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Observation of Micro-scale Surface
Morphology with Microtexture
Development During Plane Strain
Tensile Deformation in AZ31
Magnesium Alloy
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The change of microstructure including microtexture
and surface morphology in AZ31 magnesium alloy un-
der plane strain tension was investigated by 3D obser-
vation combined confocal microscope and high-
resolution electron backscattered diffraction. Micro-
scale changes in the surface morphology were observed
on the area including {1012} (1011) tensile twin bands.
The mechanism for surface morphology variation was
discussed with the nucleation of tensile twinning and the
strain partitioning caused by continuing deformation
after the nucleation of the twins.
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It is well known that magnesium (Mg) has a shortage
of independent slip systems to accommodate plastic
deformation at room temperature. This limit of operat-
ing slip systems in Mg stems from its low-symmetry
hexagonal close-packed crystal structure and much
higher critical resolved shear stress (CRSS) of non-basal
slip modes than that of (0001)(1120) basal slip.'” In
order to accommodate deformation on account of
external forces, the deformation twinning, which has a
relatively low CRSS, easily forms during plastic defor-
mation at low temperature. Deformation twinning is a
significant deformation mechanism in Mg alloys; hence
much research has focused on the fundamental under-
standing and advanced application of several deforma-
tion twins.* ' Among them, {1012} (1011) tensile twin
is primarily observed during tensile loading along c-axis
and accompanies the rotation of the c-axis by 86 deg.!®
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This crystallographic rotation induces a local material
flow and a complex strain state in the regions of the
tensile twin, influencing a deformation texture in Mg
alloys. For an accurate analysis of the strain state caused
by the tensile twinning, it is necessary to investigate
tensile twin regions through three dimensional (3D)
observation during in situ deformation.

Meanwhile, many studies have utilized in situ electron
backscattered diffraction (in situ EBSD) technique
during deformation to eclucidate deformation mecha-
nism of various metals and alloys from their micro-
structural evolution at the micro-scale level.l'* ' In
addition, microstructure-based computational simula-
tions such as crystal plasticity finite element methods
(CP-FEM)!'¢ ™1 and crystal plasticity fast Fourier
transform-based model!'*** have supported experimen-
tal proofs, and predicted how materials are deformed
under external deformation conditions. Especially,
recent investigations have used the 3D reconstructed
microstructure obtained from by EBSD combined with
focused ion beam, or synchrotron X-ray microtomog-
ra]phy as an initial microstructure for the simulation.”'
231 As for the Mg alloys, a 3D CP-FEM simulation that
considered both crystallographic slip and deformation
twinning was done to explain the heterogeneity of the
stress concentration as well as the slip and twin
activities.'"®!”! However, there are few experimental
reports regarding 3D observation of microstructural
evolution in Mg alloy based on in situ deformation
technique.

In this study, 3D observation combined confocal
microscope and high-resolution EBSD (HR-EBSD) was
conducted during stepwise deformations to obtain the
microtexture development and the profile of the surface
height in AZ31 Mg alloy under plane strain tension. In
order to understand the mechanism causing the surface
height variations induced by tensile twinning, we intro-
duced a phenomenological crystallographic model with
consideration of the orientation information of the
parent grain and a selection of six tensile twin variants.
In addition, the surface morphology change by contin-
uing deformation after the nucleation of tensile twinning
was discussed in view of the strain partitioning effect
among the parent grain and the twin bands.

An AZ31 magnesium alloy with a chemical compo-
sition of Mg-3.27A1-0.96Zn (wt pct) was cast and then
homogenized at 623 K (350 °C) for 24 hour. A specially
designed specimen for plane strain tension with the
thickness of 300 um was prepared using a wire cutting
method.!" The specimen was ground mechanically and
then electropolished to remove the residual stress and
roughness on the surface. Four rectangular micro-
indents were made in the center of specimen surface
for tracing the microstructure of the same area during
stepwise deformations and measuring macroscopic
strains at each deformation step.

Figure 1 shows a schematic diagram for the experi-
mental process that includes stepwise plane strain
tension'” with 3D observation by HR-EBSD and
confocal microscope. The device was used to elongate
the specimen uniaxially as a plane strain tensile mode
and set up inside a scanning electron microscope (JSM-
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6500F, JEOL) chamber. The crystallographic orienta-
tion data were collected and analyzed using an EBSD
software package (INCA Crystal and HKL Channel 5,
Oxford Instruments). A profile of the surface morphol-
ogy in the same location where the HR-EBSD scan
occured was obtained by means of a confocal micro-
scope system (VK-X100K, KEYENCE) at each defor-
mation step. We observed several representative regions
in particular including tensile twin at a high magnifica-
tion mode. A comparative analysis of the surface profile
between the parent grain and twin bands was conducted
with a software (VK Analyzer, KEYENCE) that was
provided with the confocal microscope.

Figure 2 displays the scanning electron microscope
images of the AZ31 ingot at each stepwise deformation,
showing the macroscopic strains calculated from the
relative displacement of the four micro-indents. Based
upon the values of the macroscopic strains during
deformation in Figure 2(c), where the major strain was
5.3 pct and the minor strain was nearly —0.2 pct, we
confirmed that the plane strain condition was main-
tained during tensile deformation. For the stepwise
deformations corresponding to the major strains of 0,
2.5, and 5.3 pct, the crystallographic orientation maps
inside the rectangular areas marked by indentation were
measured using HR-EBSD.

Stepwise plane strain tension

Sample preparation

Confocal

LI Microscope

)

Fig. I—Experimental process that includes stepwise plane strain ten-
sion with 3D observation combined HR-EBSD and confocal micro-
scope.

Figure 3 shows the measured orientation image maps
of the surface normal direction (ND). For grain identi-
fication, the critical misorientation angle was taken as
5 deg. Before applying deformation as shown in Fig-
ure 3(a), it was found that the microstructure consists of
several coarse grains and the average grain size was
168 um. It can be seen that deformation twinning formed
at earlier stage of the plastic deformation and continued
to develop as the strain increased to 5.3 pct as shown in
Figures 3(b) and (c¢). We examined the misorientation
angle between the parent and the twinned region, which
revealed that all of the deformation twins had a misori-
entation angle in the range of 84 to 88 deg, meaning that
they are {1012} (1011) tensile twins. In order to
investigate the correlation between tensile twinning and
surface height variation, we selected three different
regions indicated by rectangular black outlines (regions
1, 2 and 3) in Figures 3(b) and (c) and examined these
regions using 3D observation combined HR-EBSD and
confocal microscope at high magnification.

Figure 4 shows the magnified ND inverse pole figure
maps and height displacement maps of regions 1, 2, and
3. Note that the height variation between the parent
grain and the twin bands was detected in all three
regions. It can be seen that the twin bands in regions 1
and 3 were higher than the areas including the parent
grain, whereas the twins in region 2 were lower than the
parent grain. The center top part of the height displace-
ment map in Figure 4(b) indicated by a red circle also
shows a periodic morphology change, however, any
orientation change from the EBSD map could not be
observed. It might be thought that tensile twin in
another grain underneath the surface grain nucleates
and triggers the height variation on specimen surface,
considering the specimen thickness (300 um) and the
size of the grain (140 pm) in region 2. The relative height
displacement profiles along the white lines shown in
Figure 4 are displayed in Figure 5. An average height of
each region in Figure 4 sets as reference value. From the
height distributions, the tensile twins in three regions
could be classified as uplifting twins (regions 1 and 3)
and sinking twins (region 2). It can be confirmed that

(V]

Loading

Fig. 2—SEM images of AZ31 ingot at major strains of (a) 0 pct, (b) 2.5 pct, and (c) 5.3 pct, calculated from relative displacements between the

marked indents.
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Fig. 3—Orientation map of surface normal direction at major strains of (a) 0 pct (b) 2.5 pct, and (¢) 5.3 pct. (=== misorientation angle >
5 deg).
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Fig. 4—Magnified orientation map of surface normal direction and height displacement map of regions (@) 1, (b) 2, and (¢) 3 in Fig. 3.
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significant micro-scale surface height variations existed
on the parent grain and twin bands. This implied the
generation of strain toward the ND of specimen.

In order to analyze precisely, the strain state induced
by the nucleation of tensile twinning, we calculated the
twinning strain tensor on the basis of specimen coordi-
nate system. It can be calculated using the twinning
strain tensor on the crystal coordinate system and the
orientation matrix of the parent grain, which can be
expressed as follows**:
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Fig. 5—Relative height displacement profiles of regions (a) 1, (b) 2,
and (¢) 3 in Fig. 3. P and T indicate the parent phase and twined
phase, respectively.

il = 07" [ewinlig - [O7] 7, 1]

where [ewinle " is the twinning strain tensor on the
specimen coordinate system, O is the orientation ma-
trix of the parent grain, and [etwin]i,-CR is the twinning
strain tensor on the crystal coordinate system. [ggni.
ai ¥ can be determined as one of the six variants of
the tensile twinning. The twin variant which had the
least misorientation angle with the real twin phase
measured by HR-EBSD was chosen from the six vari-
ants of tensile twinning. The twinning strain tensor on
the specimen coordinate system was calculated using
Eq. [1] with the selected variant of tensile twinning.

The calculated normal strain toward the surface
direction by tensile twinning (e55°") for three regions is
listed in Table I with the tensile twin types based on
surface height measurements. In regions 2 and 3, both
the calculated normal strain and the measured tensile
twin type show the same aspects qualitatively, whereas
the calculated normal strain (sinking twin) differs from
measured surface height profile (uplifting twin) in region
1. It could imply that, in the case of region 1, other
factors affected the height variation between the parent
grain and the twin bands in addition to the nucleation of
the tensile twinning. It is noted that, since our experi-
mental procedures were kept up with stepwise tensile
deformation, the continuing plastic deformation on the
parent grain and the twin bands must have been applied
after the tensile twinning.

The tensile twin and basal slip were the main
deformation modes during stepwise plane strain tension.
This indicates that the basal slip might be heteroge-
neously activated in the parent grain and the twin bands
by continuing tensile deformation after the tensile
twinning. To analyze the strain partitioning in the
parent grain and the transformed twin bands after
twining, the difference in the Schmid factor for the basal
slip between them should be calculated. Table I gives the
Schmid factors for the basal slip of parent grains and
twin bands in three regions under plane strain tension.
The Schmid factors for basal slip of the parent grain and
twin bands in regions 2 and 3 were almost identical.
Whereas, in region 1, the Schmid factor in the parent
grain (0.32) was distinctly higher than that in the twin
bands (0.22). For the elaborate analysis of the defor-
mation modes of the parent grain in region 1, we
calculated the yield stress for basal slip and tensile
twinning based on Schmid’s Law o, = TCRss/m.[zs]
Here, tcrss is the CRSS and m is the Schmid factor.
The CRSSs for basal slip and tensile twinning in AZ31

Table I. Calculated Normal Strain Toward Surface Normal Direction by Tensile Twinning, Tensile Twin Type Based on Surface
Height Measurements, and Schmid Factor of Basal Slip of Parent Grain and Twin Bands in Three Regions Under Plane Strain

Tension
Calculated
Normal Schmid Factor Of Schmid Factor of
Region Strain, ;5" ( pet) Tensile Twin Type Parent Grain Twin Bands
#1 —1.12 uplifting twin 0.32 0.22
#2 —1.34 sinking twin 0.43 0.44
#3 2.84 uplifting twin 0.46 0.44
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Fig. 6—Schmid factor and yield stress maps of regions 1: () and (c)
basal slip; (b) and (d) tensile twinning.

were used as 20 and 30 MPa, respectively.l”” Figure 6
shows the Schmid factor and the yield stress maps for
basal slip and tensile twinning on region 1. The mean
values of g, for basal slip and tensile twinning of the
parent grain are obtained as 63.2 and 67.7 MPa,
respectively. From the similar values of ¢y, the basal
slip on the parent grain in region 1 must be activated at
the further deformation with the thickening of tensile
twins. Besides the yield stresses for basal slip and tensile
twinning, size difference on the parent grain and the
twin bands might also affect the strain partitioning after
twinning. In terms of size effects, the continuing plastic
deformation after onset of the twinning in region 1
concentrates on the parent grain because the size for the
twin bands is much smaller than that of the parent
matrix. Therefore, from the viewpoint of the strain
partitioning effect, the twin bands could be relatively
high comparing to the parent grain in region 1, which
coincides well with the relative profile of height dis-
placement in Figure 5(a).

Though the tensile twin in region 1 was a sinking twin
from the calculation of 33", the absolute value of the
calculated normal strain (1.12 pct) was so small that the
tensile twinning could not have had a profound effect
upon the surface morphology. Therefore, the strain
concentration on the parent grain in region 1 could
induce the thickness reduction, resulting in an uplifting
twin. Consequently, both the tensile twinning and strain
partitioning should be synthetically considered to
understand the height distribution during deformation.
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It is appropriate to mention that the latest 3D simula-
tion techniques should be needed as a follow-up study,
in order to investigate the twinning strain and strain
partitioning effect for further analysis.

To summarize, the change of microtexture and
surface morphology in the AZ31 Mg alloy during
stepwise plane strain tension was investigated by 3D
observation combined HR-EBSD and confocal micro-
scope. From the microstructural evolution, {1012}
(1011) tensile twinning accommodated the applied plane
strain deformation. Micro-scale changes in the surface
morphology were observed on the region including the
tensile twin bands. The calculation of the twinning
strain can qualitatively capture the nature of surface
height variation depending on the selected variant of
tensile twinning. However, the contribution from the
strain partitioning between parent grain and the twin
band becomes important when there is considerable
difference in the accommodation of deformation after
the formation of the twin.
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