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1. Introduction

For unexplained definitions and notations the reader is referred to Section 2. Recall that a non-
complete distance-regular graph I" with valency k and smallest eigenvalue 6., is called geometric if
there exists a set C of cliques such that each edge lies in exactly one clique in € and each clique in @
is a Delsarte clique, i.e., a clique of exactly 1 + k/(—6min) vertices (see [10]). So a geometric distance-
regular graph is the point graph of a partial linear space where the set of lines is a set of Delsarte
cliques. It was shown in [ 13] that for a positive integer m > 2 there are only finitely many coconnected
distance-regular graphs with valency at least three and smallest eigenvalue at least —m that are not
geometric.

In this paper we study geometric distance-regular graphs with diameter three. A geometric
distance-regular graph with diameter three has intersection array

{t+Ds, t(s+1=9n), ( =)+ 1—=v2): 1, (2 + Db, (£ + D2}, (2)

where0 < t; < tand 1 < ¢y < ¥, < s are all integers (see [13, Lemma 4.1]). Examples of
geometric distance-regular graphs with diameter three are the Hamming graph H(3, q), the Johnson
graph J(n, 3) n > 6, the Grassmann graph J,(n, 3) n > 6, the bilinear forms graph Hy(n, 3) and so on.
Note that not every distance-regular graph with intersection array (2) is geometric. For example, the
Doob graph with diameter three (i.e., the Cartesian product of a Shrikhande graph with a complete
graph on 4 vertices), which is not geometric, has the same intersection array as the Hamming graph
H(3, 4).

A distance-regular graph is exactly a generalized hexagon if and only if it has intersection array (2)
with t; = 0 and ¥; = ¥, = 1. Aregular near hexagon is exactly a graph with intersection array (2)
and ¥; = Y, = 1 that is locally the disjoint union of cliques. For larger diameter, the regular near
2D-gons of order (s, t) withD > 4, ¢; > 3and s > 2 are exactly dual polar graphs, see [8, Theorem
9.11]. The case satisfying D > 4, ¢, = 2 and s > 2 is still open. Regular near hexagons are even less
known, see [7] for some recent progress. In this paper we will consider graphs with intersection array
(2) satisfying c; = 2 and s > 1. In this case it follows by [13, Lemma 4.2 (i)] that t; = Tand ¥; = 1.

For positive integers s, t, ¥ satisfying t > 2 and ¢ < s, we denote by G(s, t; 1) a distance-regular
graph with intersection array

{t+Ds,ts, € = D(s+1—-9); 1,2, (t+ Dy (3)

Although a graph G(s, t; ) is not necessarily geometric the following lemma shows that it usually
is.

Lemma 1.1. Let I = G(s, t; ) be a distance-regular graph with intersection array (3), where s, t, ¢
are integers satisfying t > 2 and 1 < i < s. If parameters s and t satisfy

20+ 12 +1 ift>3
s>{6 ift=2

then I" is geometric with smallest eigenvalue —t — 1.

Proof. Note that —t — 1 is the smallest eigenvalue of I'". If parameters s and t satisfy t > 3 and s >
2(t + 1)? + 1, then I" is geometric with smallest eigenvalue —t — 1 by [13, Theorem 5.3]. If s > 6 and
t = 2, then the result immediately follows by [1, Theorem 3.1]. ®

It was shown in [11, Corollary 2] that for a thick regular near 2D-gon with order (s, t), the number
t is bounded by a function in s and D, i.e., t < s% — 1 where h := max{i | (c;, a;, b;)) = (c1, ay, b1)}.
With the same proof, it can be shown that this bound also holds for geometric distance-regular graphs.
We will show in the next theorem that if I" is a G(s, t; ¥) then s is bounded by a function in t, which
gives us a dual result to the result of Hiraki and Koolen [11, Corollary 2].
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Theorem 1.2. Let an integer t > 2 be given. Then there exists a positive constant C := C(t) (only de-
pending on t) such that if a graph G(s, t; V) exists where s,  are integers satisfying 1 < ¢ < sand
(t, ¥) # (2, 1) then

s<(C

holds (and hence ¥ < C).

To prove this result we show that usually a graph G(s, t; ¥) has only integral eigenvalues (see
Lemma 3.2). This situation is similar to the case of regular near hexagons. It was shown by Shad and
Shult [15] that a regular near hexagon has integral spectrum unless it is a generalized hexagon. How-
ever, the graph G(1, 5; 1) with intersection array {5, 4, 3; 1, 2, 5}, which arises as the point-block
incidence graph of the square 2-(11, 5, 2)-design, has irrational eigenvalues ++/3.

It is known that there are no geometric distance-regular graphs with smallest eigenvalue —2, di-
ameter D > 3 and ¢, > 2 (see [6, Theorem 3.12.2, Theorem 4.2.16]). Bang [ 1, Theorem 4.3] has shown
that any geometric distance-regular graph I" with smallest eigenvalue —3, diameter D > 3andc, > 2
satisfies one of the following:

(a) The Hamming graph H(3, s 4+ 1), where s > 2.
(b) The Johnson graph J(s — 1, 3), where s > 7.

(c) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread,
where s € {3, 5}.

(d) I' = G(s, 2; ¥) with intersection array {3s,2s,s+ 1 —¢; 1,2, 3y}, where 1 < ¢ < s.

We will show in Theorem 1.3 that if a graph G(s, 2; ) exists, where s and i are integers with 1 <
Y < s, then (s, ) = (15, 9).

Theorem 1.3. For any given integers s and ¥ with 1 < y < s, if a distance-regular graph with intersec-
tion array {3s,2s,s + 1 — ¢; 1, 2, 3y} does exist then (s, ¥) = (15, 9).

As Gavrilyuk and Makhnev [9] proved that a G(15, 2; 9) (with intersection array {45, 30,7; 1,2,27})
does not exist, we have the following result.

Theorem 1.4. A geometric distance-regular graph with smallest eigenvalue —3, diameter D > 3 and
¢y, > 2 is one of the following.

(i) The Hamming graph H(3, s + 1), where s > 2.
(ii) The Johnson graphJ(s — 1, 3), wheres > 7.

(iii) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread,
where s € {3, 5}.

In Section 3, we prove Theorem 1.2. To show this result we consider the two cases, { > ﬁs and

¥ < ﬁs. Ify > ms then we prove Lemma 3.1 by showing that the multiplicity of the smallest
eigenvalue of the corresponding dual graph is bounded above by a function in t. In this case s is also
bounded above by a function in t. On the other hand, if Y < z(%ﬂ)s then we prove in Lemma 3.2 that
there exists a finite set S such that if (s, ¥) & S then any graph G(s, t; ¥) has only integral eigenval-
ues. Using Theorem 1.2, we show in Theorem 3.4 that for a fixed integer t > 2, there are only finitely
many distance-regular graphs of order (s, t) with smallest eigenvalue —t — 1, diameter D = 3 and
intersection number c; = 2 except for the Hamming graphs with diameter three. In Section 4, we

prove Theorem 1.3 by showing in Lemma 4.1 that Y < %s does not occur.
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2. Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [6]
for more background information. For a connected graph I", the distance d(x, y) between two vertices
x,y of I' is the length of a shortest path between x and y in I", and the diameter D is the maximum
distance between any two vertices of I". Let V(I") be the vertex set of I'. For any vertex x € V(I"),
let I';(x) be the set of vertices in I" at distance precisely i from x, where i is a non-negative integer not
exceeding D. The adjacency matrix Ar of a graph I' is the (|[V(I')| x |V (I")|)-matrix with rows and
columns indexed by V (I"), where the (x, y)-entry of A equals 1 whenever d(x, y) = 1 and 0 other-
wise. The eigenvalues of I" are the eigenvalues of Ar. Let 8y, 01, . . ., 8, be the distinct eigenvalues of I
and let m-(6;) be the multiplicity of 6;(i = 0, 1, ..., n). A sequence of vertices W = wyg, wq, ..., wy,
which are not necessarily mutually distinct, is called a walk of length ¢ if w; and w;,;; are adjacent for
eachi =0, ..., £— 1.The number of walks of length £ from x to y is given by (A}.) x5, where (A%) )
is the (x, y)-entry of matrix A‘F. If wg = w, then W is called a closed walk. Let Tr(AZF) denote the trace
ofA‘“} (i.e., the sum of the diagonal entries ofA‘;C). Then we have

n
> " mp(#)6! = Tr(Af) = the number of closed walks of length £ in I (€ > 1). (4)
i=0
A connected graph I is called a distance-regular graph if there exist integers b;, ¢;,i = 0, 1, ..., D, such
that for any two vertices x, y at distance i = d(x, y), there are precisely ¢; neighbors of y in I'7_1(x)

and b; neighbors of y in I, 1(x) where D is the diameter of I". In particular, I" is regular with valency
k := bg. The numbers b;, ¢; and a; :== k — b; — ¢; (0 < i < D) are called the intersection numbers of I".
Set co = bp = 0. We observe ayp = 0 and ¢; = 1. Array

«(I') ={bo, by, ..., bp_1;¢1,C2, ..., CD}

is called the intersection array of I'. We define k; := |I;(x)| for any vertexxandi = 0, 1, ..., D. Then
we have

kib;

Cit1

koZ], k] :bo, ki+1 = (l:O,l,,D—l) (5)
Suppose that I" is a distance-regular graph with valency k > 2 and diameter D > 2. It is well known
that I" has exactly D + 1 distinct eigenvalues which are the eigenvalues of the following tridiagonal
matrix

0 bg
¢ a b
& a b

L(I) := 'Ci &,- b (6)

Cp-1 Gp—1 bp_4
Cp dp

(cf.[6, p.128]). The standard sequence (u;(6))o<i<p corresponding to an eigenvalue 6 of I" is a sequence
satisfying the following recurrence relation:

U@ =1, u(@) = % citli—1(6) + aiui(0) + biuip1 () = 0ui(6) (1 <i=<D).

Then the multiplicity of the eigenvalue 0 is given by

mr(@) = DL ™

> ki? (6)
i=0
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which is known as Biggs’ formula (cf. [4, Theorem 21.4], [6, p.128]). Let N denote the set of positive
integers. Recall that the local graph of a vertex x is the subgraph of I induced by the set of neighbors
of xin I', and a clique is a set of pairwise adjacent vertices. A distance-regular graph is of order (s, t)
if the local graph of any vertex is the disjoint union of t + 1 cliques of size s for some positive inte-
gers s, t. A distance-regular graph of order (s, t) is called a regular near 2D-gon of order (s, t) if a; =
c(s—1)({=1,2,...,D).

3. Proof of Theorem 1.2

In this section we will show Theorem 1.2, which implies that for any given integer t > 2 there exists
a positive constant C := C(t) such that if s > C and a graph G(s, t; i) exists then (t, ¥) = (2, 1).
To show Theorem 1.2 we consider the two cases, ¥ > ms and ¥ < ms. Ify > ﬁs then
we prove Lemma 3.1 by showing that the multiplicity of the smallest eigenvalue of the corresponding
dual graph is bounded above by a function in t. In this case s is bounded above by a function in t. On
the other hand, if Y < ﬁs then we prove in Lemma 3.2 that there exists a finite set S such that if
(s, ¥) € S then any graph G(s, t; ¥) has only integral eigenvalues.

For given integers s, t, ¥ witht > 2and 1 < ¢ <s,let I" := G(s, t; ¥). By (6), I" has exactly four
distinct eigenvalues 6y > 6, > 6, > 05:

35 —2¢ — 1+ (=) /(s +1—2¢)% +4(t — Ds

90 = (t + 1)5, 9,‘ 2 (l =1, 2), (8)
O3 = —t —1.
By (5) and (7), we find
2 _ 2
V)| = s+ 1) {(t? — 0)s* + 2y (st + 1)} @)

2Y
and
SE+1 -t =02+ 2yt +1)
mpr(f3) =mp(—t—1) = 5 { 5 } . (10)
Y(2s? 425 — 2s + 2st +t2 4+t — 2t)

Suppose that I" is geometric. The dual graph of I", denoted by T, isthe graph whose vertices are the
Delsarte cliques of I' (i.e., cliques of size s + 1) and two Delsarte cliques are adjacent if they intersect.
Let B be the vertex—(Delsarte clique) incidence matrix (i.e., the (0, 1)-matrix with rows and columns
indexed by the vertex set and the set of Delsarte cliques respectively, where the (x, C)-entry of Bis 1
if the vertex x is contained in the Delsarte clique C and 0 otherwise). Then

BB" =Ar + (t + Dlyry and B'B = (s+ Dy + A, (11)

where BT is the transpose of B and I, is the v x v identity matrix. By double-counting the number of
ones in B, we find

V(ID)(s + 1) = [Vt + 1) (12)
and thus
~ t(t? — 1)s?
VIl =¢+DG6st+1)+ ————. (13)
2y
In particular, Tisa regular graph with valency t(s + 1).
Lemma 3.1. Let an integer t > 2 be given. Then there exists a positive constant C := C(t) (only de-

pending on t) such that if a graph G(s, t; ) exists where s, \ are integers satisfying 1 < ¢ < sand
ms < Y < sthen
s<C
holds.
Moreover if t = 2 then either s < 6 or (s, ) = (15, 9) holds.
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Proof. Let s and v be positive integers satisfying ﬁs < ¢ <s,andlet I := G(s, t; ). To prove

this lemma, it is enough to show that s is bounded above by a function only depending on t. If s <

2(t + 1)? 4 1 then the result follows immediately. We now assume s > 2(t + 1)2 + 1. Then I' is

geometric by Lemma 1.1. Moreover, we have |V(F)| < |V(IM|by(12)ands > 2(t+1)*>+1 > t,and

hence 0 is an eigenvalue of BB . First assume that BT Bis invertible. Then the multiplicity of eigenvalue

O for the matrix BBT is |V (I")| — |V (I")|, which is also equal to my(—t — 1) by BBT = Ay + (t + Dlvry,
in(11).Bymp(—t — 1) = |V(I")| — |V(F)|,( ), (10) and (13), we find

BH(E+1
wzw. (14)

Substituting (14) in (13), we find

~ 5 3 -1
V)| = {t+ Dt + D +st’t -1 - — D} = it (15)

whose both sides are positive integers as t > 1. This shows that if B'B is invertible then we obtain
s<tit—1) —t.

Now assume that the matrix B” B is singular. Then 0 is an eigenvalue of both BB" and B” B, and thus
—s — 1is an eigenvalue of A7 by B'B = (s + Dl @) +Ap in(11). As BT B is positive semidefinite, by
(11), we find that —s — 1 is the smallest eigenvalue of the dual graph T with multiplicity

mp(—s — 1) = V()| = V()| + mp(—t = 1). (16)

Since the dual graph TofMisa regular graph with valency t(s 4+ 1) and smallest eigenvalue —s — 1,
it follows by (4) that

ts+ DIV =Tr(A2) = Y mpOn’ = s+ 1)
7: eigenvalue of T
+mp(—s — 1)(—s — 1)% (17)
Since we have |V(T')| < (t2 + 2t> — 1)s + t + 1 from (13) and the condition ¥ > ﬁs,
t{IvT)| —ts+1
1<p=mp(—s—1) < V! -« )}<t4+2t3—t2—t (18)

s+ 1
follows by (17). Hence 1 < p < t* 4 2t3 — 2 — t. By (9), (10), (13) and (16),
p=mp(—s—1) = |V(I)| = V()| +mp(—t — 1)
_ ts+t(s+1=2¢9 +)QY(st + 1) + (12 — 1)s?)

_ (19)
20 (22 +25 — 29 (s +t) +t(2s + £t + 1))
By (13) and (19), we have
2042 2
—%—t—t2(5+1)—2(s—1&)t3+(s+1)t4—t5+2(s+1—tp)p
4 o2 42 4
_ Qt* =2ty — (t* —t)(t* +p) (20)

s+t
where both sides are integers. If (2t* — 2t2)yr — (t2 — t)(t* 4+ p) = 0 then by

20+ 1)y tt+p
< = 2

20+ D3 +1<s
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it follows that p > t* 4 4t3 + 3t2, a contradiction to (18). Hence the following number q is a non-zero
integer, where

_ @t =2y — (2 —t)(t* +p)
4= s+t
4 2 2 4
S=<2t -2t )w—“ -0 +p
q q

Bys > t,(21), ¢ > ﬁsandp < t* 42t — t2 — t, we have

and thus

(21)

25¢ > (s+0)g = t" =2y — (¢ =) (t* +p)
>stit—1D - -t +2t3 -2 — 1)
and thus
Bt —-1 -t +23-t2—-t) ¢-1
> — >
2 2s 2
-0t +23 -2 —1)
>
2t
It follows by (21) and (22) that —t> < q < 2t* — 2t> as < s < s+ t and p is a positive integer.
Substituting s of (21) to (20), we obtain a non-zero polynomial in ¥ of degree at most three with
coefficients as functions inp, g and t. Hence, it follows by 1 < p < t44-2t3—2—t, —t° < q < 2t4—2¢?
and (21) that s is bounded above by a function C(t) which is dependent on t.

Now we consider the case t = 2. Suppose s > 6. Then I” is geometric by Lemma 1.1. As we find
|V(I')| < |V(I')| by (12) with s > t = 2, BBT is singular. If B' B is invertible then parameters s and
satisfy (s, ) = (14, 12) as ¢ = 22 € Nand 1§ € N(see (14)and (15)).1f (s, ) = (14, 12) then
61 and 0, are irrationals and thus

V()| —mp(6y) —mp(O 135

mrO:) = mp(0,) = V()| r(6o) r) _ 135 ¢N,
2 2

which is impossible. Hence BB is singular. It follows by (18), (21) and (22) that the following are all

integers

—t°. (22)

24y — 2(p + 16)
=mp(—s—1) and =" 23
p 7 ( ) q ) (23)
with1 < p < 25and —17 < g < 23. Now we will show 24y — 2(p + 16) # 0 (i.e,, g # 0).If

24y —2(p+ 16) = Othenwe find ¥y = 3,p =20 ands € {7,8} as6 < s < 3y = 2£1°® < 41 Then

it follows by (9), (10), (13) and (23) that |V (I")] = S 1y (_3) = % V()|

= 5% + 65+ 3 and mp(—s — 1) = p = 20. But they do not satisfy (16). Thus 24y — 2(p + 16) # 0
(i.e., q # 0). Now substituting s = w of (23) in (20), we find

2{(—8)¢" —24(p — 2)q + 1728} ¥* + {¢’ + 2(p + 7)¢* + 4(p*> + 14p — 176)q
—576(p + 16)} ¥ +24(p + g + 16)*> = 0. (24)

For any integers 1 < p < 25and —17 < q < 23, there exists the unique pair (s, ) = (15,9)
satisfying %s < ¢ <s,(23)and (24). This shows that if s > 6 then (s, ¥) = (15, 9), which completes
the proof. ®

The incidence graph of the 2-(11, 5, 2) design (with intersection array {5, 4, 3; 1, 2, 5}) has irra-
tional eigenvalues 4+/3. On the other hand, all the eigenvalues of the regular near hexagon (with
intersection array {24, 22, 20; 1, 2, 12}) are integers. In Lemma 3.2 we will show that for a fixed in-

teger t > 2 there exists a finite set S(t) such that if integers s and v satisfy both 1 < ¢ < ﬁs and
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(s, ¥) & S(t) then any graph G(s, t; ) has only integral eigenvalues. Using Lemma 3.2 we can easily
show that regular near hexagons with c; = 2 and s > 3 have only integral eigenvalues since if = 1
then the set S(t) in Eq. (25) is {(1, 1)}.

Given an integer t > 2, define a set

S(t) = {(s,:p)eNmes,w):o, = iu{“ WJ” (25)

2
where
F(s, %) = 2(t — s’ + (¢ (=6t + 10) + 3t*> — 5¢ + 2)s>
+(@YEt—4) — 2y (2 =3t —2) — 2+ t)s
+29 (4P — 2y (t+2) +t+ 1), (26)

For each integer ¥ satisfying 1 < ¢ < \\H V[;W‘J F(s, ) is a non-zero polynomial in s of degree

3, and hence [S(1)| <3 {@J

2

Lemma 3.2. Let aninteger t > 2 be given. If a graph G(s, t; 1) has a non-integral eigenvalue, where s,

are integers satisfying 1 < ¥ < =t —_sthen

2(t+1)
(s, ¥) € S(t)
holds, where S(t) is the finite set defined in (25).

Proof. Let t > 2 be an integer. For given integers s and  satisfying 1 < ¢ < ms, let I' == G(s,
t; ¥). Assume that I" has a non-integral eigenvalue. Then 6; and 6, in (8) must be irrational numbers,

and the equation Tr(Ay) = 21‘3:0 mp(6;)0; = 0 implies my(61) = m;(6,) and thus
(t+D(mp@;) —s) V)| —1—mp(63)
3s—2¢ —1 2

follows by (8) and |V(I")| = Z?:o mp(6;). By substituting (9) and (10) in (27), we find that s and
Y must satisfy the equation F(s, ) = 0, see (26). To complete the proof, we need to show 1 <

< Lﬂi WJ (ie., (s, ¥) € S). We first show the following claim.

mp(61) =mp(6y) = (27)

Claim 3.3. Suppose F(s, ¥) = 0.If %(2 +At2—t+4) <y < ﬁs thens < 2.

Proof of Claim 3.3. Suppose > 22+ V2 —t+4).As ¢ > 22+ V2 —t+4) > 1(t + 1),
FO,v) = 2¢2¢¥ — 1)(2y¥ — (t + 1)) > 0 and thus there is s < 0 satisfying F(s, /) = 0. As
FQy, ¥) = 2y {(4t> —6t +4) —t? 42t +1} > 0and the largest zero of the equation %F(s, ¥) =0
insis

6yt — 3t% + 5t — 109 — 2 + /(1262 + 4) 2 + (—24t3 + 72t2 — 112t + 64)y + 9t4 — 24t3 + 252 — 14t + 4
6(t—1)

which is less than 2, it follows that each real number s satisfying F(s, 1) = 0 is less than 2. This
shows Claim3.3. m

As the condition ¢ < ﬁs implies 2y < (HL]) s < s, we find by Claim 3.3 that if 6; and 6, are

irrational numbers then F(s, ¥) = 0 holds and thus 1 must satisfy

¢§%(2+Vt2—t+4),

which shows (s, ¥) € S. This completes the proof. H
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Using Lemmas 3.1 and 3.2 we now prove Theorem 1.2, which means that given an integer t > 2
there are only finitely many s’s and v’s such that a graph G(s, t; ¥) exists with (¢, ¥) # (2, 1).Itis
known that a G(s, 2; 1) with s > 1 is either the Hamming graph H(3, s + 1) or the Doob graph with
diameter three (in this case s = 3), see [6, Corollary 9.2.5]. Since the Hamming graph H(3, s 4+ 1) with
s > 1isaG(s, 2; 1), it follows that for the pair (t, ¥) = (2, 1) there are infinitely many s’s such that
aG(s, 2; 1) exists.

Proof of Theorem 1.2. Let t > 2 be a given integer. Let s and ¥ be integers suchthat 1 < ¢ <'s
and (t, ¥) # (2, 1). We want to show that there exists a positive constant C = C(t) (only depending
on t) such that if a graph I = G(s, t; ¥) exists then s < C. We consider two cases, ¥ > z(tﬂrl)s and
¥ < z(t+1)5 In the first case the existence of the constant C follows from Lemma 3.1. In the case ¢ <
z<r+1)5 let S = S(t) be the set as defined in (25). To complete the proof for givent > 2and (s, ¥) € S
satisfying 1 < ¢ < s, (t,¢¥) # 2,1) and ¢ < 2(tﬂ)s we will show that s is bounded above by

a function in t. It follows by Lemma 3.2 that if (s, 1) & S then both 6; and 6, are integers and thus

\/(s +1—=2v)2 +4(t — 1)s = 0;—60; = (s+1—2%)+r,wherer is a positive integer. As < ﬁs
we find 1 < r < 2(t? — 1). It follows that
r—2t+2 r+2
= 28
4 ( 2r )S+ 4 (28)
where 1 < r < 2(t? — 1). Substituting (28) into (9) we find
4(r =20+ 22 {IV(ID)| = (s + DGt + D} = > +2)*(* — 1)
—2r(s+ D(* — ) (r — 2t +2) {2(r — 2t +2)s — r* — 2r}
3 2)2(t2 —t)(r? + 4t — 4
_Pr4+2XE@ -0 4t —4) 29)

—Q2r—4t+4)s—r(r+2)
where both sides are integers. Note here that —(2r — 4t +4)s —r(r +2) = —4ry # 0 where the first
equality follows from (28).1f 2r —4t +4 # Othens < r3(r4+2)2 (2 —t)(r? +4t —4) +r(r+2) < f(t)
holds as the absolute value of (29) is at least 1. If 2r — 4t +4 = 0,i.e.,r = 2(t — 1), thent = 2y by
(28). Moreover, by (10),
amp(0s) — {4(t — Ds® — 4e(t — 2)s* +2(t> — 1(t — 2)s — t(> — D)(t — 2)}

(=2 =)

N 25+t
must be an integer. Since t = 2 implies v = 1, we have t > 2. Then there are only finitely many
positive integers s such that 221 is an integer. Hence we showed that if (s, ¥) &€ S, (t, ¥) #

25+t
(2,1) and Y < 5——s both hold then s is bounded above by a certain function only depending on t.

3Q2+4/t2—t+4)
2

(s, ¥) € S are bounded above by a function on t from the definition of the set S (see (25)). =

2([+1)

This completes the proof since S is a finite set with |S| < { J and each s and  satisfying

Mohar and Shawe-Taylor [ 14] (see also [6, Theorem 4.2.16]) characterized distance-regular graphs
of order (s, 1) with s > 1. The distance-regular graphs of order (1, 2) and (2, 2) were classified by
Biggs, Boshier and Shawe-Taylor [5] and Hiraki, Nomura and Suzuki [12], respectively. Some strong
results on distance-regular graphs of order (s, 2) withs > 2 were given by Yamazaki[16]. In [2, Corol-
lary 10.2], the authors showed that for a fixed integer t > 1, there are only finitely many distance-
regular graphs of order (s, t) whose smallest eigenvalue is not equal to —t — 1.

Using Theorem 1.2, we can show the following theorem.

Theorem 3.4. Fora fixed integer t > 2, there are only finitely many distance-regular graphs of order (s, t)
with smallest eigenvalue —t — 1, diameter D = 3 and intersection number c; = 2 except for Hamming
graphs with diameter three.
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Proof. Let t > 2 be a given integer. Let I" be a distance-regular graph of order (s, t) with smallest
eigenvalue —t — 1, diameter D = 3 and intersection number ¢, = 2. Then I" is geometric with va-
lency by = (t 4+ 1)s. By [1, Lemma 4.1] (see also [3, Proposition 4.2 (i)]), the intersection numbers of
Isatisfyb;j=(t+1—-1)(s+1—yy)i=1,2and g = 1;9j_1j = 1, 2, 3, where parameters 7; and
Y; are as defined in [1, Section 4]. As any Delsarte clique in I" has size s + 1 = a; + 2, it follows by [3,
Lemma 5.1 (i)] that ¥; = 1 which shows 1, = 7,91 = ¢; = 2. Note here that I" satisfies 7; = 1 and
73 = t 4+ 1(see [1, Equation (9)]). Put ¥ := . Then I" is a G(s, t; ). If s # 3 then the condition
(t, ¥) = (2, 1) is equivalent to that I" is the Hamming graph H(3, s+ 1). Asby = (t + 1)sand D = 3,
the result follows by Theorem 1.2. &

In [13, Conjecture 7.5], the authors conjectured that for a fixed integer t > 2, any geometric
distance-regular graph with smallest eigenvalue —t — 1, diameter D > 3 and ¢, > 2 is either a John-
son graph, a Grassmann graph, a Hamming graph, a bilinear forms graph, or the number of vertices is
bounded above by a function in t. Theorem 3.4 gives us more evidence that the conjecture is true.

4. Proof of Theorem 1.3

For given integers s and ¢ with 1 < v < s,let I' = G(s,2; ¥). Then «(I') = {3s,2s5,s+ 1 — ;
1,2, 3¢ }. If ¥ = 1then G(s, 2; ¥) is either the Hamming graph H(3, s + 1) or the Doob graph with
diameter three (in this case s = 3), see [6, Corollary 9.2.5]. If ¥ = s then G(s, 2; ¥) can be obtained
as the collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread,
where s € {3, 5} (see [1, Theorem 4.3]). In this section, we prove Theorem 1.3 which states that if a
graph G(s, 2; V) exists, where s and i are integers with 1 < ¥ < s then (s, ¥) = (15, 9). To prove
Theorem 1.3, we need the following lemma.

Lemma 4.1. Let s and  be any given integers with 1 < < s. If a graph G(s, 2; ) exists then
1
w > 55
holds.

Proof. Assume that a graph I := G(s, 2; ¥) exists and ¢ < %s. By Lemma 3.2 with t = 2, all the
eigenvalues of I" are integers as the set S = {(s,2) € N x N | F(s, 2) = 0} in (25) is empty. As s + 1
— 2v¢ > 0 holds from the assumption Y < %s, we find by (8) that

0 —60, =+/(s+1—2¢)2+4s=(s+1—2¢%)+r andthus

_ Qr —4s+1r2+2r
- 4r

(30)

v

o 4o . .
for some positive integer r. As = 220 js ap integer with 1 < ¥ < 1s,we findr = 4 and

s > 18.Thus I is geometric by Lemma 1.1. Since the numbers ¢ = =8, [V(T)| = 18s — 69 + &2
and

4r =22 VD) = 5+ D@2s+ D} = 23 (r + 2)?
—4r(s+ D(r—2) {20 —2)s —r* — 2r}

2 +2)2(* +4)  —23040

= (31)
Qr—4)s+r2+2r s+6
must be integers (see (9), (13) and (30)), s must satisfy
s+ 6 144
+ €N and eN (32)

s+6
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where 144 = gcd (432, 23040). Since s > 18 also holds, we find by (32) that s € {18, 30, 42, 66, 138}.
But now m(—3) = % is not a positive integer for any s € {18, 30, 42, 66, 138} (see

(10)). Hence ¢ > 1sfollows. m

Proof of Theorem 1.3. For any given integers s and ¢ with 1 < ¢ < s, let I := G(s, 2; ¥). As ¢ >
%s holds by Lemma 4.1, it follows by Lemma 3.1 that either s < 6 or (s, ¥) = (15, 9) holds. Since

there are no integers s < 6 and v satisfying both %s < ¥ < sand mp(6;5) € N (see (10)), we find
(s, ¥) = (15, 9) which completes the proof. ®
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