European Journal of Combinatorics 36 (2014) 331-341



Contents lists available at ScienceDirect

## **European Journal of Combinatorics**

journal homepage: www.elsevier.com/locate/ejc

# On geometric distance-regular graphs with diameter three



European Journal of Combinatorics

### Sejeong Bang<sup>a,1</sup>, J.H. Koolen<sup>b,c</sup>

<sup>a</sup> Department of Mathematics, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea

<sup>b</sup> School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, PR China

<sup>c</sup> Department of Mathematics, POSTECH, Hyoja-dong, Namgu, Pohang 790-784, Republic of Korea

#### ARTICLE INFO

Article history: Received 6 February 2013 Accepted 19 June 2013 Available online 28 August 2013

#### ABSTRACT

In this paper we study distance-regular graphs with intersection array

{
$$(t+1)s, ts, (t-1)(s+1-\psi); 1, 2, (t+1)\psi$$
} (1)

where  $s, t, \psi$  are integers satisfying  $t \ge 2$  and  $1 \le \psi \le s$ . Geometric distance-regular graphs with diameter three and  $c_2 = 2$  have such an intersection array. We first show that if a distance-regular graph with intersection array (1) exists, then s is bounded above by a function in t. Using this we show that for a fixed integer  $t \ge 2$ , there are only finitely many distance-regular graphs of order (s, t) with smallest eigenvalue -t - 1, diameter D = 3 and intersection number  $c_2 = 2$  except for Hamming graphs with diameter three. Moreover, we will show that if a distance-regular graph with intersection array (1) for t = 2 exists then  $(s, \psi) = (15, 9)$ . As Gavrilyuk and Makhnev (2013) [9] proved that the case  $(s, \psi) = (15, 9)$  does not exist, this enables us to finish the classification of geometric distance-regular graphs with smallest eigenvalue -3, diameter  $D \ge 3$  and  $c_2 \ge 2$  which was started by the first author (Bang, 2013) [1].

© 2013 Elsevier Ltd. All rights reserved.

E-mail addresses: sjbang@ynu.ac.kr (S. Bang), koolen@postech.ac.kr (J.H. Koolen).

<sup>&</sup>lt;sup>1</sup> Tel.: +82 53 810 2316; fax: +82 53 810 4614.

<sup>0195-6698/\$ -</sup> see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ejc.2013.06.044

#### 1. Introduction

For unexplained definitions and notations the reader is referred to Section 2. Recall that a noncomplete distance-regular graph  $\Gamma$  with valency k and smallest eigenvalue  $\theta_{\min}$  is called *geometric* if there exists a set C of cliques such that each edge lies in exactly one clique in C and each clique in Cis a Delsarte clique, i.e., a clique of exactly  $1 + k/(-\theta_{\min})$  vertices (see [10]). So a geometric distanceregular graph is the point graph of a partial linear space where the set of lines is a set of Delsarte cliques. It was shown in [13] that for a positive integer  $m \ge 2$  there are only finitely many coconnected distance-regular graphs with valency at least three and smallest eigenvalue at least -m that are not geometric.

In this paper we study geometric distance-regular graphs with diameter three. A geometric distance-regular graph with diameter three has intersection array

$$\{(t+1)s, t(s+1-\psi_1), (t-t_2)(s+1-\psi_2); 1, (t_2+1)\psi_1, (t+1)\psi_2\},$$
(2)

where  $0 \le t_2 < t$  and  $1 \le \psi_1 \le \psi_2 \le s$  are all integers (see [13, Lemma 4.1]). Examples of geometric distance-regular graphs with diameter three are the Hamming graph H(3, q), the Johnson graph  $J(n, 3) n \ge 6$ , the Grassmann graph  $J_q(n, 3) n \ge 6$ , the bilinear forms graph  $H_q(n, 3)$  and so on. Note that not every distance-regular graph with intersection array (2) is geometric. For example, the Doob graph with diameter three (i.e., the Cartesian product of a Shrikhande graph with a complete graph on 4 vertices), which is not geometric, has the same intersection array as the Hamming graph H(3, 4).

A distance-regular graph is exactly a generalized hexagon if and only if it has intersection array (2) with  $t_2 = 0$  and  $\psi_1 = \psi_2 = 1$ . A regular near hexagon is exactly a graph with intersection array (2) and  $\psi_1 = \psi_2 = 1$  that is locally the disjoint union of cliques. For larger diameter, the regular near 2D-gons of order (s, t) with  $D \ge 4$ ,  $c_2 \ge 3$  and  $s \ge 2$  are exactly dual polar graphs, see [8, Theorem 9.11]. The case satisfying  $D \ge 4$ ,  $c_2 = 2$  and  $s \ge 2$  is still open. Regular near hexagons are even less known, see [7] for some recent progress. In this paper we will consider graphs with intersection array (2) satisfying  $c_2 = 2$  and  $s \ge 1$ . In this case it follows by [13, Lemma 4.2 (i)] that  $t_2 = 1$  and  $\psi_1 = 1$ .

For positive integers *s*, *t*,  $\psi$  satisfying  $t \ge 2$  and  $\psi \le s$ , we denote by  $G(s, t; \psi)$  a distance-regular graph with intersection array

$$\{(t+1)s, ts, (t-1)(s+1-\psi); 1, 2, (t+1)\psi\}.$$
(3)

Although a graph  $G(s, t; \psi)$  is not necessarily geometric the following lemma shows that it usually is.

**Lemma 1.1.** Let  $\Gamma = G(s, t; \psi)$  be a distance-regular graph with intersection array (3), where  $s, t, \psi$  are integers satisfying  $t \ge 2$  and  $1 \le \psi \le s$ . If parameters s and t satisfy

$$s > \begin{cases} 2(t+1)^2 + 1 & \text{if } t \ge 3\\ 6 & \text{if } t = 2 \end{cases}$$

then  $\Gamma$  is geometric with smallest eigenvalue -t - 1.

**Proof.** Note that -t - 1 is the smallest eigenvalue of  $\Gamma$ . If parameters *s* and *t* satisfy  $t \ge 3$  and  $s > 2(t + 1)^2 + 1$ , then  $\Gamma$  is geometric with smallest eigenvalue -t - 1 by [13, Theorem 5.3]. If s > 6 and t = 2, then the result immediately follows by [1, Theorem 3.1].

It was shown in [11, Corollary 2] that for a thick regular near 2*D*-gon with order (s, t), the number t is bounded by a function in s and D, i.e.,  $t < s^{\frac{4D}{h}} - 1$  where  $h := \max\{i \mid (c_i, a_i, b_i) = (c_1, a_1, b_1)\}$ . With the same proof, it can be shown that this bound also holds for geometric distance-regular graphs. We will show in the next theorem that if  $\Gamma$  is a  $G(s, t; \psi)$  then s is bounded by a function in t, which gives us a dual result to the result of Hiraki and Koolen [11, Corollary 2].

#### 332

**Theorem 1.2.** Let an integer  $t \ge 2$  be given. Then there exists a positive constant C := C(t) (only depending on t) such that if a graph  $G(s, t; \psi)$  exists where  $s, \psi$  are integers satisfying  $1 \le \psi \le s$  and  $(t, \psi) \ne (2, 1)$  then

$$s \leq C$$

holds (and hence  $\psi \leq C$ ).

To prove this result we show that usually a graph  $G(s, t; \psi)$  has only integral eigenvalues (see Lemma 3.2). This situation is similar to the case of regular near hexagons. It was shown by Shad and Shult [15] that a regular near hexagon has integral spectrum unless it is a generalized hexagon. However, the graph G(1, 5; 1) with intersection array {5, 4, 3; 1, 2, 5}, which arises as the point-block incidence graph of the square 2-(11, 5, 2)-design, has irrational eigenvalues  $\pm \sqrt{3}$ .

It is known that there are no geometric distance-regular graphs with smallest eigenvalue -2, diameter  $D \ge 3$  and  $c_2 \ge 2$  (see [6, Theorem 3.12.2, Theorem 4.2.16]). Bang [1, Theorem 4.3] has shown that any geometric distance-regular graph  $\Gamma$  with smallest eigenvalue -3, diameter  $D \ge 3$  and  $c_2 \ge 2$  satisfies one of the following:

- (a) The Hamming graph H(3, s + 1), where  $s \ge 2$ .
- (b) The Johnson graph J(s 1, 3), where  $s \ge 7$ .
- (c) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread, where  $s \in \{3, 5\}$ .
- (d)  $\Gamma = G(s, 2; \psi)$  with intersection array  $\{3s, 2s, s + 1 \psi; 1, 2, 3\psi\}$ , where  $1 < \psi < s$ .

We will show in Theorem 1.3 that if a graph  $G(s, 2; \psi)$  exists, where s and  $\psi$  are integers with  $1 < \psi < s$ , then  $(s, \psi) = (15, 9)$ .

**Theorem 1.3.** For any given integers s and  $\psi$  with  $1 < \psi < s$ , if a distance-regular graph with intersection array  $\{3s, 2s, s + 1 - \psi; 1, 2, 3\psi\}$  does exist then  $(s, \psi) = (15, 9)$ .

As Gavrilyuk and Makhnev [9] proved that a G(15, 2; 9) (with intersection array  $\{45, 30, 7; 1, 2, 27\}$ ) does not exist, we have the following result.

**Theorem 1.4.** A geometric distance-regular graph with smallest eigenvalue -3, diameter  $D \ge 3$  and  $c_2 \ge 2$  is one of the following.

- (i) The Hamming graph H(3, s + 1), where  $s \ge 2$ .
- (ii) The Johnson graph J(s 1, 3), where  $s \ge 7$ .
- (iii) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread, where  $s \in \{3, 5\}$ .

In Section 3, we prove Theorem 1.2. To show this result we consider the two cases,  $\psi > \frac{t}{2(t+1)}s$  and  $\psi \le \frac{t}{2(t+1)}s$ . If  $\psi > \frac{t}{2(t+1)}s$  then we prove Lemma 3.1 by showing that the multiplicity of the smallest eigenvalue of the corresponding dual graph is bounded above by a function in *t*. In this case *s* is also bounded above by a function in *t*. On the other hand, if  $\psi \le \frac{t}{2(t+1)}s$  then we prove in Lemma 3.2 that there exists a finite set *S* such that if  $(s, \psi) \notin S$  then any graph  $G(s, t; \psi)$  has only integral eigenvalues. Using Theorem 1.2, we show in Theorem 3.4 that for a fixed integer  $t \ge 2$ , there are only finitely many distance-regular graphs of order (s, t) with smallest eigenvalue -t - 1, diameter D = 3 and intersection number  $c_2 = 2$  except for the Hamming graphs with diameter three. In Section 4, we prove Theorem 1.3 by showing in Lemma 4.1 that  $\psi \le \frac{1}{3}s$  does not occur.

#### 2. Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [6] for more background information. For a connected graph  $\Gamma$ , the distance d(x, y) between two vertices x, y of  $\Gamma$  is the length of a shortest path between x and y in  $\Gamma$ , and the diameter D is the maximum distance between any two vertices of  $\Gamma$ . Let  $V(\Gamma)$  be the vertex set of  $\Gamma$ . For any vertex  $x \in V(\Gamma)$ , let  $\Gamma_i(x)$  be the set of vertices in  $\Gamma$  at distance precisely i from x, where i is a non-negative integer not exceeding D. The *adjacency matrix*  $A_{\Gamma}$  of a graph  $\Gamma$  is the  $(|V(\Gamma)| \times |V(\Gamma)|)$ -matrix with rows and columns indexed by  $V(\Gamma)$ , where the (x, y)-entry of  $A_{\Gamma}$  equals 1 whenever d(x, y) = 1 and 0 otherwise. The *eigenvalues* of  $\Gamma$  are the eigenvalues of  $A_{\Gamma}$ . Let  $\theta_0, \theta_1, \ldots, \theta_n$  be the distinct eigenvalues of  $\Gamma$  and let  $m_{\Gamma}(\theta_i)$  be the *multiplicity* of  $\theta_i(i = 0, 1, \ldots, n)$ . A sequence of vertices  $W = w_0, w_1, \ldots, w_{\ell}$ , which are not necessarily mutually distinct, is called a *walk* of length  $\ell$  if  $w_i$  and  $w_{i+1}$  are adjacent for each  $i = 0, \ldots, \ell - 1$ . The number of walks of length  $\ell$  from x to y is given by  $(A_{\Gamma}^{\ell})_{(x,y)}$ , where  $(A_{\Gamma}^{\ell})_{(x,y)}$  is the (x, y)-entry of matrix  $A_{\Gamma}^{\ell}$ . If  $w_0 = w_{\ell}$  then W is called a *closed walk*. Let  $Tr(A_{\Gamma}^{\ell})$  denote the trace of  $A_{\Gamma}^{\ell}$  (i.e., the sum of the diagonal entries of  $A_{\Gamma}^{\ell}$ . The new have

$$\sum_{i=0}^{n} m_{\Gamma}(\theta_i) \theta_i^{\ell} = Tr(A_{\Gamma}^{\ell}) = \text{the number of closed walks of length } \ell \text{ in } \Gamma \quad (\ell \ge 1).$$
(4)

A connected graph  $\Gamma$  is called a *distance-regular graph* if there exist integers  $b_i, c_i, i = 0, 1, ..., D$ , such that for any two vertices x, y at distance i = d(x, y), there are precisely  $c_i$  neighbors of y in  $\Gamma_{i-1}(x)$  and  $b_i$  neighbors of y in  $\Gamma_{i+1}(x)$  where D is the diameter of  $\Gamma$ . In particular,  $\Gamma$  is regular with valency  $k := b_0$ . The numbers  $b_i, c_i$  and  $a_i := k - b_i - c_i$  ( $0 \le i \le D$ ) are called the *intersection numbers* of  $\Gamma$ . Set  $c_0 = b_D = 0$ . We observe  $a_0 = 0$  and  $c_1 = 1$ . Array

$$u(\Gamma) = \{b_0, b_1, \dots, b_{D-1}; c_1, c_2, \dots, c_D\}$$

is called the *intersection array* of  $\Gamma$ . We define  $k_i := |\Gamma_i(x)|$  for any vertex x and i = 0, 1, ..., D. Then we have

$$k_0 = 1, \qquad k_1 = b_0, \qquad k_{i+1} = \frac{k_i b_i}{c_{i+1}} \quad (i = 0, 1, \dots, D-1).$$
 (5)

Suppose that  $\Gamma$  is a distance-regular graph with valency  $k \ge 2$  and diameter  $D \ge 2$ . It is well known that  $\Gamma$  has exactly D + 1 distinct eigenvalues which are the eigenvalues of the following tridiagonal matrix

$$L_{1}(\Gamma) := \begin{pmatrix} 0 & b_{0} & & & & \\ c_{1} & a_{1} & b_{1} & & & & \\ & c_{2} & a_{2} & b_{2} & & & & \\ & & \ddots & \ddots & & & \\ & & & c_{i} & a_{i} & b_{i} & & \\ & & & c_{D-1} & a_{D-1} & b_{D-1} \\ & & & & c_{D} & a_{D} \end{pmatrix}$$
(6)

(cf. [6, p.128]). The standard sequence  $(u_i(\theta))_{0 \le i \le D}$  corresponding to an eigenvalue  $\theta$  of  $\Gamma$  is a sequence satisfying the following recurrence relation:

$$u_0(\theta) = 1, \qquad u_1(\theta) = \frac{\theta}{k}, \qquad c_i u_{i-1}(\theta) + a_i u_i(\theta) + b_i u_{i+1}(\theta) = \theta u_i(\theta) \quad (1 \le i \le D).$$

Then the multiplicity of the eigenvalue  $\theta$  is given by

$$m_{\Gamma}(\theta) = \frac{|V(\Gamma)|}{\sum\limits_{i=0}^{D} k_{i} u_{i}^{2}(\theta)},$$
(7)

which is known as *Biggs' formula* (cf. [4, Theorem 21.4], [6, p.128]). Let  $\mathbb{N}$  denote the set of positive integers. Recall that the *local graph* of a vertex *x* is the subgraph of  $\Gamma$  induced by the set of neighbors of *x* in  $\Gamma$ , and a *clique* is a set of pairwise adjacent vertices. A distance-regular graph is of *order* (*s*, *t*) if the local graph of any vertex is the disjoint union of t + 1 cliques of size *s* for some positive integers *s*, *t*. A distance-regular graph of order (*s*, *t*) is called a *regular near 2D-gon of order* (*s*, *t*) if  $a_i = c_i(s - 1)$  (i = 1, 2, ..., D).

#### 3. Proof of Theorem 1.2

In this section we will show Theorem 1.2, which implies that for any given integer  $t \ge 2$  there exists a positive constant C := C(t) such that if s > C and a graph  $G(s, t; \psi)$  exists then  $(t, \psi) = (2, 1)$ . To show Theorem 1.2 we consider the two cases,  $\psi > \frac{t}{2(t+1)}s$  and  $\psi \le \frac{t}{2(t+1)}s$ . If  $\psi > \frac{t}{2(t+1)}s$  then we prove Lemma 3.1 by showing that the multiplicity of the smallest eigenvalue of the corresponding dual graph is bounded above by a function in t. In this case s is bounded above by a function in t. On the other hand, if  $\psi \le \frac{t}{2(t+1)}s$  then we prove in Lemma 3.2 that there exists a finite set S such that if  $(s, \psi) \notin S$  then any graph  $G(s, t; \psi)$  has only integral eigenvalues.

For given integers s, t,  $\psi$  with  $t \ge 2$  and  $1 \le \psi \le s$ , let  $\Gamma := G(s, t; \psi)$ . By (6),  $\Gamma$  has exactly four distinct eigenvalues  $\theta_0 > \theta_1 > \theta_2 > \theta_3$ :

$$\theta_0 = (t+1)s, \qquad \theta_i = \frac{3s - 2\psi - 1 + (-1)^{i-1}\sqrt{(s+1-2\psi)^2 + 4(t-1)s}}{2} \quad (i = 1, 2), \quad (8)$$
  
$$\theta_3 = -t - 1.$$

By (5) and (7), we find

$$|V(\Gamma)| = \frac{(s+1)\left\{(t^2-t)s^2+2\psi(st+1)\right\}}{2\psi}$$
(9)

and

$$m_{\Gamma}(\theta_3) = m_{\Gamma}(-t-1) = \frac{s^2(s+1-\psi)\left\{(t^2-t)s^2+2\psi(st+1)\right\}}{\psi(2s^2+2s-2\psi s+2st+t^2+t-2\psi t)}.$$
(10)

Suppose that  $\Gamma$  is geometric. The *dual graph* of  $\Gamma$ , denoted by  $\widehat{\Gamma}$ , is the graph whose vertices are the Delsarte cliques of  $\Gamma$  (i.e., cliques of size s + 1) and two Delsarte cliques are adjacent if they intersect. Let *B* be the vertex–(Delsarte clique) incidence matrix (i.e., the (0, 1)-matrix with rows and columns indexed by the vertex set and the set of Delsarte cliques respectively, where the (x, C)-entry of *B* is 1 if the vertex *x* is contained in the Delsarte clique *C* and 0 otherwise). Then

$$BB^{T} = A_{\Gamma} + (t+1)I_{|V(\Gamma)|} \quad \text{and} \quad B^{T}B = (s+1)I_{|V(\widehat{\Gamma})|} + A_{\widehat{\Gamma}},$$
(11)

where  $B^T$  is the transpose of *B* and  $I_v$  is the  $v \times v$  identity matrix. By double-counting the number of ones in *B*, we find

$$|V(\widehat{\Gamma})|(s+1) = |V(\Gamma)|(t+1)$$
(12)

and thus

$$|V(\widehat{\Gamma})| = (t+1)(st+1) + \frac{t(t^2-1)s^2}{2\psi}.$$
(13)

In particular,  $\widehat{\Gamma}$  is a regular graph with valency t(s + 1).

**Lemma 3.1.** Let an integer  $t \ge 2$  be given. Then there exists a positive constant C := C(t) (only depending on t) such that if a graph  $G(s, t; \psi)$  exists where  $s, \psi$  are integers satisfying  $1 \le \psi \le s$  and  $\frac{t}{2(t+1)}s < \psi \le s$  then

 $s \leq C$ 

holds.

Moreover if t = 2 then either  $s \le 6$  or  $(s, \psi) = (15, 9)$  holds.

**Proof.** Let *s* and  $\psi$  be positive integers satisfying  $\frac{t}{2(t+1)}s < \psi \le s$ , and let  $\Gamma := G(s, t; \psi)$ . To prove this lemma, it is enough to show that *s* is bounded above by a function only depending on *t*. If  $s \le 2(t+1)^2 + 1$  then the result follows immediately. We now assume  $s > 2(t+1)^2 + 1$ . Then  $\Gamma$  is geometric by Lemma 1.1. Moreover, we have  $|V(\widehat{\Gamma})| < |V(\Gamma)|$  by (12) and  $s > 2(t+1)^2 + 1 > t$ , and hence 0 is an eigenvalue of  $BB^T$ . First assume that  $B^T B$  is invertible. Then the multiplicity of eigenvalue 0 for the matrix  $BB^T$  is  $|V(\Gamma)| - |V(\widehat{\Gamma})|$ , which is also equal to  $m_{\Gamma}(-t-1)$  by  $BB^T = A_{\Gamma} + (t+1)I_{|V(\Gamma)|}$  in (11). By  $m_{\Gamma}(-t-1) = |V(\Gamma)| - |V(\widehat{\Gamma})|$ , (9), (10) and (13), we find

$$\psi = \frac{(s+t)(t+1)}{2t}.$$
(14)

Substituting (14) in (13), we find

$$|V(\widehat{\Gamma})| - \left\{ (t+1)(st+1) + st^2(t-1) - t^3(t-1) \right\} = \frac{t^4(t-1)}{s+t}$$
(15)

whose both sides are positive integers as t > 1. This shows that if  $B^T B$  is invertible then we obtain  $s \le t^4(t-1) - t$ .

Now assume that the matrix  $B^T B$  is singular. Then 0 is an eigenvalue of both  $BB^T$  and  $B^T B$ , and thus -s - 1 is an eigenvalue of  $A_{\widehat{\Gamma}}$  by  $B^T B = (s + 1)I_{|V(\widehat{\Gamma})|} + A_{\widehat{\Gamma}}$  in (11). As  $B^T B$  is positive semidefinite, by (11), we find that -s - 1 is the smallest eigenvalue of the dual graph  $\widehat{\Gamma}$  with multiplicity

$$m_{\widehat{\Gamma}}(-s-1) = |V(\widehat{\Gamma})| - |V(\Gamma)| + m_{\Gamma}(-t-1).$$
(16)

Since the dual graph  $\widehat{\Gamma}$  of  $\Gamma$  is a regular graph with valency t(s + 1) and smallest eigenvalue -s - 1, it follows by (4) that

$$t(s+1)|V(\widehat{\Gamma})| = Tr(A_{\widehat{\Gamma}}^2) = \sum_{\eta: \text{ eigenvalue of } \widehat{\Gamma}} m_{\widehat{\Gamma}}(\eta)\eta^2 \ge t^2(s+1)^2 + m_{\widehat{\Gamma}}(-s-1)(-s-1)^2.$$
(17)

Since we have  $|V(\widehat{\Gamma})| < (t^3 + 2t^2 - 1)s + t + 1$  from (13) and the condition  $\psi > \frac{t}{2(t+1)}s$ ,

$$1 \le p := m_{\widehat{\Gamma}}(-s-1) \le \frac{t\left\{|V(\widehat{\Gamma})| - t(s+1)\right\}}{s+1} < t^4 + 2t^3 - t^2 - t$$
(18)

follows by (17). Hence  $1 \le p < t^4 + 2t^3 - t^2 - t$ . By (9), (10), (13) and (16),

$$p = m_{\widehat{\Gamma}}(-s-1) = |V(\widehat{\Gamma})| - |V(\Gamma)| + m_{\Gamma}(-t-1)$$
  
=  $\frac{t(s+t(s+1-2\psi+t))(2\psi(st+1)+(t^2-t)s^2)}{2\psi(2s^2+2s-2\psi(s+t)+t(2s+t+1))}.$  (19)

By (13) and (19), we have

$$-\frac{t^{2}(t^{2}-1)s^{2}}{2\psi} - t - t^{2}(s+1) - 2(s-\psi)t^{3} + (s+1)t^{4} - t^{5} + 2(s+1-\psi)p$$
$$=\frac{(2t^{4}-2t^{2})\psi - (t^{2}-t)(t^{4}+p)}{s+t}$$
(20)

where both sides are integers. If  $(2t^4 - 2t^2)\psi - (t^2 - t)(t^4 + p) = 0$  then by

$$2(t+1)^2 + 1 < s < \frac{2(t+1)\psi}{t} = \frac{t^4 + \mu}{t^2}$$

it follows that  $p > t^4 + 4t^3 + 3t^2$ , a contradiction to (18). Hence the following number q is a non-zero integer, where

$$q := \frac{(2t^4 - 2t^2)\psi - (t^2 - t)(t^4 + p)}{s + t} \text{ and thus}$$

$$s = \left(\frac{2t^4 - 2t^2}{q}\right)\psi - \frac{(t^2 - t)(t^4 + p)}{q} - t.$$
(21)

By s > t, (21),  $\psi > \frac{t}{2(t+1)}s$  and  $p < t^4 + 2t^3 - t^2 - t$ , we have

$$2sq > (s+t)q = (2t^4 - 2t^2)\psi - (t^2 - t)(t^4 + p)$$
  
>  $st^3(t-1) - (t^2 - t)(2t^4 + 2t^3 - t^2 - t)$ 

and thus

$$q > \frac{t^{3}(t-1)}{2} - \frac{(t^{2}-t)(2t^{4}+2t^{3}-t^{2}-t)}{2s} > \frac{t^{3}(t-1)}{2} - \frac{(t^{2}-t)(2t^{4}+2t^{3}-t^{2}-t)}{2t} > -t^{5}.$$
(22)

It follows by (21) and (22) that  $-t^5 < q < 2t^4 - 2t^2$  as  $\psi \le s < s + t$  and p is a positive integer. Substituting s of (21) to (20), we obtain a non-zero polynomial in  $\psi$  of degree at most three with coefficients as functions in p, q and t. Hence, it follows by  $1 \le p < t^4 + 2t^3 - t^2 - t$ ,  $-t^5 < q < 2t^4 - 2t^2$  and (21) that s is bounded above by a function C(t) which is dependent on t.

Now we consider the case t = 2. Suppose s > 6. Then  $\Gamma$  is geometric by Lemma 1.1. As we find  $|V(\widehat{\Gamma})| < |V(\Gamma)|$  by (12) with s > t = 2,  $BB^T$  is singular. If  $B^TB$  is invertible then parameters s and  $\psi$  satisfy  $(s, \psi) = (14, 12)$  as  $\psi = \frac{3(s+2)}{4} \in \mathbb{N}$  and  $\frac{16}{s+2} \in \mathbb{N}$  (see (14) and (15)). If  $(s, \psi) = (14, 12)$  then  $\theta_1$  and  $\theta_2$  are irrationals and thus

$$m_{\Gamma}(\theta_1) = m_{\Gamma}(\theta_2) = \frac{|V(\Gamma)| - m_{\Gamma}(\theta_0) - m_{\Gamma}(\theta_3)}{2} = \frac{135}{2} \notin \mathbb{N},$$

which is impossible. Hence  $B^T B$  is singular. It follows by (18), (21) and (22) that the following are all integers

$$p := m_{\widehat{\Gamma}}(-s-1)$$
 and  $q := \frac{24\psi - 2(p+16)}{s+2}$  (23)

with  $1 \le p \le 25$  and  $-17 < q \le 23$ . Now we will show  $24\psi - 2(p + 16) \ne 0$  (i.e.,  $q \ne 0$ ). If  $24\psi - 2(p + 16) = 0$  then we find  $\psi = 3$ , p = 20 and  $s \in \{7, 8\}$  as  $6 < s < 3\psi = \frac{p+16}{4} \le \frac{41}{4}$ . Then it follows by (9), (10), (13) and (23) that  $|V(\Gamma)| = \frac{(s+1)(s^2+6s+3)}{3}$ ,  $m_{\Gamma}(-3) = \frac{s^2(s-2)(s^2+6s+3)}{3(s^2-3)}$ ,  $|V(\widehat{\Gamma})| = s^2 + 6s + 3$  and  $m_{\widehat{\Gamma}}(-s - 1) = p = 20$ . But they do not satisfy (16). Thus  $24\psi - 2(p + 16) \ne 0$  (i.e.,  $q \ne 0$ ). Now substituting  $s = \frac{24\psi - 2(p+16) - 2q}{q}$  of (23) in (20), we find

$$2 \left\{ (p-8)q^2 - 24(p-2)q + 1728 \right\} \psi^2 + \left\{ q^3 + 2(p+7)q^2 + 4(p^2 + 14p - 176)q - 576(p+16) \right\} \psi + 24(p+q+16)^2 = 0.$$
(24)

For any integers  $1 \le p \le 25$  and  $-17 < q \le 23$ , there exists the unique pair  $(s, \psi) = (15, 9)$  satisfying  $\frac{1}{3}s < \psi \le s$ , (23) and (24). This shows that if s > 6 then  $(s, \psi) = (15, 9)$ , which completes the proof.

The incidence graph of the 2-(11, 5, 2) design (with intersection array {5, 4, 3; 1, 2, 5}) has irrational eigenvalues  $\pm\sqrt{3}$ . On the other hand, all the eigenvalues of the regular near hexagon (with intersection array {24, 22, 20; 1, 2, 12}) are integers. In Lemma 3.2 we will show that for a fixed integer  $t \ge 2$  there exists a finite set S(t) such that if integers s and  $\psi$  satisfy both  $1 \le \psi \le \frac{t}{2(t+1)}s$  and

 $(s, \psi) \notin S(t)$  then any graph  $G(s, t; \psi)$  has only integral eigenvalues. Using Lemma 3.2 we can easily show that regular near hexagons with  $c_2 = 2$  and  $s \ge 3$  have only integral eigenvalues since if  $\psi = 1$  then the set S(t) in Eq. (25) is  $\{(1, 1)\}$ .

Given an integer  $t \ge 2$ , define a set

$$S(t) := \left\{ (s, \psi) \in \mathbb{N} \times \mathbb{N} \mid F(s, \psi) = 0, \ \psi \in \left\{ 1, 2, \dots, \left\lfloor \frac{2 + \sqrt{t^2 - t + 4}}{2} \right\rfloor \right\} \right\},$$
(25)

where

$$F(s, \psi) := 2(t-1)s^{3} + (\psi(-6t+10) + 3t^{2} - 5t + 2)s^{2} + (4\psi^{2}(t-4) - 2\psi(t^{2} - 3t - 2) - t^{2} + t)s + 2\psi(4\psi^{2} - 2\psi(t+2) + t + 1).$$
(26)

For each integer  $\psi$  satisfying  $1 \le \psi \le \left\lfloor \frac{2+\sqrt{t^2-t+4}}{2} \right\rfloor$ ,  $F(s, \psi)$  is a non-zero polynomial in s of degree 3, and hence  $|S(t)| \le 3 \left\lfloor \frac{2+\sqrt{t^2-t+4}}{2} \right\rfloor$ .

**Lemma 3.2.** Let an integer  $t \ge 2$  be given. If a graph  $G(s, t; \psi)$  has a non-integral eigenvalue, where  $s, \psi$  are integers satisfying  $1 \le \psi \le \frac{t}{2(t+1)}s$  then

 $(s, \psi) \in S(t)$ 

holds, where S(t) is the finite set defined in (25).

**Proof.** Let  $t \ge 2$  be an integer. For given integers s and  $\psi$  satisfying  $1 \le \psi \le \frac{t}{2(t+1)}s$ , let  $\Gamma := G(s, t; \psi)$ . Assume that  $\Gamma$  has a non-integral eigenvalue. Then  $\theta_1$  and  $\theta_2$  in (8) must be irrational numbers, and the equation  $Tr(A_{\Gamma}) = \sum_{i=0}^{3} m_{\Gamma}(\theta_i)\theta_i = 0$  implies  $m_{\Gamma}(\theta_1) = m_{\Gamma}(\theta_2)$  and thus

$$m_{\Gamma}(\theta_1) = m_{\Gamma}(\theta_2) = \frac{(t+1)(m_{\Gamma}(\theta_3) - s)}{3s - 2\psi - 1} = \frac{|V(\Gamma)| - 1 - m_{\Gamma}(\theta_3)}{2}$$
(27)

follows by (8) and  $|V(\Gamma)| = \sum_{i=0}^{3} m_{\Gamma}(\theta_i)$ . By substituting (9) and (10) in (27), we find that *s* and  $\psi$  must satisfy the equation  $F(s, \psi) = 0$ , see (26). To complete the proof, we need to show  $1 \le \psi \le \left\lfloor \frac{2+\sqrt{t^2-t+4}}{2} \right\rfloor$  (i.e.,  $(s, \psi) \in S$ ). We first show the following claim.

**Claim 3.3.** Suppose  $F(s, \psi) = 0$ . If  $\frac{1}{2}(2 + \sqrt{t^2 - t + 4}) < \psi \le \frac{t}{2(t+1)}s$  then  $s < 2\psi$ .

**Proof of Claim 3.3.** Suppose  $\psi > \frac{1}{2}(2 + \sqrt{t^2 - t + 4})$ . As  $\psi > \frac{1}{2}(2 + \sqrt{t^2 - t + 4}) > \frac{1}{2}(t + 1)$ ,  $F(0, \psi) = 2\psi(2\psi - 1)(2\psi - (t + 1)) > 0$  and thus there is s < 0 satisfying  $F(s, \psi) = 0$ . As  $F(2\psi, \psi) = 2\psi\{(4t^2 - 6t + 4)\psi - t^2 + 2t + 1\} > 0$  and the largest zero of the equation  $\frac{\partial}{\partial s}F(s, \psi) = 0$  in s is

$$\frac{6\psi t - 3t^2 + 5t - 10\psi - 2 + \sqrt{(12t^2 + 4)\psi^2 + (-24t^3 + 72t^2 - 112t + 64)\psi + 9t^4 - 24t^3 + 25t^2 - 14t + 44)\psi^2}{6(t-1)}$$

which is less than  $2\psi$ , it follows that each real number *s* satisfying  $F(s, \psi) = 0$  is less than  $2\psi$ . This shows Claim 3.3.

As the condition  $\psi \leq \frac{t}{2(t+1)}$  s implies  $2\psi \leq \left(\frac{t}{t+1}\right)s < s$ , we find by Claim 3.3 that if  $\theta_1$  and  $\theta_2$  are irrational numbers then  $F(s, \psi) = 0$  holds and thus  $\psi$  must satisfy

$$\psi \le \frac{1}{2}(2 + \sqrt{t^2 - t + 4}),$$

which shows  $(s, \psi) \in S$ . This completes the proof.

Using Lemmas 3.1 and 3.2 we now prove Theorem 1.2, which means that given an integer  $t \ge 2$  there are only finitely many *s*'s and  $\psi$ 's such that a graph  $G(s, t; \psi)$  exists with  $(t, \psi) \ne (2, 1)$ . It is known that a G(s, 2; 1) with  $s \ge 1$  is either the Hamming graph H(3, s + 1) or the Doob graph with diameter three (in this case s = 3), see [6, Corollary 9.2.5]. Since the Hamming graph H(3, s + 1) with  $s \ge 1$  is a G(s, 2; 1), it follows that for the pair  $(t, \psi) = (2, 1)$  there are infinitely many *s*'s such that a G(s, 2; 1) exists.

**Proof of Theorem 1.2.** Let  $t \ge 2$  be a given integer. Let s and  $\psi$  be integers such that  $1 \le \psi \le s$ and  $(t, \psi) \ne (2, 1)$ . We want to show that there exists a positive constant C = C(t) (only depending on t) such that if a graph  $\Gamma = G(s, t; \psi)$  exists then  $s \le C$ . We consider two cases,  $\psi > \frac{t}{2(t+1)}s$  and  $\psi \le \frac{t}{2(t+1)}s$ . In the first case the existence of the constant C follows from Lemma 3.1. In the case  $\psi \le \frac{t}{2(t+1)}s$ , let S = S(t) be the set as defined in (25). To complete the proof for given  $t \ge 2$  and  $(s, \psi) \ne S$ satisfying  $1 \le \psi \le s$ ,  $(t, \psi) \ne (2, 1)$  and  $\psi \le \frac{t}{2(t+1)}s$ , we will show that s is bounded above by a function in t. It follows by Lemma 3.2 that if  $(s, \psi) \ne S$  then both  $\theta_1$  and  $\theta_2$  are integers and thus  $\sqrt{(s+1-2\psi)^2 + 4(t-1)s} = \theta_1 - \theta_2 = (s+1-2\psi) + r$ , where r is a positive integer. As  $\psi \le \frac{t}{2(t+1)}s$ we find  $1 \le r < 2(t^2 - 1)$ . It follows that

$$\psi = \left(\frac{r-2t+2}{2r}\right)s + \frac{r+2}{4} \tag{28}$$

where  $1 \le r < 2(t^2 - 1)$ . Substituting (28) into (9) we find

$$4(r - 2t + 2)^{3} \{|V(\Gamma)| - (s + 1)(st + 1)\} - r^{3}(r + 2)^{2}(t^{2} - t) - 2r(s + 1)(t^{2} - t)(r - 2t + 2) \{2(r - 2t + 2)s - r^{2} - 2r\} = \frac{r^{3}(r + 2)^{2}(t^{2} - t)(r^{2} + 4t - 4)}{-(2r - 4t + 4)s - r(r + 2)}$$
(29)

where both sides are integers. Note here that  $-(2r - 4t + 4)s - r(r + 2) = -4r\psi \neq 0$  where the first equality follows from (28). If  $2r - 4t + 4 \neq 0$  then  $s \leq r^3(r+2)^2(t^2-t)(r^2+4t-4)+r(r+2) \leq f(t)$  holds as the absolute value of (29) is at least 1. If 2r - 4t + 4 = 0, i.e., r = 2(t - 1), then  $t = 2\psi$  by (28). Moreover, by (10),

$$4m_{\Gamma}(\theta_3) - \left\{4(t-1)s^3 - 4t(t-2)s^2 + 2(t^2-1)(t-2)s - t(t^2-1)(t-2)\right\}$$
$$= \frac{t^2(t-2)(t^2-1)}{2s+t}$$

must be an integer. Since t = 2 implies  $\psi = 1$ , we have t > 2. Then there are only finitely many positive integers s such that  $\frac{t^2(t-2)(t^2-1)}{2s+t}$  is an integer. Hence we showed that if  $(s, \psi) \notin S$ ,  $(t, \psi) \neq (2, 1)$  and  $\psi \le \frac{t}{2(t+1)}s$  both hold then s is bounded above by a certain function only depending on t. This completes the proof since S is a finite set with  $|S| \le \left\lfloor \frac{3(2+\sqrt{t^2-t+4})}{2} \right\rfloor$  and each s and  $\psi$  satisfying

 $(s, \psi) \in S$  are bounded above by a function on *t* from the definition of the set *S* (see (25)).

Mohar and Shawe-Taylor [14] (see also [6, Theorem 4.2.16]) characterized distance-regular graphs of order (s, 1) with s > 1. The distance-regular graphs of order (1, 2) and (2, 2) were classified by Biggs, Boshier and Shawe-Taylor [5] and Hiraki, Nomura and Suzuki [12], respectively. Some strong results on distance-regular graphs of order (s, 2) with s > 2 were given by Yamazaki [16]. In [2, Corollary 10.2], the authors showed that for a fixed integer t > 1, there are only finitely many distance-regular graphs of order (s, t) whose smallest eigenvalue is not equal to -t - 1.

Using Theorem 1.2, we can show the following theorem.

**Theorem 3.4.** For a fixed integer  $t \ge 2$ , there are only finitely many distance-regular graphs of order (s, t) with smallest eigenvalue -t - 1, diameter D = 3 and intersection number  $c_2 = 2$  except for Hamming graphs with diameter three.

**Proof.** Let  $t \ge 2$  be a given integer. Let  $\Gamma$  be a distance-regular graph of order (s, t) with smallest eigenvalue -t - 1, diameter D = 3 and intersection number  $c_2 = 2$ . Then  $\Gamma$  is geometric with valency  $b_0 = (t + 1)s$ . By [1, Lemma 4.1] (see also [3, Proposition 4.2 (i)]), the intersection numbers of  $\Gamma$  satisfy  $b_i = (t + 1 - \tau_i)(s + 1 - \psi_i)$  i = 1, 2 and  $c_j = \tau_j \psi_{j-1} j = 1, 2, 3$ , where parameters  $\tau_i$  and  $\psi_i$  are as defined in [1, Section 4]. As any Delsarte clique in  $\Gamma$  has size  $s + 1 = a_1 + 2$ , it follows by [3, Lemma 5.1 (i)] that  $\psi_1 = 1$  which shows  $\tau_2 = \tau_2 \psi_1 = c_2 = 2$ . Note here that  $\Gamma$  satisfies  $\tau_1 = 1$  and  $\tau_3 = t + 1$  (see [1, Equation (9)]). Put  $\psi := \psi_2$ . Then  $\Gamma$  is a  $G(s, t; \psi)$ . If  $s \neq 3$  then the condition  $(t, \psi) = (2, 1)$  is equivalent to that  $\Gamma$  is the Hamming graph H(3, s + 1). As  $b_0 = (t + 1)s$  and D = 3, the result follows by Theorem 1.2.

In [13, Conjecture 7.5], the authors conjectured that for a fixed integer  $t \ge 2$ , any geometric distance-regular graph with smallest eigenvalue -t - 1, diameter  $D \ge 3$  and  $c_2 \ge 2$  is either a Johnson graph, a Grassmann graph, a Hamming graph, a bilinear forms graph, or the number of vertices is bounded above by a function in t. Theorem 3.4 gives us more evidence that the conjecture is true.

#### 4. Proof of Theorem 1.3

For given integers *s* and  $\psi$  with  $1 \le \psi \le s$ , let  $\Gamma = G(s, 2; \psi)$ . Then  $\iota(\Gamma) = \{3s, 2s, s + 1 - \psi; 1, 2, 3\psi\}$ . If  $\psi = 1$  then  $G(s, 2; \psi)$  is either the Hamming graph H(3, s + 1) or the Doob graph with diameter three (in this case s = 3), see [6, Corollary 9.2.5]. If  $\psi = s$  then  $G(s, 2; \psi)$  can be obtained as the collinearity graph of the generalized quadrangle of order (*s*, 3) deleting the edges in a spread, where  $s \in \{3, 5\}$  (see [1, Theorem 4.3]). In this section, we prove Theorem 1.3 which states that if a graph  $G(s, 2; \psi)$  exists, where *s* and  $\psi$  are integers with  $1 < \psi < s$  then  $(s, \psi) = (15, 9)$ . To prove Theorem 1.3, we need the following lemma.

**Lemma 4.1.** Let s and  $\psi$  be any given integers with  $1 < \psi < s$ . If a graph  $G(s, 2; \psi)$  exists then

$$\psi > \frac{1}{3}s$$

holds.

**Proof.** Assume that a graph  $\Gamma := G(s, 2; \psi)$  exists and  $\psi \le \frac{1}{3}s$ . By Lemma 3.2 with t = 2, all the eigenvalues of  $\Gamma$  are integers as the set  $S = \{(s, 2) \in \mathbb{N} \times \mathbb{N} \mid F(s, 2) = 0\}$  in (25) is empty. As  $s + 1 - 2\psi > 0$  holds from the assumption  $\psi \le \frac{1}{3}s$ , we find by (8) that

$$\theta_1 - \theta_2 = \sqrt{(s+1-2\psi)^2 + 4s} = (s+1-2\psi) + r \text{ and thus}$$

$$\psi = \frac{(2r-4)s + r^2 + 2r}{4r}$$
(30)

for some positive integer *r*. As  $\psi = \frac{(2r-4)s+r^2+2r}{4r}$  is an integer with  $1 < \psi \le \frac{1}{3}s$ , we find r = 4 and  $s \ge 18$ . Thus  $\Gamma$  is geometric by Lemma 1.1. Since the numbers  $\psi = \frac{s+6}{4}$ ,  $|V(\widehat{\Gamma})| = 18s - 69 + \frac{432}{s+6}$  and

$$4(r-2)^{3} \{ |V(\Gamma)| - (s+1)(2s+1) \} - 2r^{3}(r+2)^{2} -4r(s+1)(r-2) \{ 2(r-2)s - r^{2} - 2r \} = \frac{-2r^{3}(r+2)^{2}(r^{2}+4)}{(2r-4)s + r^{2} + 2r} = \frac{-23040}{s+6}$$
(31)

must be integers (see (9), (13) and (30)), s must satisfy

$$\frac{s+6}{4} \in \mathbb{N} \quad \text{and} \quad \frac{144}{s+6} \in \mathbb{N} \tag{32}$$

where 144 = gcd(432, 23040). Since  $s \ge 18$  also holds, we find by (32) that  $s \in \{18, 30, 42, 66, 138\}$ . But now  $m_{\Gamma}(-3) = \frac{s(3s-2)(3s+2)(2s+3)}{(s+6)(3s+4)}$  is not a positive integer for any  $s \in \{18, 30, 42, 66, 138\}$  (see (10)). Hence  $\psi > \frac{1}{3}s$  follows.

**Proof of Theorem 1.3.** For any given integers *s* and  $\psi$  with  $1 < \psi < s$ , let  $\Gamma := G(s, 2; \psi)$ . As  $\psi > \frac{1}{3}s$  holds by Lemma 4.1, it follows by Lemma 3.1 that either  $s \le 6$  or  $(s, \psi) = (15, 9)$  holds. Since there are no integers  $s \le 6$  and  $\psi$  satisfying both  $\frac{1}{3}s < \psi < s$  and  $m_{\Gamma}(\theta_3) \in \mathbb{N}$  (see (10)), we find  $(s, \psi) = (15, 9)$  which completes the proof.

#### Acknowledgments

Sejeong Bang was supported by Yeungnam University research grants in 2011. Jack Koolen was partially supported by a grant of the 'One hundred talent program' of the Chinese government.

#### References

- [1] S. Bang, Geometric distance-regular graphs without 4-claws, Linear Algebra Appl. 438 (2013) 37–46.
- [2] S. Bang, A. Dubickas, J.H. Koolen, V. Moulton, There are only finitely many distance-regular graphs of given valency greater than two, 2009, arXiv:0909.5253v1, submitted for publication.
- [3] S. Bang, A. Hiraki, J.H. Koolen, Delsarte clique graphs, European J. Combin. 28 (2007) 501–516.
- [4] N. Biggs, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993.
- [5] N.L. Biggs, A.G. Boshier, J. Shawe-Taylor, Cubic distance-regular graphs, J. Lond. Math. Soc. 33 (1986) 385-394.
- [6] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- [7] B. De Bruyn, F. Vanhove, On Q-polynomial regular near 2d-gons, submitted for publication.
- [8] Edwin R. van Dam, Jack H. Koolen, Hajime Tanaka, Distance-regular graphs, https://sites.google.com/site/edwinrvandam/ pub, Unpublished manuscript.
- [9] A.L. Gavrilyuk, A.A. Makhnev, Distance-regular graph with intersection array {45, 30, 7; 1, 2, 27} does not exist, Discrete Math. Appl. (2013) in press.
- [10] C.D. Godsil, Geometric distance-regular covers, New Zealand J. Math. 22 (1993) 31-38.
- [11] A. Hiraki, J. Koolen, A Higman–Haemers inequality for thick regular near polygons, J. Algebraic Combin. 20 (2004) 213–218.
- [12] A. Hiraki, K. Nomura, H. Suzuki, Distance-regular graphs of valency 6 and  $a_1 = 1$ , J. Algebraic Combin. 11 (2000) 101–134.
- [13] J.H. Koolen, S. Bang, On distance-regular graphs with smallest eigenvalue at least -m, J. Combin. Theory Ser. B 100 (2010) 573-584
- 573–584.
  [14] B. Mohar, J. Shawe-Taylor, Distance-biregular graphs with 2-valent vertices and distance regular line graphs, J. Combin. Theory Ser. B 38 (1985) 193–203.
- [15] S. Shad, E. Shult, The near n-gon geometries, Unpublished manuscript.
- [16] N. Yamazaki, Distance-regular graphs with  $G(x) \simeq 3 * K_{a+1}$ , European J. Combin. 16 (1995) 525–536.