
European Journal of Combinatorics 36 (2014) 331–341

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On geometric distance-regular graphs with
diameter three

Sejeong Bang a,1, J.H. Koolen b,c

a Department of Mathematics, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 712-749,
Republic of Korea
b School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei,
230026, Anhui, PR China
c Department of Mathematics, POSTECH, Hyoja-dong, Namgu, Pohang 790-784, Republic of Korea

a r t i c l e i n f o

Article history:
Received 6 February 2013
Accepted 19 June 2013
Available online 28 August 2013

a b s t r a c t

In this paper we study distance-regular graphs with intersection
array

{(t + 1)s, ts, (t − 1)(s + 1 − ψ); 1, 2, (t + 1)ψ} (1)

where s, t, ψ are integers satisfying t ≥ 2 and 1 ≤ ψ ≤ s. Geomet-
ric distance-regular graphs with diameter three and c2 = 2 have
such an intersection array. We first show that if a distance-regular
graphwith intersection array (1) exists, then s is bounded above by
a function in t . Using this we show that for a fixed integer t ≥ 2,
there are only finitely many distance-regular graphs of order (s, t)
with smallest eigenvalue −t − 1, diameter D = 3 and intersection
number c2 = 2 except for Hamming graphs with diameter three.
Moreover, wewill show that if a distance-regular graphwith inter-
section array (1) for t = 2 exists then (s, ψ) = (15, 9). As Gavri-
lyuk andMakhnev (2013) [9] proved that the case (s, ψ) = (15, 9)
does not exist, this enables us to finish the classification of geomet-
ric distance-regular graphs with smallest eigenvalue −3, diameter
D ≥ 3 and c2 ≥ 2 which was started by the first author (Bang,
2013) [1].
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1. Introduction

For unexplained definitions and notations the reader is referred to Section 2. Recall that a non-
complete distance-regular graph Γ with valency k and smallest eigenvalue θmin is called geometric if
there exists a set C of cliques such that each edge lies in exactly one clique in C and each clique in C
is a Delsarte clique, i.e., a clique of exactly 1 + k/(−θmin) vertices (see [10]). So a geometric distance-
regular graph is the point graph of a partial linear space where the set of lines is a set of Delsarte
cliques. It was shown in [13] that for a positive integerm ≥ 2 there are only finitelymany coconnected
distance-regular graphs with valency at least three and smallest eigenvalue at least −m that are not
geometric.

In this paper we study geometric distance-regular graphs with diameter three. A geometric
distance-regular graph with diameter three has intersection array

{(t + 1)s, t(s + 1 − ψ1), (t − t2)(s + 1 − ψ2); 1, (t2 + 1)ψ1, (t + 1)ψ2}, (2)

where 0 ≤ t2 < t and 1 ≤ ψ1 ≤ ψ2 ≤ s are all integers (see [13, Lemma 4.1]). Examples of
geometric distance-regular graphs with diameter three are the Hamming graph H(3, q), the Johnson
graph J(n, 3) n ≥ 6, the Grassmann graph Jq(n, 3) n ≥ 6, the bilinear forms graph Hq(n, 3) and so on.
Note that not every distance-regular graph with intersection array (2) is geometric. For example, the
Doob graph with diameter three (i.e., the Cartesian product of a Shrikhande graph with a complete
graph on 4 vertices), which is not geometric, has the same intersection array as the Hamming graph
H(3, 4).

A distance-regular graph is exactly a generalized hexagon if and only if it has intersection array (2)
with t2 = 0 and ψ1 = ψ2 = 1. A regular near hexagon is exactly a graph with intersection array (2)
and ψ1 = ψ2 = 1 that is locally the disjoint union of cliques. For larger diameter, the regular near
2D-gons of order (s, t) with D ≥ 4, c2 ≥ 3 and s ≥ 2 are exactly dual polar graphs, see [8, Theorem
9.11]. The case satisfying D ≥ 4, c2 = 2 and s ≥ 2 is still open. Regular near hexagons are even less
known, see [7] for some recent progress. In this paper we will consider graphs with intersection array
(2) satisfying c2 = 2 and s ≥ 1. In this case it follows by [13, Lemma 4.2 (i)] that t2 = 1 and ψ1 = 1.

For positive integers s, t, ψ satisfying t ≥ 2 andψ ≤ s, we denote by G(s, t;ψ) a distance-regular
graph with intersection array

{(t + 1)s, ts, (t − 1)(s + 1 − ψ); 1, 2, (t + 1)ψ}. (3)

Although a graph G(s, t;ψ) is not necessarily geometric the following lemma shows that it usually
is.

Lemma 1.1. Let Γ = G(s, t;ψ) be a distance-regular graph with intersection array (3), where s, t, ψ
are integers satisfying t ≥ 2 and 1 ≤ ψ ≤ s. If parameters s and t satisfy

s >

2(t + 1)2 + 1 if t ≥ 3
6 if t = 2

then Γ is geometric with smallest eigenvalue −t − 1.

Proof. Note that −t − 1 is the smallest eigenvalue of Γ . If parameters s and t satisfy t ≥ 3 and s >
2(t + 1)2 + 1, then Γ is geometric with smallest eigenvalue −t − 1 by [13, Theorem 5.3]. If s > 6 and
t = 2, then the result immediately follows by [1, Theorem 3.1]. �

It was shown in [11, Corollary 2] that for a thick regular near 2D-gon with order (s, t), the number
t is bounded by a function in s and D, i.e., t < s

4D
h − 1 where h := max{i | (ci, ai, bi) = (c1, a1, b1)}.

With the same proof, it can be shown that this bound also holds for geometric distance-regular graphs.
We will show in the next theorem that if Γ is a G(s, t;ψ) then s is bounded by a function in t , which
gives us a dual result to the result of Hiraki and Koolen [11, Corollary 2].
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Theorem 1.2. Let an integer t ≥ 2 be given. Then there exists a positive constant C := C(t) (only de-
pending on t) such that if a graph G(s, t;ψ) exists where s, ψ are integers satisfying 1 ≤ ψ ≤ s and
(t, ψ) ≠ (2, 1) then

s ≤ C

holds (and hence ψ ≤ C).

To prove this result we show that usually a graph G(s, t;ψ) has only integral eigenvalues (see
Lemma 3.2). This situation is similar to the case of regular near hexagons. It was shown by Shad and
Shult [15] that a regular near hexagon has integral spectrum unless it is a generalized hexagon. How-
ever, the graph G(1, 5; 1) with intersection array {5, 4, 3; 1, 2, 5}, which arises as the point-block
incidence graph of the square 2-(11, 5, 2)-design, has irrational eigenvalues ±

√
3.

It is known that there are no geometric distance-regular graphs with smallest eigenvalue −2, di-
ameter D ≥ 3 and c2 ≥ 2 (see [6, Theorem 3.12.2, Theorem 4.2.16]). Bang [1, Theorem 4.3] has shown
that any geometric distance-regular graphΓ with smallest eigenvalue−3, diameterD ≥ 3 and c2 ≥ 2
satisfies one of the following:

(a) The Hamming graph H(3, s + 1), where s ≥ 2.
(b) The Johnson graph J(s − 1, 3), where s ≥ 7.
(c) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread,

where s ∈ {3, 5}.
(d) Γ = G(s, 2;ψ)with intersection array {3s, 2s, s + 1 − ψ; 1, 2, 3ψ}, where 1 < ψ < s.

We will show in Theorem 1.3 that if a graph G(s, 2;ψ) exists, where s and ψ are integers with 1 <
ψ < s, then (s, ψ) = (15, 9).

Theorem 1.3. For any given integers s and ψ with 1 < ψ < s, if a distance-regular graph with intersec-
tion array {3s, 2s, s + 1 − ψ; 1, 2, 3ψ} does exist then (s, ψ) = (15, 9).

AsGavrilyuk andMakhnev [9] proved that aG(15,2; 9) (with intersection array {45,30,7; 1,2,27})
does not exist, we have the following result.

Theorem 1.4. A geometric distance-regular graph with smallest eigenvalue −3, diameter D ≥ 3 and
c2 ≥ 2 is one of the following.

(i) The Hamming graph H(3, s + 1), where s ≥ 2.
(ii) The Johnson graph J(s − 1, 3), where s ≥ 7.
(iii) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread,

where s ∈ {3, 5}.

In Section 3, we prove Theorem 1.2. To show this result we consider the two cases,ψ > t
2(t+1) s and

ψ ≤
t

2(t+1) s. Ifψ > t
2(t+1) s then we prove Lemma 3.1 by showing that the multiplicity of the smallest

eigenvalue of the corresponding dual graph is bounded above by a function in t . In this case s is also
bounded above by a function in t . On the other hand, ifψ ≤

t
2(t+1) s then we prove in Lemma 3.2 that

there exists a finite set S such that if (s, ψ) ∉ S then any graph G(s, t;ψ) has only integral eigenval-
ues. Using Theorem 1.2, we show in Theorem 3.4 that for a fixed integer t ≥ 2, there are only finitely
many distance-regular graphs of order (s, t) with smallest eigenvalue −t − 1, diameter D = 3 and
intersection number c2 = 2 except for the Hamming graphs with diameter three. In Section 4, we
prove Theorem 1.3 by showing in Lemma 4.1 that ψ ≤

1
3 s does not occur.
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2. Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [6]
for more background information. For a connected graphΓ , the distance d(x, y) between two vertices
x, y of Γ is the length of a shortest path between x and y in Γ , and the diameter D is the maximum
distance between any two vertices of Γ . Let V (Γ ) be the vertex set of Γ . For any vertex x ∈ V (Γ ),
let Γi(x) be the set of vertices in Γ at distance precisely i from x, where i is a non-negative integer not
exceeding D. The adjacency matrix AΓ of a graph Γ is the (|V (Γ )| × |V (Γ )|)-matrix with rows and
columns indexed by V (Γ ), where the (x, y)-entry of AΓ equals 1 whenever d(x, y) = 1 and 0 other-
wise. The eigenvalues ofΓ are the eigenvalues of AΓ . Let θ0, θ1, . . . , θn be the distinct eigenvalues ofΓ
and let mΓ (θi) be the multiplicity of θi(i = 0, 1, . . . , n). A sequence of vertices W = w0, w1, . . . , wℓ,
which are not necessarily mutually distinct, is called awalk of length ℓ ifwi andwi+1 are adjacent for
each i = 0, . . . , ℓ−1. The number of walks of length ℓ from x to y is given by (AℓΓ )(x,y), where (AℓΓ )(x,y)
is the (x, y)-entry of matrix AℓΓ . Ifw0 = wℓ thenW is called a closed walk. Let Tr(AℓΓ ) denote the trace
of AℓΓ (i.e., the sum of the diagonal entries of AℓΓ ). Then we have

n
i=0

mΓ (θi)θ
ℓ
i = Tr(AℓΓ ) = the number of closed walks of length ℓ in Γ (ℓ ≥ 1). (4)

A connected graphΓ is called a distance-regular graph if there exist integers bi, ci, i = 0, 1, . . . ,D, such
that for any two vertices x, y at distance i = d(x, y), there are precisely ci neighbors of y in Γi−1(x)
and bi neighbors of y in Γi+1(x)where D is the diameter of Γ . In particular, Γ is regular with valency
k := b0. The numbers bi, ci and ai := k − bi − ci (0 ≤ i ≤ D) are called the intersection numbers of Γ .
Set c0 = bD = 0. We observe a0 = 0 and c1 = 1. Array

ι(Γ ) = {b0, b1, . . . , bD−1; c1, c2, . . . , cD}

is called the intersection array of Γ . We define ki := |Γi(x)| for any vertex x and i = 0, 1, . . . ,D. Then
we have

k0 = 1, k1 = b0, ki+1 =
kibi
ci+1

(i = 0, 1, . . . ,D − 1). (5)

Suppose that Γ is a distance-regular graph with valency k ≥ 2 and diameter D ≥ 2. It is well known
that Γ has exactly D + 1 distinct eigenvalues which are the eigenvalues of the following tridiagonal
matrix

L1(Γ ) :=



0 b0
c1 a1 b1

c2 a2 b2
. . .

ci ai bi
. . .

cD−1 aD−1 bD−1
cD aD


(6)

(cf. [6, p.128]). The standard sequence (ui(θ))0≤i≤D corresponding to an eigenvalue θ ofΓ is a sequence
satisfying the following recurrence relation:

u0(θ) = 1, u1(θ) =
θ

k
, ciui−1(θ)+ aiui(θ)+ biui+1(θ) = θui(θ) (1 ≤ i ≤ D).

Then the multiplicity of the eigenvalue θ is given by

mΓ (θ) =
|V (Γ )|

D
i=0

kiu2
i (θ)

, (7)



S. Bang, J.H. Koolen / European Journal of Combinatorics 36 (2014) 331–341 335

which is known as Biggs’ formula (cf. [4, Theorem 21.4], [6, p.128]). Let N denote the set of positive
integers. Recall that the local graph of a vertex x is the subgraph of Γ induced by the set of neighbors
of x in Γ , and a clique is a set of pairwise adjacent vertices. A distance-regular graph is of order (s, t)
if the local graph of any vertex is the disjoint union of t + 1 cliques of size s for some positive inte-
gers s, t . A distance-regular graph of order (s, t) is called a regular near 2D-gon of order (s, t) if ai =

ci(s − 1) (i = 1, 2, . . . ,D).

3. Proof of Theorem 1.2

In this sectionwewill showTheorem1.2,which implies that for any given integer t ≥ 2 there exists
a positive constant C := C(t) such that if s > C and a graph G(s, t;ψ) exists then (t, ψ) = (2, 1).
To show Theorem 1.2 we consider the two cases, ψ > t

2(t+1) s and ψ ≤
t

2(t+1) s. If ψ > t
2(t+1) s then

we prove Lemma 3.1 by showing that themultiplicity of the smallest eigenvalue of the corresponding
dual graph is bounded above by a function in t . In this case s is bounded above by a function in t . On
the other hand, if ψ ≤

t
2(t+1) s then we prove in Lemma 3.2 that there exists a finite set S such that if

(s, ψ) ∉ S then any graph G(s, t;ψ) has only integral eigenvalues.
For given integers s, t, ψ with t ≥ 2 and 1 ≤ ψ ≤ s, let Γ := G(s, t;ψ). By (6), Γ has exactly four

distinct eigenvalues θ0 > θ1 > θ2 > θ3:

θ0 = (t + 1)s, θi =
3s − 2ψ − 1 + (−1)i−1


(s + 1 − 2ψ)2 + 4(t − 1)s
2

(i = 1, 2),

θ3 = −t − 1.
(8)

By (5) and (7), we find

|V (Γ )| =
(s + 1)


(t2 − t)s2 + 2ψ(st + 1)


2ψ

(9)

and

mΓ (θ3) = mΓ (−t − 1) =
s2(s + 1 − ψ)


(t2 − t)s2 + 2ψ(st + 1)


ψ(2s2 + 2s − 2ψs + 2st + t2 + t − 2ψt)

. (10)

Suppose thatΓ is geometric. The dual graph ofΓ , denoted byΓ , is the graphwhose vertices are the
Delsarte cliques of Γ (i.e., cliques of size s+ 1) and two Delsarte cliques are adjacent if they intersect.
Let B be the vertex–(Delsarte clique) incidence matrix (i.e., the (0, 1)-matrix with rows and columns
indexed by the vertex set and the set of Delsarte cliques respectively, where the (x, C)-entry of B is 1
if the vertex x is contained in the Delsarte clique C and 0 otherwise). Then

BBT
= AΓ + (t + 1)I|V (Γ )| and BTB = (s + 1)I|V (Γ )| + AΓ , (11)

where BT is the transpose of B and Iv is the v × v identity matrix. By double-counting the number of
ones in B, we find

|V (Γ )|(s + 1) = |V (Γ )|(t + 1) (12)
and thus

|V (Γ )| = (t + 1)(st + 1)+
t(t2 − 1)s2

2ψ
. (13)

In particular, Γ is a regular graph with valency t(s + 1).

Lemma 3.1. Let an integer t ≥ 2 be given. Then there exists a positive constant C := C(t) (only de-
pending on t) such that if a graph G(s, t;ψ) exists where s, ψ are integers satisfying 1 ≤ ψ ≤ s and

t
2(t+1) s < ψ ≤ s then

s ≤ C

holds.
Moreover if t = 2 then either s ≤ 6 or (s, ψ) = (15, 9) holds.
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Proof. Let s and ψ be positive integers satisfying t
2(t+1) s < ψ ≤ s, and let Γ := G(s, t;ψ). To prove

this lemma, it is enough to show that s is bounded above by a function only depending on t . If s ≤

2(t + 1)2 + 1 then the result follows immediately. We now assume s > 2(t + 1)2 + 1. Then Γ is
geometric by Lemma 1.1. Moreover, we have |V (Γ )| < |V (Γ )| by (12) and s > 2(t +1)2 +1 > t , and
hence 0 is an eigenvalue of BBT . First assume that BTB is invertible. Then themultiplicity of eigenvalue
0 for thematrix BBT is |V (Γ )|−|V (Γ )|, which is also equal tomΓ (−t−1) by BBT

= AΓ +(t+1)I|V (Γ )|
in (11). BymΓ (−t − 1) = |V (Γ )| − |V (Γ )|, (9), (10) and (13), we find

ψ =
(s + t)(t + 1)

2t
. (14)

Substituting (14) in (13), we find

|V (Γ )| −

(t + 1)(st + 1)+ st2(t − 1)− t3(t − 1)


=

t4(t − 1)
s + t

(15)

whose both sides are positive integers as t > 1. This shows that if BTB is invertible then we obtain
s ≤ t4(t − 1)− t .

Now assume that the matrix BTB is singular. Then 0 is an eigenvalue of both BBT and BTB, and thus
−s − 1 is an eigenvalue of AΓ by BTB = (s + 1)I|V (Γ )| + AΓ in (11). As BTB is positive semidefinite, by
(11), we find that −s − 1 is the smallest eigenvalue of the dual graph Γ with multiplicity

mΓ (−s − 1) = |V (Γ )| − |V (Γ )| + mΓ (−t − 1). (16)

Since the dual graph Γ of Γ is a regular graph with valency t(s + 1) and smallest eigenvalue −s − 1,
it follows by (4) that

t(s + 1)|V (Γ )| = Tr(A2Γ ) =


η: eigenvalue of Γ mΓ (η)η2 ≥ t2(s + 1)2

+mΓ (−s − 1)(−s − 1)2. (17)

Since we have |V (Γ )| < (t3 + 2t2 − 1)s + t + 1 from (13) and the condition ψ > t
2(t+1) s,

1 ≤ p := mΓ (−s − 1) ≤
t

|V (Γ )| − t(s + 1)


s + 1

< t4 + 2t3 − t2 − t (18)

follows by (17). Hence 1 ≤ p < t4 + 2t3 − t2 − t . By (9), (10), (13) and (16),

p = mΓ (−s − 1) = |V (Γ )| − |V (Γ )| + mΓ (−t − 1)

=
t(s + t(s + 1 − 2ψ + t))(2ψ(st + 1)+ (t2 − t)s2)

2ψ(2s2 + 2s − 2ψ(s + t)+ t(2s + t + 1))
. (19)

By (13) and (19), we have

−
t2(t2 − 1)s2

2ψ
− t − t2(s + 1)− 2(s − ψ)t3 + (s + 1)t4 − t5 + 2(s + 1 − ψ)p

=
(2t4 − 2t2)ψ − (t2 − t)(t4 + p)

s + t
(20)

where both sides are integers. If (2t4 − 2t2)ψ − (t2 − t)(t4 + p) = 0 then by

2(t + 1)2 + 1 < s <
2(t + 1)ψ

t
=

t4 + p
t2
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it follows that p > t4 + 4t3 + 3t2, a contradiction to (18). Hence the following number q is a non-zero
integer, where

q :=
(2t4 − 2t2)ψ − (t2 − t)(t4 + p)

s + t
and thus

s =


2t4 − 2t2

q


ψ −

(t2 − t)(t4 + p)
q

− t.
(21)

By s > t , (21), ψ > t
2(t+1) s and p < t4 + 2t3 − t2 − t , we have

2sq > (s + t)q = (2t4 − 2t2)ψ − (t2 − t)(t4 + p)
> st3(t − 1)− (t2 − t)(2t4 + 2t3 − t2 − t)

and thus

q >
t3(t − 1)

2
−
(t2 − t)(2t4 + 2t3 − t2 − t)

2s
>

t3(t − 1)
2

−
(t2 − t)(2t4 + 2t3 − t2 − t)

2t
> −t5. (22)

It follows by (21) and (22) that −t5 < q < 2t4 − 2t2 as ψ ≤ s < s + t and p is a positive integer.
Substituting s of (21) to (20), we obtain a non-zero polynomial in ψ of degree at most three with
coefficients as functions in p, q and t . Hence, it follows by 1 ≤ p < t4+2t3−t2−t ,−t5 < q < 2t4−2t2
and (21) that s is bounded above by a function C(t)which is dependent on t .

Now we consider the case t = 2. Suppose s > 6. Then Γ is geometric by Lemma 1.1. As we find
|V (Γ )| < |V (Γ )| by (12) with s > t = 2, BBT is singular. If BTB is invertible then parameters s and ψ
satisfy (s, ψ) = (14, 12) asψ =

3(s+2)
4 ∈ N and 16

s+2 ∈ N (see (14) and (15)). If (s, ψ) = (14, 12) then
θ1 and θ2 are irrationals and thus

mΓ (θ1) = mΓ (θ2) =
|V (Γ )| − mΓ (θ0)− mΓ (θ3)

2
=

135
2

∉ N,

which is impossible. Hence BTB is singular. It follows by (18), (21) and (22) that the following are all
integers

p := mΓ (−s − 1) and q :=
24ψ − 2(p + 16)

s + 2
(23)

with 1 ≤ p ≤ 25 and −17 < q ≤ 23. Now we will show 24ψ − 2(p + 16) ≠ 0 (i.e., q ≠ 0). If
24ψ − 2(p + 16) = 0 then we find ψ = 3, p = 20 and s ∈ {7, 8} as 6 < s < 3ψ =

p+16
4 ≤

41
4 . Then

it follows by (9), (10), (13) and (23) that |V (Γ )| =
(s+1)(s2+6s+3)

3 , mΓ (−3) =
s2(s−2)(s2+6s+3)

3(s2−3)
, |V (Γ )|

= s2 + 6s + 3 and mΓ (−s − 1) = p = 20. But they do not satisfy (16). Thus 24ψ − 2(p + 16) ≠ 0
(i.e., q ≠ 0). Now substituting s =

24ψ−2(p+16)−2q
q of (23) in (20), we find

2

(p − 8)q2 − 24(p − 2)q + 1728


ψ2

+

q3 + 2(p + 7)q2 + 4(p2 + 14p − 176)q

− 576(p + 16)

ψ + 24(p + q + 16)2 = 0. (24)

For any integers 1 ≤ p ≤ 25 and −17 < q ≤ 23, there exists the unique pair (s, ψ) = (15, 9)
satisfying 1

3 s < ψ ≤ s, (23) and (24). This shows that if s > 6 then (s, ψ) = (15, 9), which completes
the proof. �

The incidence graph of the 2-(11, 5, 2) design (with intersection array {5, 4, 3; 1, 2, 5}) has irra-
tional eigenvalues ±

√
3. On the other hand, all the eigenvalues of the regular near hexagon (with

intersection array {24, 22, 20; 1, 2, 12}) are integers. In Lemma 3.2 we will show that for a fixed in-
teger t ≥ 2 there exists a finite set S(t) such that if integers s andψ satisfy both 1 ≤ ψ ≤

t
2(t+1) s and
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(s, ψ) ∉ S(t) then any graph G(s, t;ψ) has only integral eigenvalues. Using Lemma 3.2 we can easily
show that regular near hexagons with c2 = 2 and s ≥ 3 have only integral eigenvalues since ifψ = 1
then the set S(t) in Eq. (25) is {(1, 1)}.

Given an integer t ≥ 2, define a set

S(t) :=


(s, ψ) ∈ N × N | F(s, ψ) = 0, ψ ∈


1, 2, . . . ,


2 +

√
t2 − t + 4
2


, (25)

where

F(s, ψ) := 2(t − 1)s3 + (ψ(−6t + 10)+ 3t2 − 5t + 2)s2

+ (4ψ2(t − 4)− 2ψ(t2 − 3t − 2)− t2 + t)s

+ 2ψ(4ψ2
− 2ψ(t + 2)+ t + 1). (26)

For each integerψ satisfying 1 ≤ ψ ≤


2+

√
t2−t+4
2


, F(s, ψ) is a non-zero polynomial in s of degree

3, and hence |S(t)| ≤ 3


2+
√

t2−t+4
2


.

Lemma 3.2. Let an integer t ≥ 2 be given. If a graph G(s, t;ψ) has a non-integral eigenvalue, where s, ψ
are integers satisfying 1 ≤ ψ ≤

t
2(t+1) s then

(s, ψ) ∈ S(t)

holds, where S(t) is the finite set defined in (25).

Proof. Let t ≥ 2 be an integer. For given integers s and ψ satisfying 1 ≤ ψ ≤
t

2(t+1) s, let Γ := G(s,
t;ψ). Assume that Γ has a non-integral eigenvalue. Then θ1 and θ2 in (8) must be irrational numbers,
and the equation Tr(AΓ ) =

3
i=0 mΓ (θi)θi = 0 impliesmΓ (θ1) = mΓ (θ2) and thus

mΓ (θ1) = mΓ (θ2) =
(t + 1)(mΓ (θ3)− s)

3s − 2ψ − 1
=

|V (Γ )| − 1 − mΓ (θ3)

2
(27)

follows by (8) and |V (Γ )| =
3

i=0 mΓ (θi). By substituting (9) and (10) in (27), we find that s and
ψ must satisfy the equation F(s, ψ) = 0, see (26). To complete the proof, we need to show 1 ≤ ψ

≤


2+

√
t2−t+4
2


(i.e., (s, ψ) ∈ S). We first show the following claim.

Claim 3.3. Suppose F(s, ψ) = 0. If 1
2 (2 +

√
t2 − t + 4) < ψ ≤

t
2(t+1) s then s < 2ψ .

Proof of Claim 3.3. Suppose ψ > 1
2 (2 +

√
t2 − t + 4). As ψ > 1

2 (2 +
√
t2 − t + 4) > 1

2 (t + 1),
F(0, ψ) = 2ψ(2ψ − 1)(2ψ − (t + 1)) > 0 and thus there is s < 0 satisfying F(s, ψ) = 0. As
F(2ψ,ψ) = 2ψ{(4t2−6t+4)ψ−t2+2t+1} > 0 and the largest zero of the equation ∂

∂sF(s, ψ) = 0
in s is

6ψt − 3t2 + 5t − 10ψ − 2 +

(12t2 + 4)ψ2 + (−24t3 + 72t2 − 112t + 64)ψ + 9t4 − 24t3 + 25t2 − 14t + 4

6(t − 1)

which is less than 2ψ , it follows that each real number s satisfying F(s, ψ) = 0 is less than 2ψ . This
shows Claim 3.3. �

As the condition ψ ≤
t

2(t+1) s implies 2ψ ≤
 t
t+1


s < s, we find by Claim 3.3 that if θ1 and θ2 are

irrational numbers then F(s, ψ) = 0 holds and thus ψ must satisfy

ψ ≤
1
2
(2 +


t2 − t + 4),

which shows (s, ψ) ∈ S. This completes the proof. �
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Using Lemmas 3.1 and 3.2 we now prove Theorem 1.2, which means that given an integer t ≥ 2
there are only finitely many s’s and ψ ’s such that a graph G(s, t;ψ) exists with (t, ψ) ≠ (2, 1). It is
known that a G(s, 2; 1) with s ≥ 1 is either the Hamming graph H(3, s + 1) or the Doob graph with
diameter three (in this case s = 3), see [6, Corollary 9.2.5]. Since the Hamming graph H(3, s+ 1)with
s ≥ 1 is a G(s, 2; 1), it follows that for the pair (t, ψ) = (2, 1) there are infinitely many s’s such that
a G(s, 2; 1) exists.
Proof of Theorem 1.2. Let t ≥ 2 be a given integer. Let s and ψ be integers such that 1 ≤ ψ ≤ s
and (t, ψ) ≠ (2, 1). We want to show that there exists a positive constant C = C(t) (only depending
on t) such that if a graph Γ = G(s, t;ψ) exists then s ≤ C . We consider two cases, ψ > t

2(t+1) s and
ψ ≤

t
2(t+1) s. In the first case the existence of the constant C follows from Lemma 3.1. In the caseψ ≤

t
2(t+1) s, let S = S(t) be the set as defined in (25). To complete the proof for given t ≥ 2 and (s, ψ) ∉ S
satisfying 1 ≤ ψ ≤ s, (t, ψ) ≠ (2, 1) and ψ ≤

t
2(t+1) s, we will show that s is bounded above by

a function in t . It follows by Lemma 3.2 that if (s, ψ) ∉ S then both θ1 and θ2 are integers and thus
(s + 1 − 2ψ)2 + 4(t − 1)s = θ1−θ2 = (s+1−2ψ)+r , where r is a positive integer. Asψ ≤

t
2(t+1) s

we find 1 ≤ r < 2(t2 − 1). It follows that

ψ =


r − 2t + 2

2r


s +

r + 2
4

(28)

where 1 ≤ r < 2(t2 − 1). Substituting (28) into (9) we find

4(r − 2t + 2)3 {|V (Γ )| − (s + 1)(st + 1)} − r3(r + 2)2(t2 − t)
− 2r(s + 1)(t2 − t)(r − 2t + 2)


2(r − 2t + 2)s − r2 − 2r


=

r3(r + 2)2(t2 − t)(r2 + 4t − 4)
−(2r − 4t + 4)s − r(r + 2)

(29)

where both sides are integers. Note here that−(2r −4t +4)s− r(r +2) = −4rψ ≠ 0where the first
equality follows from (28). If 2r−4t+4 ≠ 0 then s ≤ r3(r+2)2(t2− t)(r2+4t−4)+r(r+2) ≤ f (t)
holds as the absolute value of (29) is at least 1. If 2r − 4t + 4 = 0, i.e., r = 2(t − 1), then t = 2ψ by
(28). Moreover, by (10),

4mΓ (θ3)−

4(t − 1)s3 − 4t(t − 2)s2 + 2(t2 − 1)(t − 2)s − t(t2 − 1)(t − 2)


=

t2(t − 2)(t2 − 1)
2s + t

must be an integer. Since t = 2 implies ψ = 1, we have t > 2. Then there are only finitely many
positive integers s such that t2(t−2)(t2−1)

2s+t is an integer. Hence we showed that if (s, ψ) ∉ S, (t, ψ) ≠

(2, 1) and ψ ≤
t

2(t+1) s both hold then s is bounded above by a certain function only depending on t .

This completes the proof since S is a finite set with |S| ≤


3(2+

√
t2−t+4)
2


and each s andψ satisfying

(s, ψ) ∈ S are bounded above by a function on t from the definition of the set S (see (25)). �

Mohar and Shawe-Taylor [14] (see also [6, Theorem 4.2.16]) characterized distance-regular graphs
of order (s, 1) with s > 1. The distance-regular graphs of order (1, 2) and (2, 2) were classified by
Biggs, Boshier and Shawe-Taylor [5] and Hiraki, Nomura and Suzuki [12], respectively. Some strong
results on distance-regular graphs of order (s, 2)with s > 2were given by Yamazaki [16]. In [2, Corol-
lary 10.2], the authors showed that for a fixed integer t > 1, there are only finitely many distance-
regular graphs of order (s, t)whose smallest eigenvalue is not equal to −t − 1.

Using Theorem 1.2, we can show the following theorem.

Theorem 3.4. For a fixed integer t ≥ 2, there are only finitelymany distance-regular graphs of order (s, t)
with smallest eigenvalue −t − 1, diameter D = 3 and intersection number c2 = 2 except for Hamming
graphs with diameter three.
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Proof. Let t ≥ 2 be a given integer. Let Γ be a distance-regular graph of order (s, t) with smallest
eigenvalue −t − 1, diameter D = 3 and intersection number c2 = 2. Then Γ is geometric with va-
lency b0 = (t + 1)s. By [1, Lemma 4.1] (see also [3, Proposition 4.2 (i)]), the intersection numbers of
Γ satisfy bi = (t + 1 − τi)(s + 1 − ψi) i = 1, 2 and cj = τjψj−1 j = 1, 2, 3, where parameters τi and
ψi are as defined in [1, Section 4]. As any Delsarte clique in Γ has size s+ 1 = a1 + 2, it follows by [3,
Lemma 5.1 (i)] that ψ1 = 1 which shows τ2 = τ2ψ1 = c2 = 2. Note here that Γ satisfies τ1 = 1 and
τ3 = t + 1 (see [1, Equation (9)]). Put ψ := ψ2. Then Γ is a G(s, t;ψ). If s ≠ 3 then the condition
(t, ψ) = (2, 1) is equivalent to that Γ is the Hamming graph H(3, s+ 1). As b0 = (t + 1)s and D = 3,
the result follows by Theorem 1.2. �

In [13, Conjecture 7.5], the authors conjectured that for a fixed integer t ≥ 2, any geometric
distance-regular graph with smallest eigenvalue −t − 1, diameter D ≥ 3 and c2 ≥ 2 is either a John-
son graph, a Grassmann graph, a Hamming graph, a bilinear forms graph, or the number of vertices is
bounded above by a function in t . Theorem 3.4 gives us more evidence that the conjecture is true.

4. Proof of Theorem 1.3

For given integers s and ψ with 1 ≤ ψ ≤ s, let Γ = G(s, 2;ψ). Then ι(Γ ) = {3s, 2s, s + 1 − ψ;

1, 2, 3ψ}. If ψ = 1 then G(s, 2;ψ) is either the Hamming graph H(3, s + 1) or the Doob graph with
diameter three (in this case s = 3), see [6, Corollary 9.2.5]. If ψ = s then G(s, 2;ψ) can be obtained
as the collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread,
where s ∈ {3, 5} (see [1, Theorem 4.3]). In this section, we prove Theorem 1.3 which states that if a
graph G(s, 2;ψ) exists, where s and ψ are integers with 1 < ψ < s then (s, ψ) = (15, 9). To prove
Theorem 1.3, we need the following lemma.

Lemma 4.1. Let s and ψ be any given integers with 1 < ψ < s. If a graph G(s, 2;ψ) exists then

ψ >
1
3
s

holds.

Proof. Assume that a graph Γ := G(s, 2;ψ) exists and ψ ≤
1
3 s. By Lemma 3.2 with t = 2, all the

eigenvalues of Γ are integers as the set S = {(s, 2) ∈ N × N | F(s, 2) = 0} in (25) is empty. As s + 1
− 2ψ > 0 holds from the assumption ψ ≤

1
3 s, we find by (8) that

θ1 − θ2 =


(s + 1 − 2ψ)2 + 4s = (s + 1 − 2ψ)+ r and thus

ψ =
(2r − 4)s + r2 + 2r

4r

(30)

for some positive integer r . As ψ =
(2r−4)s+r2+2r

4r is an integer with 1 < ψ ≤
1
3 s, we find r = 4 and

s ≥ 18. Thus Γ is geometric by Lemma 1.1. Since the numbers ψ =
s+6
4 , |V (Γ )| = 18s − 69 +

432
s+6

and

4(r − 2)3 {|V (Γ )| − (s + 1)(2s + 1)} − 2r3(r + 2)2

− 4r(s + 1)(r − 2)

2(r − 2)s − r2 − 2r


=

−2r3(r + 2)2(r2 + 4)
(2r − 4)s + r2 + 2r

=
−23040
s + 6

(31)

must be integers (see (9), (13) and (30)), smust satisfy

s + 6
4

∈ N and
144
s + 6

∈ N (32)



S. Bang, J.H. Koolen / European Journal of Combinatorics 36 (2014) 331–341 341

where 144 = gcd(432, 23040). Since s ≥ 18 also holds, we find by (32) that s ∈ {18, 30, 42, 66, 138}.
But now mΓ (−3) =

s(3s−2)(3s+2)(2s+3)
(s+6)(3s+4) is not a positive integer for any s ∈ {18, 30, 42, 66, 138} (see

(10)). Hence ψ > 1
3 s follows. �

Proof of Theorem 1.3. For any given integers s and ψ with 1 < ψ < s, let Γ := G(s, 2;ψ). As ψ >
1
3 s holds by Lemma 4.1, it follows by Lemma 3.1 that either s ≤ 6 or (s, ψ) = (15, 9) holds. Since
there are no integers s ≤ 6 and ψ satisfying both 1

3 s < ψ < s and mΓ (θ3) ∈ N (see (10)), we find
(s, ψ) = (15, 9)which completes the proof. �
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