(X) stands for

∥{fχΩi}∥ℓ
p
α(X)

=


i∈Z


2αi∥fχΩi∥X

p1/p



1122 J.-G. Bak, S. Ham / J. Math. Anal. Appl. 409 (2014) 1107–1127

where X is a Banach space (or a complete quasi-normed space) of functions on R2. Thus, we identify f with the sequence
{fχΩi}i∈Z.

An L2 estimate. Next, it follows from Bézout’s theorem that the transformation (z, h2, . . . , hd) → Γ (z, h2, . . . , hd) has
bounded generic multiplicity ≤N · (d − 1)!. By Proposition 1.4.10 on p. 51 in [22], the Jacobian of this transformation as a
real mapping is given by

JR(z1, . . . , zd) = |JC(z1, . . . , zd)|2 = |det(Γ ′(z + h1), . . . ,Γ
′(z + hd))|

2

for zj = z + hj ∈ B, with h1 = 0. Here, JC(z1, . . . , zd) denotes the determinant of the holomorphic Jacobian matrix for the
transformation (z1, . . . , zd) → 0(z1, . . . , zd) =

d
j=1 Γ (zj) =

d
j=1 Γ (z + hj).

For instance, when d = 3, we have

JC(z1, z2, z3) =

 z2

z1

 z3

z2

 s2

s1
φ′′′(z) dz ds2 ds1 (6.17)

where each integral is a line integral over a line segment. (In higher dimensions there is a similar representation, defined
recursively, which involves integrals of φ(d)(z). See [4,14,11].)

Hence, by our assumption that Lemma 4.2 holds for d ≥ 3, it follows that

JR(z1, . . . , zd) & v(h)2 ·
1
d

d
j=1

w(z + hj)
d2+d

2 ≥ v(h)2
d

j=1

w(z + hj)
d2+d
2d (6.18)

if zj = z+hj ∈ B. Here, v(h) =


1≤i<j≤d |hi −hj|with h1 = 0. (See also Remark 4.3.) Here the implied constant c = cd,N > 0
depends only on d and N .

Next, we change variables in the integral (6.11) and use the Plancherel theorem. Then we reverse the change of variables
and use (6.18) and the sublevel set estimate in Lemma 4.4 to obtain

∥Mλ,k(f1, . . . , fd)∥2 ≤ Cλ−d


Sk

 d
j=1

|(fjw)(z + hj)|
2 JR(z, h)−1dµ(z)dµ(h2) · · · dµ(hd)

1/2

≤ Cλ−d


Sk

 d
j=1

|(fjwa)(z + hj)|
2 v(h)−2dµ(z)dµ(h2) · · · dµ(hd)

1/2

≤ Cλ−d 2k2−
2k
d ∥f1wa

∥L2(dµ)

d
j=2

∥fjwa
∥L∞(dµ)

for a = (3 − d)/4.
By permuting the variables and interpolating the resulting estimates one gets

∥Mλ,k(f1, . . . , fd)∥2 ≤ Cλ−d 2
k(d−2)

d

d
j=1

∥fjwa
∥Lrj (dµ)

for some numbers 1 ≤ rj ≤ ∞, to be chosen later, such that
d

j=1 r
−1
j = 2−1. Using the triangle inequality on each norm

again gives

∥Mλ,k(f1, . . . , fd)∥2 ≤ Cλ−d 2
k(d−2)

d

d
j=1

∥fj∥ℓ1a(Lrj (dµ)). (6.19)

Summation of the estimates. By estimating the distribution function of the sum of Mλ,k(f1, . . . , fd)(x) over k, using (6.16)
and (6.19), we obtain the estimate ∞

k=−∞

Mλ,k

 > 2α
 ≤

 
2k>β

Mλ,k

 > α

+  
2k≤β

Mλ,k

 > α


≤ λ−2d

CAλ
α

Q
β−

4Q
d

d
j=1

∥fj∥
Q
ℓ1αj (L

qj )
+ λ−2d C

2

α2
β

2(d−2)
d

d
j=1

∥fj∥2
ℓ1a(L

rj )

for β > 0. Choosing the value

β =


α2−Q AQ

λ

d
j=1


∥fj∥

Q
ℓ1αj (L

qj (dµ))
∥fj∥−2

ℓ1a(L
rj (dµ))

 d
2(d−2+2Q )
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yields that

∥Mλ(f1, . . . , fd)∥Q/d,∞ ≤ C λ−
2d2
Q A

d−2
d+2
λ

d
j=1

∥fj∥
d−2
d+2
ℓ1αj (L

qj (dµ))
∥fj∥

4
d+2
ℓ1a(L

rj (dµ))
.

Here we used the fact that d − 2 + 2Q = d(d + 2) and Q = (d2 + d + 2)/2.
By Lemma A.3 in [5], this implies that

∥Mλ(f1, . . . , fd)∥Q/d,∞ ≤ C λ−
2d2
Q A

d−2
d+2
λ

d
j=1

∥fj∥
ℓ1αj (L

qj (dµ)), ℓ1a(L
rj (dµ))


4

d+2 ,1
.

From Lemma A.4 in [5], we have
ℓ1αj(L

qj(dµ)), ℓ1a(L
rj(dµ))


4

d+2 ,1
= ℓ1βj


Lpj,1(dµ)


where

1
pj

=
d − 2
d + 2

1
qj

+
4

d + 2
1
rj

and βj =
d − 2
d + 2

αj +
4

d + 2
a.

Thus, we obtain d
j=1

TΓλ fj


Q/d,∞

≤ Cλ−
2d2
Q A

d−2
d+2
λ ∥f1∥ℓ1β1 (L

p1,1(dµ))∥f2∥ℓ1β2 (L
p2,1(dµ))

d
j=3

∥fj∥ℓ1βj (L
pj,1(dµ)). (6.20)

On the other hand we can get an alternative estimate by taking qj = dQ and αj = 1 − 1/(dQ ′) for all j in (6.16), and also
taking all rj = 2d in (6.19). Then taking all fj = f givesTΓλ f


Q ,∞ ≤ Cλ−

2d
Q A

d−2
d(d+2)
λ ∥f ∥ℓ1δ0 (L

Q ,1(dµ)) (6.21)

where δ0 = 1/Q .
Preparation for interpolation. We will now consider the n-linear symmetric operator

n
j=1 T

Γ
λ fj with some n > Q . Then

we need to estimate its Lr,∞ quasi-norm with r = Q/n < 1. This is to take advantage of the r-convexity of this space. (See
Section 5 and the footnote 3 there.) For simplicity of notation, let us take n = dQ . By applying a variant of Hölder’s inequality
(cf. (2.1) in [3]), using (6.20) for the first d factors and (6.21) for the rest, we get dQ

j=1

TΓλ fj


1/d,∞

≤ C(dQ )d λ−2d2 A
Q d−2

d+2
λ ∥f1∥ℓ1β1 (L

p1,1)∥f2∥ℓ1β2 (L
p2,1)

d
j=3

∥fj∥ℓ1βj (L
pj,1)

dQ
j=d+1

∥fj∥ℓ1δ0 (L
Q ,1).

Nowwemay choose q1, . . . , qd, and r1, . . . , rd (hence also p1, . . . , pd) such that p1 ≠ p2, with p2 strictly between p3 and
Q = (d2 + d + 2)/2, and also that p3 = · · · = pd and

1
p2

=
d − 2
dQ − 2

1
p3

+
d(Q − 1)
dQ − 2

1
Q
. (6.22)

Note that we have then also

1
d


1
p1

+
1
p2

+ · · · +
1
pd


=

1
Q
.

(In fact, wemay choose qj and rj such that 1/p3 = 1/Q −ε for some small ε ≠ 0. Also take 1/p2 = 1/Q − (d−2)ε/(dQ −2)
and 1/p1 = 1/Q + (dQ − 1)(d − 2)ε/(dQ − 2). These choices satisfy the requirements listed above.)

Put r = 1/d and bound each quasi-norm above of the form ∥ · ∥ℓ1ρ (Lp,1)
by the quasi-norm ∥ · ∥ℓrρ (Lp,r ). With f1, f2 fixed, let

us permute the remaining functions and take generalized geometric means of the resulting estimates to get dQ
j=1

TΓλ fj


1/d,∞

≤ Cλ−2d2 A
Q d−2

d+2
λ ∥f1∥ℓrβ1 (L

p1,r )∥f2∥ℓrβ2 (L
p2,r )

dQ
j=3

∥fj∥
d−2
dQ−2

ℓrβj
(Lpj,r )

∥fj∥
d(Q−1)
dQ−2
ℓrδ0

(LQ ,r ).

By (6.22), Lemmas A.3 and A.4 in [5], we obtain dQ
j=1

TΓλ fj


1/d,∞

≤ Cλ−2d2 A
Q d−2

d+2
λ ∥f1∥ℓrδ1 (L

p1,r )∥f2∥ℓrδ2 (L
p2,r )

dQ
j=3

∥fj∥ℓrδj (L
p2,r )
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where δ1 = β1, δ2 = β2 and

δj =
d − 2
dQ − 2

βj +
d(Q − 1)
dQ − 2

δ0, 3 ≤ j ≤ d.

We may choose aj ∈ [0, 1] such that
d

j=1 aj = 1, and δ2 ≠ δ3. (Recall that βj = [(d − 2)/(d + 2)]αj + [4/(d + 2)]a,
αj = 1 − aj/Q ′ and a = (3 − d)/4. Thus, it is easy to see that we can satisfy the condition δ2 ≠ δ3, by choosing a2 and a3
suitably.)

Application of the interpolation theorem. We are now in a position to apply Theorem 5.1. Let us take X0 =

Lp2,r(dµ) and X1 = Lp1,r(dµ). It follows from (5.2) with n = dQ and V = Lr,∞ for r = 1/d that dQ
j=1

TΓλ fj


1/d,∞

≤ Cλ−2d2 A
Q d−2

d+2
λ

dQ
j=1

∥fj∥ℓQs (X 1
n ,Q

)

where s = [δ1 + δ2 + (n − 2)δ3]/n. Taking all fj = f yields

∥TΓλ f ∥Q ,∞ ≤ Cλ−2d/Q A
d−2

d(d+2)
λ ∥f ∥

ℓ
Q
s (X 1

n ,Q
)
. (6.23)

Note that we have s = 1/Q = 2/(d2 + d + 2), since

dQs =

dQ
j=1

δj = δ1 + δ2 + (dQ − 2)


d − 2
dQ − 2

β3 +
d(Q − 1)
dQ − 2

1
Q



=
d − 2
d + 2

d
j=1

αj +
d(3 − d)
d + 2

+
d(Q − 1)

Q

=
d − 2
d + 2


d −

1
Q ′


+

d(3 − d)
d + 2

+
d
Q ′

= d.

Moreover, we have

X 1
n ,Q

= (X0, X1) 1
n ,Q

= (Lp2,r , Lp1,r) 1
n ,Q

= Lp,Q = LQ (dµ)

since p1 ≠ p2 and

1
p

:=
1
n

1
p1

+
n−1
n

1
p2

=
1
dQ


1
p1

+
1
p2

+
dQ−2
p2


=

1
Q

by the choice of p1, . . . , pd made above in the paragraph containing (6.22). Here we also used the fact (cf. Theorem 5.3.1
in [7]) that if p0 ≠ p1, then

(Lp0,r0 , Lp1,r1)θ,s = Lp,s

for 1/p = (1 − θ)/p0 + θ/p1, 0 < θ < 1, and 0 < s ≤ ∞. (As usual, pj, rj ∈ (0,∞], and we assume rj = ∞ when pj = ∞.)
This shows that we have

∥f ∥
ℓ
Q
s


X 1

n ,Q

 = ∥{fχΩk}∥ℓQ1/Q (L
Q (dµ))

=


k∈Z


2k/Q

∥fχΩk∥LQ (dµ)
Q1/Q

≈ ∥f ∥LQ (wdµ)

where the last equivalence is a consequence of the fact thatw(z) ≈ 2k for z ∈ Ωk. So, (6.23) implies that

∥TΓλ f ∥Q ,∞ ≤ Cd,Nλ
−

2d
Q A

d−2
d(d+2)
λ ∥f ∥LQ (wdµ)

with a constant Cd,N independent of λ > 1 and Γ with |αi| ≤ 1.
Hence, by the definition (6.6) of Aλ, we obtain

Aλ ≤ Cd,N A
d−2

d2+2d
λ .

Since we have Aλ < ∞ for λ > 1 by (6.7), it follows that Aλ ≤ C(d,N) = (Cd,N)
(d2+2d)/(d2+d+2), for all λ > 1. Therefore, we

may conclude that the estimate

∥TΓλ f ∥Q ,∞ ≤ C(d,N)λ−
2d
Q ∥f ∥LQ (wdµ)

holds for Q = (d2 + d + 2)/2, uniformly in λ > 1 and Γ . This completes the proof of (6.8). Finally, we take C(N) =N
d=1 C(d,N). Taking d = 3 gives the dual estimate of (1.7). �
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7. Proof of Theorem 1.2

The proof in the previous section carries over here with minor modifications. Thus, we only need to indicate how to
modify the argument to work in this situation. Here we define offspring curves of γ (z) by

Γb(z) =
1
m

m
i=1

γ (z + bi)

where bi ∈ C and b1 = 0. (Wewould like to point out that a separate argument is needed here, because we have to consider
the offspring curves of the ‘monomial curves’, which are no longer monomial curves. That is why we proved the Jacobian
bound in Lemma 3.3 for the offspring curves of the above form for allm ≥ 1.)

Again, by a scaling argument it suffices to prove the estimate for functions f supported in B(0, 1) in C or R2. We only
need to divide B(0, 1) into a bounded number of narrow sectors with vertex at the origin. By rotation (which is possible by
the homogeneity of φ(z) = zN as in Section 3), it is enough to show the estimate for f supported in ∆ = {z = x + iy ∈

B(0, 1) : 0 < y < εx} with some small ε = ε(d,N) > 0.
Define

TΓbλ f (x) = ψ(x)

∆b

eiλx·Γb(z)f (z) wb(z)dµ(z), x ∈ R2d, (7.1)

where ψ(x) is a nonnegative cutoff function and ∆b =
m

i=1(∆ − bi) ⊂ ∆. (Here, ∆ − a = {z − a : z ∈ ∆} denotes a
translation of∆.)

Recall that Q = qd = (d2 + d + 2)/2. Define

Aλ = λ2d/Q · sup
Γb

∥TΓbλ ∥LQ (∆b, wbdµ)→LQ ,∞(R2d) (7.2)

where the supremum is taken over all Γb, with b = (b1, . . . , bm) ∈ Cm, m ∈ N, b1 = 0, and |bj| ≤ 1, for 1 ≤ i ≤ m. (Note
that∆b is empty, if |bj| > 1 for some i.)

Let us show that Aλ < ∞, for each λ > 1. By Hölder’s inequality and (6.4) we have

∥wb∥L1(∆b, dµ) ≤ |∆b|
d2+d−4
d2+d · ∥w

d2+d
4

b ∥

4
d2+d
L1(∆b, dµ)

≤ |∆|
d2+d−4
d2+d ·


m−1

m
j=1

∥φ(d)(· + bj)∥L1(∆−bj, dµ)

 4
d2+d

≤ |∆|
d2+d−4
d2+d · ∥φ(d)∥

4
d2+d
L1(∆, dµ)

≤ Cd,N

for some constant Cd,N independent ofm ≥ 1 and b. So, by Hölder’s inequality we obtain

∥f ∥L1(∆b, wbdµ) ≤ ∥wb∥
1/Q ′

L1(∆b, dµ)
∥f ∥LQ (∆b, wbdµ) ≤ C1/Q ′

d,N ∥f ∥LQ (∆b, wbdµ).

Since |TΓbλ f (x)| ≤ |ψ(x)| · ∥f ∥L1(∆b, wbdµ), the last inequality implies that

∥TΓbλ f ∥LQ ,∞(R2d) ≤ ∥ψ∥LQ ,∞(R2d)∥f ∥L1(∆b, wbdµ)

≤ ∥ψ∥LQ ,∞(R2d) · C
1/Q ′

d,N ∥f ∥LQ (∆b, wbdµ).

Hence, it follows that for each λ > 1,

Aλ ≤ λ2d/Q · C1/Q ′

d,N ∥ψ∥LQ ,∞(R2d) < ∞. (7.3)
It remains to show Aλ ≤ C(d,N), uniformly in λ > 1. Fix λ > 1 and b = (b1, . . . , bm) ∈ Cm such that |bi| ≤ 1, 1 ≤ i ≤ m,

and put

Γ (z, h) = Γb(z, h) =

d
j=1

Γb(z + hj) =

d
j=1

1
m

m
i=1

γ (z + bi + hj) (7.4)

with h = (h1, h2, . . . , hd), h1 = 0 and z + bi + hj ∈ ∆.
Now set

Mλ(f1, f2, . . . , fd)(x) =

d
j=1

(TΓbλ fj)(x)

= ψ(x)d
 

∆b,h

eiλx·Γ (z,h)
d

j=1

[fj(z + hj)wb(z + hj)] dµ(z) dµ(h2) · · · dµ(hd)

where∆b,h =
d

j=1
m

i=1(∆− bi − hj).



1126 J.-G. Bak, S. Ham / J. Math. Anal. Appl. 409 (2014) 1107–1127

As before, define the decomposed operators by

Mλ,k(f1, f2, . . . , fd)(x) = ψ(x)d

Sk


∆b,h

eiλx·Γ (z,h)
d

j=1

[fj(z + hj)wb(z + hj)] dµ(z) dµ(h2) · · · dµ(hd)

where Sk = {(0, h′) = (0, h2, . . . , hd) ∈ B(1)d : 2−k−1 < v(0, h′) ≤ 2−k
}, k ∈ Z.

Note that Γ (z, h) may be written in the form d · (dm)−1dm
i=1 γ (z + ci) for some ci. (In fact, we may take ci = bj + hk

with c1 = b1 + h1 = 0 and the rest numbered in some way.) Thus, Γ (z, h) is an offspring curve except for the factor d. To
remove the d, wemake the substitution y = d · x, which dilates the support of the cutoff function by a factor d. Sinceψ(y/d)
is bounded by the sum of O(1) translates of ψ(y), we may apply the definition of Aλ. This only increases the constant by a
bounded factor Cd. (Moreover, observe that the new domain of integration∆b,h is in the required form:∆b,h =

dm
i=1(∆−ci)

with c1 = 0.)
Recall that JC(z1, . . . , zd) denotes the determinant of the holomorphic Jacobian matrix for the mapping (z1, . . . , zd) →

0(z1, . . . , zd) =
d

k=1 Γb(zk). Thus, Lemma 3.3 implies that

JR(z1, . . . , zd) = |JC(z1, . . . , zd)|2

≥ cd,N v(h)2 ·
1
d

d
j=1

wb(z + hj)
d2+d

2 ≥ cd,N v(h)2
d

j=1

wb(z + hj)
d+1
2 (7.5)

for z ∈ ∆b,h =
d

j=1
m

i=1(∆− bi − hj).
We also have

|τ(z, h)| =
detΓ ′(z, h), . . . ,Γ (d)(z, h)

 =
1
m

 d
i=1

m
j=1

φ(d)(z + bj + hi)


where Γ (z, h) is as in (7.4).

Thus, as in the proof of Lemma 3.3 we obtain

|τ(z, h)| ≥ cd,N
d

i=1

1
m

m
j=1

|φ(d)(z + bj + hi)| ≥ c max
i=1,...,d

wb(z + hi)
d2+d

4 (7.6)

for z ∈ ∆b,h.
The estimates (7.6) and (7.5) correspond to (6.18) (or (6.2)) and (6.13) (or (6.3)), respectively, in the proof given in

Section 6. (Note that here we need to keep track of the bi’s unlike in the previous section. This is because only a weak
form of a Jacobian bound, i.e. Lemma 3.3, is available in this context.)

The rest of the argument is the same as that in Section 6. �
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