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Steric effects of ions on the charge-related wetting phenomena are studied. Along with a general treatment,
three specific problems in two-dimensional system are considered: a droplet on an electrode, a droplet on a
charged surface, and an electrowetting phenomenon on a dielectric. For computation of wetting tension, the
electromechanical approach is adopted with the principle of mechanical force balance for each phase. The
modified Poisson-Boltzmann equation, which was originally proposed by Bikerman �Philos. Mag. 33, 384
�1942��, is adopted for the analysis of the steric effects. It is found that the steric hindrance reduces signifi-
cantly both the osmotic pressure and the electrical stress near the triple contact line. This reduction results in
a considerable decrease in the wetting tension when the ratio of the capacitance per unit area of the electrical
double layer to that of the dielectric layer is small.
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I. INTRODUCTION

In the present work, we are concerned with the steric
effects of ions in the charge-related wetting phenomena such
as electrocapillarity and electrowetting on a dielectric. When
an electrode is immersed in an electrolyte solution, the coun-
terions are attracted to the electrode. The attracted ions are
like ions and they push each other to exhibit collectively the
electrocapillarity phenomenon. When we apply an electric
field between the electrode immersed in an electrolyte drop-
let on a dielectric layer and the bottom electrode, we have a
similar phenomenon which is called electrowetting. Under
such configurations, if the electric field is strong enough,
concentration of the counterions becomes very high near the
electrolyte-dielectric interface and the steric effects are
needed to be considered.

For microfluids handling, electrowetting has been re-
garded as a very efficient tool and it has been applied to
many problems such as a lab on a chip and a liquid lens
�see the review paper �1��. Recently it finds even more prom-
ising applications by the technique of low-voltage elec-
trowetting, in which a high quality thin dielectric layer is
used �2–5�. In such systems, it becomes easier to get stronger
electric field to attract more counterions toward the opposite
electrode. The ions may be very concentrated and are to
experience some steric effects. Thus far, however, the steric
effects of ions on the wetting phenomenon have not been
analyzed.

The steric effects in the electrolyte system have long been
studied and there are many references �see Kilic et al. �6� and
the references therein�. In the present work, we do not intend
to develop any new theory on the steric effects in the elec-

trolyte system. We rather adopt a specific theory available in
the literature to show how the steric effect theory is incorpo-
rated into the general setting for computation of wetting ten-
sion at the triple point of a contact line. So, if a better theory
is developed for the steric effects in an electrolyte system,
the old theory may be replaced by the new one.

In the present work, we adopt the theory based on the
modified Poisson-Boltzmann �mPB� equation. The theory
was originally proposed by Bikerman �7� and has been
adopted for various analyses of electrolyte systems �6,8–10�
and ionic liquid systems �11�. In fact, Bickerman’s model has
a long and interesting history and has been rediscovered by
several researchers �see the review paper by Bazant et al.
�12��. The model is concise and has a nice property of allow-
ing analytical approaches to application problems. As will be
shown later, the mPB equation enables us to also do analyti-
cal studies for this work.

The electromechanical approach is adopted for the present
study of charge-related wetting phenomena. In the approach,
the electrical effect can be separated out from surface tension
and obtained by integrating the Maxwell stress with the
osmotic-pressure term along the drop surface. The elec-
trowetting problems of conducting fluids have been studied
by the approach �13,14�. It was adopted also for the study of
wetting phenomena of the electrolyte systems, in which the
steric effects of ions have not been considered �15�. Thus, the
present study may be regarded as an extension of the previ-
ous work to include the steric effects. To see the steric effects
on the wetting phenomena concretely, three most typical sub-
problems in two-dimensional �2D� system are considered as
in the previous work: �i� a droplet on a constant potential
substrate surface, �ii� a droplet on a constant charge substrate
surface, and �iii� an electrowetting of a droplet on a dielectric
layer.*iskang@postech.ac.kr
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II. PRELIMINARY NOTIONS

A. Wetting tension

In the present work, we are interested in the case where
the electrical effect generates an extra stress at the asymp-
totically thin layer near the solid surface. It is assumed that
the stress shows an integrable singularity behavior as the
thickness goes to zero. Because of this stress, the fluid-fluid
interface �the interface 1–2� is deformed to produce a mac-
roscopic contact angle change as sketched in Fig. 1. For this
situation, we want to express the wetting tension in terms of
the electrical stress and the osmotic pressure. We consider a
region near the triple contact line, which can be enlarged and
approximated by a 2D system as shown in Fig. 1. In Figs.
1–3 denote the phases and �ij is the interfacial tension of
interface of the phases i and j when there is no electrostatic
effect. For later use, Sij is introduced. Sij is the surface of the
ith phase facing the phase j. The arclength along the inter-
face measured from the triple point is denoted by s. For each
phase boundary, the outward normal vector n is defined. The
thickness of a microscopically thin layer inside the drop
phase near the solid surface, in which the electric field is
concentrated, is denoted by � and we consider the limiting
case �→0. The intrinsic contact angle right at the contact
point is denoted by �0, while the constant contact angle out-
side the thin layer is denoted by �. Generally the �macro-
scopic� contact angle refers to �.

In the following theories of charge-related wetting phe-
nomena, we assume that the interfacial tensions themselves
are not changed due to the change in electrostatic situation.

Of course, the changes in charge distributions may cause
some intrinsic changes in molecular structures at the inter-
faces. However, those effects are neglected at the present
level of accuracy of analysis. In the more sophisticated work,
those points may be included.

Now, if we define the wetting tension Wel as the negative
x-directional force per unit depth due to electrical effect, ex-
erted on the asymptotically short portion of the interface 1–2,
the �macroscopic� balance between the negative and positive
x-directional forces gives

Wel + �23 = �13 + �12 cos � . �1�

The wetting tension can be computed in terms of the stress
tensor as

Wel = − ex · �
S12+S21

T · �− n�ds �2�

where ds is the differential arclength along the interface
starting from the triple point and n is the outward unit nor-
mal from the surface S12 or S21. In Eq. �2�, the �total� stress
tensor T has two contributions of the osmotic pressure and
electrical stress as

T = − �I + Te = − �I + ��EE −
1

2
E2I� �3�

where � is the osmotic pressure and Te is the electrical Max-
well stress tensor. As mentioned earlier, T becomes negli-
gible outside the region of thickness � �no contribution to the
integration of Eq. �2��.

It must be pointed out again that, in the present theory, the
interfacial tensions in Eq. �1� are assumed to be constant
with respect to the change of electric field. Another point is
that the expression of the �total� stress tensor in terms of
osmotic pressure and the electrical stress is valid when there
is no fluid motion, i.e., in a static situation. However, the
formula can also be valid for the dynamic situations under
the condition that �→0. This point will be discussed in de-
tail later.

When there is no electrical effect, the interface 1–2 must
be straight and we have

�23 = �13 + �12 cos �0. �4�

From Eqs. �1� and �4�, we can derive the famous equation for
electrowetting,

FIG. 1. Coordinate systems and definition of variables.

FIG. 2. The dimensionless osmotic pressure �� /2c0kT� vs the
dimensionless potential ����.

FIG. 3. Three most common charge-related wetting
phenomena.
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cos � = cos �0 +
Wel

�12
. �5�

Now we want to show that, under the assumptions men-
tioned above, while the macroscopic contact angle � is
changed due to the electrical effects, the intrinsic contact
angle �0 �the contact angle right at the triple point� is not
changed. For the magnified portion of S12 of the thickness of
order �, the interface is deformed according to the stress
balance condition

�T · �− n��S12+S21
= �12n1� 1

R1
	 , �6�

where n1 denotes the outward normal at the surface S12 and
R1 is the radius of curvature. The negative x-directional com-
ponent of Eq. �6� is

− ex · �T · �− n��S12+S21
= �12 sin ��−

d�

ds
	 .

By integrating the above equation under the assumption that
the interfacial tension is not changed, we have

Wel = �12�
0

�

sin ��−
d�

ds
	ds

= �12�
�0

��

�− sin ��d�

= �12�cos � − cos �0� . �7�

In the above, we use the fact that ��=�. Equation �7� is
identical to Eq. �5� and this proves our assertion. Here, it
should be mentioned that the same conclusion was drawn
earlier by numerical computation of Buehrle et al. �16�.

As we have seen above, all we need to do for computing
the wetting tension is to evaluate the osmotic pressure and
the electrical stress and then integrate the total stress along
the contour starting from the triple point.

B. Osmotic pressure in terms of E-field

For any closed surface 	 in one phase �say, phase 1�, the
mechanical force balance can be stated as �17�

�
	

n · Td	 = �
	

n · �− �� +
1

2
�E2	I + �EE�d	 = 0. �8�

As mentioned earlier, this relation is valid under the static
condition. For the dynamic situation, this relation is valid
only under certain limiting conditions. The discussion about
this will be given in Sec. II C.

For the same closed surface 	, we can now show the
following relation by using the Maxwell equations and the
vector identities:

�
	

��n · EE�d	 = �


�� fE +

�

2
� E2�d
 �9�

where 
 is the volume closed by 	 and � f is the free charge
density that satisfies �� ·E=� f. By substituting Eq. �9� into

Eq. �8� and using the divergence theorem, we have

�� = � fE . �10�

The physical meaning of the above equation is that the elec-
trical force on a certain part of the fluid via exerting force on
the free charges must be balanced by the osmotic-pressure
gradient. The same formula is shown also in an earlier work
�18�.

C. Mechanical force balance

As mentioned earlier, mechanical force balance �8� is
valid for the static cases. The general equation of motion for
a Newtonian fluid under electric field is

�� �u

�t
+ u · �u� = � · T; � · T = − �p + � · �h + � · Te

�11�

where u is the velocity vector and �h is the viscous stress
tensor given by

�h = ���u + �uT� .

After introducing appropriate characteristic scales, we non-
dimensionalize the equation as

�uc
2

�Ec
2

lc
e

lc
h� �u�

�t�
+ u� · ��u��

= −
pc

�Ec
2

lc
e

lc
p��p� +

��uc/lc
h�

�Ec
2

lc
e

lc
h�� · ��h + �� · T�e

�12�

where lc
h, lc

p, and lc
e are the length scales for the flow field,

pressure field, and the electric field, respectively. As men-
tioned before, we assume that the electric field is confined in
a thin layer of thickness �. So, for the electric-field length
scale lc

e=� is a good choice. If the assumptions,

�uc
2

�Ec
2

lc
e

lc
h  1,

��uc/lc
h�

�Ec
2

lc
e

lc
h  1, �13�

are valid, the inertia and viscous terms can be neglected.
Thus if we take the pressure scale as pc=�Ec

2 and the length
scale of pressure field as lc

p= lc
e, we have

� · T = � · �− pI + Te� = 0 . �14�

Here we should note that Eq. �14� is exactly the same as Eq.
�8� if the pressure p is the osmotic pressure �. From Eq.
�13�, we can see also that the assumptions are valid if
�→0 while the flow field has some finite velocity and length
scales. Then the evaluation of the integral of wetting tension
�Eq. �2�� can be easily achieved by using the well-known
property of the stress tensor as in previous works �13–15�,

�



� · Td
 = �
	

n · Td	 = 0 . �15�
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III. ANALYSIS

A. Steric effects on the osmotic pressure

In this section, we analyze the steric effects on the os-
motic pressure by using the general result derived in Sec. II
�Eq. �10��. Although Eq. �10� can be applied to any steric
effect model, we adopt a specific model proposed by Biker-
man to derive some concrete results �7�. According to their
model, the positive and negative charges have the modified
Boltzmann distribution �6�,

c� =
c0e���

1 + ��cosh �� − 1�
�16�

where c0 is the bulk number density of each ion at zero
potential and �=ze /kT. The parameter � stands for the steric
effect and defined as �=2a3c0, where a is the ionic radius
�for simplicity, the same size is assumed for the positive and
negative ions�. Physically � represents the volume fraction
occupied by the ions at zero potential in the bulk �6,9�.

Now we have

� f = ze�c+ − c−� =
− 2c0ze sinh ��

1 + ��cosh �� − 1�
. �17�

By substituting Eq. �17� into Eq. �10� with E=−�� and in-
tegrating the resulting equation with the boundary condition
�=0 at �=0, we have the formula of the osmotic pressure
that includes the steric effect

� = 2c0kT
1

�
ln�1 + ��cosh �� − 1�� �18�

It would be interesting to consider the limiting case of Eq.
�18� for negligible steric effect, i.e., 0��1. In this case,
Eq. �18� is reduced to

� = 2c0kT� c+ + c−

2c0
− 1� . �19�

This is the same as the well-known result for dilute electro-
lyte solution derived by Marcus many years ago �19�. The
first steric effect can be obtained from Eq. �18� as

� = 2c0kT� c+ + c−

2c0
− 1��1 + � c+ + c−

2c0
+ 1	�

2
+ ¯� .

�20�

Now, let us pay attention to the limiting form of Eq. �18�
for the case of high electric potential �i.e., �→��. If there is
no steric effect ��=0�, we have

� = 2c0kT�cosh �� − 1� → c0kTe��. �21�

On the other hand, for the cases of finite steric effect, Eq.
�18� can be reduced to

� → 2c0kT���

�
	 . �22�

From Eqs. �21� and �22�, we can see that, if there is no steric
effect, the osmotic pressure increases exponentially in the
high potential limit. On the other hand, under the finite steric

effect, it increases linearly with the electric potential. The
results of Eqs. �18�, �21�, and �22� are shown in Fig. 2.

B. Steric effects on the wetting tension

In this work, we consider the steric effect on the wetting
tension of the charge-related wetting phenomena. As in Kang
et al. �15�, we consider the three cases shown in Fig. 3. The
first case is that the substrate surface has the constant poten-
tial �case I�. The second case is that the substrate surface has
the constant charge �case II�. Third we consider the case of
electrowetting problem, i.e., the droplet on a dielectric layer
�case III�.

All cases shown above can be represented as shown Fig.
1. For such a system, the wetting tension can be computed by

Wel = − f · ex; f = − �
S12+S21

T · nds . �23�

The osmotic pressure is given by Eq. �18� and the electric
field for evaluation of the wetting tension can be computed
by solving the modified Poisson-Boltzmann equation for
each phase j �6,9�,

�2� =
�2

�

sinh ��

1 + ��cosh �� − 1�
, �24�

where �2=2c0z2e2 /�kT, with the boundary conditions

��x,0� = �0�x�, ��x,�� = 0, �25�

��

�x
���,y� = 0. �26�

Now, let us consider the three cases separately below.

1. Constant potential problem (case I)

In this case, the potential is constant along the substrate
surface �in Eq. �25��, �0�x�=�0=constant�. The net surface
force per unit depth exerted on the interface of droplet and
external fluid �the interface 1–2� can be computed very ef-
fectively by using the mechanical force balance mentioned in
Sec. II

f = f1 + f2 = − �
S12

T · nds − �
S21

T · nds , �27�

=�
S1�+S13

T · nds + �
S2�+S23+S22

T · nds . �28�

For f1x
�I�=ex · f1, we have En=n ·E=0 along S1� and n ·ex=0

along S13, so it can be easily shown that

f1x
�I� = − �

S1�

�� +
1

2
�1E2�ds . �29�

The osmotic pressure is given in Eq. �18� and we need
Ey =ey ·E=− ��

�y for x→�. This can be obtained by integrat-
ing Eq. �24� with respect to y after multiplying � to both
sides �6� and we have
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1

2
�1Ey

2 =
2c0kT

�1
ln�1 + �1�cosh �� − 1�� . �30�

Therefore, we have

f1x
�I� = − �

0

� �� +
1

2
�1Ey

2�
x=�

dy

= − �
���,��

���,0� 
� +
1

2
�1Ey

2

Ey
�d�

= − 2��1c10kT�
0

�1� � 1

�1
ln�1 + �1�cosh �� − 1��d�

= − 2�2� c10kT

�1
��

0

��1� � 1

�1
ln�1 + �1�cosh � − 1��d�

�31�

where �1���� ,0�. In a similar way, we can show that
with �2���−� ,0�,

f2x
�I� = �

0

� �� +
1

2
�2Ey

2�
x=−�

dy

= 2�2� c20kT

�2
��

0

��2� � 1

�2
ln�1 + �2�cosh � − 1��d� .

�32�

In the above equations, � j = �2cj0z2e2 /� jkT�1/2. Since
Wel

�I�=−f1x
�I�− f2x

�I� and �1�=�2�=constant=V, the wetting ten-
sion for the case of constant potential is given by

Wel
�I� = 2�2� c10kT

�1
��

0

�V� 1

�1
ln�1 + �1�cosh � − 1��d�

− 2�2� c20kT

�2
��

0

�V� 1

�2
ln�1 + �2�cosh � − 1��d� .

�33�

Now, let us consider some special cases of no steric
effect �� j→0� and the first correction when the steric
effect is small. When the steric effect is negligible,
ln�1+� j�cosh �−1���� j�cosh �−1�, and we have

�
0

�V� 1

� j
ln�1 + � j�cosh � − 1��d� =

2�2

�
�cosh

�V

2
− 1	 ,

j = 1,2. �34�

Therefore, we have the wetting tension formula without the
steric effect

Wel
�I� = 8kT� c10

�1
−

c20

�2
��cosh

�V

2
− 1� . �35�

Equation �35� is the result obtained earlier by Kang et al.
�15� and it is the surface-tension renormalization term.
Therefore, result �33� may be regarded as a generalization of
the surface renormalization term including the steric effect.

The first correction to Eq. �35� to include the steric effect
can be done by the approximation for 0�� j 1,

� 1

� j
ln�1 + � j�cosh � − 1�� � �2 sinh

�

2
�1 −

� j

2
sinh2�

2
	 .

�36�

By substituting this approximation to Eq. �33�, we have

Wel
�I� = 8kT� c10

�1
−

c20

�2
��cosh

�V

2
− 1� −

4kT

3
� c10

�1
�1 −

c20

�2
�2�

��cosh
�V

2
+ 2��cosh

�V

2
− 1�2

+ O�� j
2� . �37�

From �37�, we can see that, if the surface potential goes to
zero, the wetting tension formula reduces to the form without
the steric effect �Eq. �35��.

As a special case, let us consider a typical case of an
electrolyte droplet �fluid 1� attached on a constant potential
surface in an inert gas medium �fluid 2�. In this case,
c20 /�2=0 and Eq. �33� reduces to the following result in
dimensionless form:

Wel
�I�� =

Wel
�I�

��c10kT��/�1
= 2�2�

0

�V� 1

�1
ln�1 + �1�cosh � − 1��d�

�38�

and when 0��11 we have

Wel
�I�� = 8�cosh

�V

2
− 1�

��1 −
�1

6
�cosh

�V

2
+ 2	�cosh

�V

2
− 1	 + O��1

2�� .

�39�

The results of Eqs. �38� and �39� are shown in Fig. 4.
From above, we can see also that the steric effect up to the

first order always reduces the wetting tension because the
factor �cosh��V /2�+2��cosh��V /2�−1��0. Furthermore,
the relative reduction increases as the magnitude of the sur-

FIG. 4. Dimensionless wetting tension vs �V by using Eqs. �38�
and �39� for �=0.5, 0.005, and 0.000 05.
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face potential increases. This prediction of the tendency
matches perfectly with our intuitive expectation of the steric
effect.

2. Constant charge problem (case II)

The difference of the constant charge problem from the
previous constant potential problem is that E ·ex�0 along
the substrate surface. Therefore, we have

f1x
�II� = − �

S1�

�� +
1

2
�1E2�ds + �

S13

�1�n · E�E · exds .

�40�

As shown in Kang et al. �15�, E=−�� and �1E ·n �S13
=−�1,

where �1 is the surface charge density at the substrate sur-
face. So,

�
S13

�1�n · E�E · exds = �1�
0

� ��

�x
dx

= �1��1��,0� − �1�0,0�� . �41�

Since all other terms are the same as the constant potential
case, we have

Wel
�II� = 2�2� c10kT

�1
��

0

��1� � 1

�1
ln�1 + �1�cosh � − 1��d�

− 2�2� c20kT

�2
��

0

��2� � 1

�2
ln�1 + �2�cosh � − 1��d�

+ ��1 − �2��0 − ��1�1� − �2�2�� �42�

where �0=��0,0�.

3. Electrowetting on dielectrics (case III)

For computation of wetting tension, we consider a control
system shown in Fig. 5. As in previous subsections, we cal-
culate the x-component of the surface force per unit depth as

Wx
�III� = − fx

�III�

= − ex · �
S1�+S13

T · nds − ex · �
S2�+S23+S22

T · nds .

�43�

The above can be written as

Wel
�III� = − ex · �

S1�

T · nds − ex · �
S2�

T · nds

− �
S13+S23

��E · ex�E · nds . �44�

The first two terms are obtained as in the previous subsec-
tions. The last term can be easily calculated according to the
method in Kang et al. �15� of which the idea can be summa-
rized as follows.

The integrals over the surfaces S13 and S23 can be trans-
formed to the integrals over the surface S31 and S32 by using
the matching conditions of the normal and tangential com-
ponents of electric field. Under the assumption that no charge
is adsorbed at the fluid-solid interface, we have

�E · n�S13,S23
= − �E · n�S31,S32

, E · ex�S13,S23
= E · ex�S31,S32

.

�45�

We again use the property of Maxwell stress tensor men-
tioned previously,

�

3

� · Ted
 = �
	3

n · Ted	 = 0 . �46�

The final result for the wetting tension is

Wel
�III� =

�3

2d
��V − �1��2 − �V − �2��2� + 2�2� c10kT

�1
��

0

��1�

�� 1

�1
ln�1 + �1�cosh � − 1��d�

− 2�2� c20kT

�2
��

0

��2� � 1

�2
ln�1 + �2�cosh � − 1��d� ,

�47�

where d is the thickness of the dielectric layer. If the sur-
rounding fluid is air, then �2�=V and c20=0 and the above
equation reduces to

Wel
�III� =

�3

2d
�V − �1��2 + 2�2� c10kT

�1
��

0

��1�

�� 1

�1
ln�1 + �1�cosh � − 1��d� . �48�

Furthermore, if the droplet is a perfect conductor, �1�=0. In
this case, the Lippmann equation is recovered

Wel
�III� =

�3

2d
V2. �49�

More detailed discussion on the parameters will be given in
Sec. IV.

IV. DISCUSSION

A. Analysis without steric effect (based on PB equation)

Here we study the effect of electrolyte concentration on
the wetting tension. First, we consider the simple case of

FIG. 5. Control surfaces for the analysis of electrowetting
problem.
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electrowetting of a liquid droplet inside air with no steric
effect. In this case, the wetting tension has the form �15�

Wel
�III� =

�3

2d
�V − ���2 +

8c0kT

�1
�cosh

���

2
− 1� . �50�

In order to see the concentration effect, we need to determine
the wetting tension as a function of c0. To do that, the match-
ing condition at the solid �dielectric layer�-liquid interface is
used with the assumption that there is no adsorbed charge

�3�3��S31
= �1�1��S13

. �51�

As x→�, the change is only in y direction. So, the one-
dimensional version of Eq. �24� without steric effect is

d2�1

dy2 =
�1

2

�
sinh ��1. �52�

By integrating the above equation, we have �with the nota-
tions ��=�1�� ,0� and �1�� =�1��� ,0��

��1�� �2 =
4c0kT

�1
�cosh ��� − 1� .

By substituting Eq. �51� into the above equation, we have a
relationship between the bulk concentration and the surface
potential

4c0kT = � �3
2

�1d2� �V − ���2

�cosh ��� − 1�
. �53�

From above, the right-hand side is a monotonically decreas-
ing function of ���0����V�. So, as c0→0, ��→V, and
as c0→�, ��→0.

By substituting Eq. �53� into Eq. �50�, we have

Wel
�III� =

�3

2d
�V − ���2�1 + 4��1

−1

�1

�3

d
�� cosh����/2� − 1

cosh����� − 1
��

=
�3

2d
�V − ���2�1 +

4

�
� cosh����/2� − 1

cosh����� − 1
�� , �54�

where

� = � �1

�1
−1�� d

�3
� =

CEDL

Cd
=�2�1c0z2e2d2

�3
2kT

. �55�

In Eq. �55�, CEDL and Cd stand for the capacitances per unit
area for the electrical double layer �EDL� and the dielectric
layer. Therefore, the dimensionless parameter � has the
physical meaning as the ratio of two capacitances of EDL
and the dielectric layer. The double layer thickness �−1 is
inversely proportional to �c0. Thus �→0 as c0→0 and
�→� as c0→�.

Now, let us take a look at the concentration effect. When
the concentration is very low, we can see that Wel

�III�→0 from
Eq. �50�. The first term goes to zero because ��→V and the
second term also goes to zero because of the factor of �c0
�note that � is proportional to �c0�. In the case of high con-
centration, ��→0 and �1→�. From Eq. �54�, we can see
that

Wel
�III� →

�3

2d
V2 as c0 → � . �56�

So, in the high-concentration limit, the electrolyte behaves
like a pure conductor.

In order to see the concentration effect more explicitly, let
us consider the case of low applied voltage. By substituting
the approximation cosh ����1+ 1

2 �����2 to Eq. �53� with
�=ze /kT, we have

� 
��

V
=

1

1 + �
. �57�

By substituting Eq. �57� into Eq. �54� for small ���, we
have

Wel
�III� =

�3

2d
V2� �

� + 1
	 . �58�

From Eq. �58�, we can see that the wetting tension is propor-
tional to the square of the applied voltage just like a pure
conductor without regard to concentration in the case of
small ���. The concentration changes only the factor. Now
let us consider a pure water droplet as an example. In this
case, c0=10−7 M, and �1

−1�10−6 m=1 �m. If �3=8�0 and
d=10 �m, then ��100 and the water behaves like a pure
conductor. On the other hand, if d=100 nm, then ��1.0. In
this case, if salt is added, the effect of ion concentration can
be noticed. In fact, the recent advances of materials technol-
ogy make such a thin dielectric layer available �4�.

Another point to be made for Eq. �58� is that it can be
rewritten as

Wel
�III� =

�3

2d
V2� �

� + 1
	 =

1

2
V2 CEDLCd

CEDL + Cd
=

1

2
CtotV

2, �59�

where Ctot is the total capacitance per unit area that is ob-
tained by

1

Ctot
=

1

CEDL
+

1

Cd
.

The above result tells us that the two serial capacitors model,
which has been used by many researchers, is correct in the
limit of small applied potential. This fact also manifests the
correctness and applicability of the electromechanical ap-
proach.

For wider range of applied voltages, we must solve the set
of the original equations. Equation �53� can be written in
terms of � and �V as

2�2

��V�2 =
�1 − ��2

cosh��V�� − 1
. �60�

We solve the above equation for � and substitute it for

Wel
�III��� =

Wel
�III�

�3V2/2d
= �1 − ��2�1 +

4

�
� cosh��V�/2� − 1

cosh��V�� − 1
	� .

�61�

In the above, the dimensionless wetting tension is defined as
the ratio of the obtained wetting tension to the wetting ten-
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sion of the ideal case of perfectly conducting fluid. The re-
sults are shown in Fig. 6, which shows that the dimension-
less wetting tension approaches unity as � increases. Also
shown is that for small values of �, the dimensionless wet-
ting tension increases as �V increases.

B. Analysis with steric effect (based on mPB equation)

When we have a gas phase as the phase 2, from Eq. �48�,
we have the formula for the wetting tension

Wel
�III� =

�3

2d
�V − ���2 + 2�2� c0kT

�1
��

0

���

�� 1

�1
ln�1 + �1�cosh � − 1��d� . �62�

From the matching conditions �Eq. �51��, we have

4c0kT

�1

1

�1
ln�1 + �1�cosh ��� − 1�� =

�3
2

�1
2

�V − ���2

d2 . �63�

The above condition may be further simplified into the fol-
lowing dimensionless form:

2�2

�1
ln�1 + �1�cosh �V� − 1�� = ��V�2�1 − ��2. �64�

For the given values of �V, �, and �1, we solve the above
equation to determine �, which can be substituted into the
following equation to have the dimensionless wetting tension
as:

Wel
�III��� =

Wel
�III�

�3V2/�2d�

=
2�

��V�2� �

�1
ln�1 + �1�cosh��V�� − 1��

+ �2�
0

�V�� 1

�1
ln�1 + �1�cosh � − 1��d�� .

�65�

The dimensionless wetting tension �Wel
�III���� in terms of

dimensionless applied voltage is shown for various values of
the steric effect parameter ��=�1� in Fig. 7 for the case
�=0.1. From the figure, we can see that the steric effect
decreases the wetting tension significantly compared to the
no steric effect case. Even for small � value, the effect can be
noticed. This tendency gets even more prominent for higher
applied voltage �as �V increases�. Because of the steric ef-
fect, the concentration of the counterion near the interface is
limited by the steric hindrance. Thus the wetting tension de-
creases as the hindrance effect increases �as � increases�. As
we have seen before, the parameter � is the ratio of CEDL to
Cd. Thus, when � is small, the effect of EDL is dominant on
the total capacitance. Therefore, the hindrance effect is quite
noticeable.

In Figs. 8 and 9, similar plots are given for the cases of
�=1 and �=10, respectively. Compared with the case of
�=0.1, we can see that the steric hindrance effect is less
significant as � increases. By the definition, the increase of �
means that CEDL /Cd is increased and this means the contri-
bution of EDL gets smaller in the contribution to the total
capacitance. Therefore, the hindrance effect decreases as � is
increased.

In Fig. 10, the dimensionless potential at the liquid-solid
interface ��=�� /V� is shown for the case �=0.1. As men-
tioned earlier, the � value can be obtained by solving Eq.
�64�. For the given applied voltage, the concentration of the
counterion decreases due to hindrance effect. This means that
the shielding effect is decreased and the potential at the
liquid-solid interface increases.

To appreciate a typical size of the steric effect
parameter �, let us consider an example. If c0=0.1 M and
a=0.3 nm=3�10−10 m, �=2a3c0�3�10−3. So, by using
Figs. 7–9, we can estimate the effect of steric hindrance
when the bulk concentration of ions is c0=0.1 M

Here we need to mention a recent work by Monroe et al.
�20�. They considered the electrowetting problem of two
conducting liquids by adopting the energy method. By mod-
eling the electrolyte system as combination of the inner layer
and the electrical double layer, they computed total capaci-
tance. When the magnitude of the applied voltage is in-

FIG. 6. Effect of electrolyte concentration on the wetting tension
when no steric effect is considered ��=�2�c0z2e2d2 /�3

2kT�.

FIG. 7. The dimensionless wetting tension as a function of di-
mensionless applied voltage �Wel

�III��� vs �V� in the case of �=0.1.

HUA et al. PHYSICAL REVIEW E 81, 036314 �2010�

036314-8



creased, the capacitance increases initially and then de-
creases slowly. The behavior is similar to the curve of
�=0.005 in Fig. 7 of the present work. This point is interest-
ing and provides a motivation of further investigation. It
would be interesting if we study the connection between the
results obtained by the two different approaches.

V. CONCLUSION

In this work, the electromechanical approach is adopted to
evaluate the steric effects of ions on the charge-related wet-
ting phenomena. By using the simplified equation of motion
under the limit of thin EDL, the complicated problem of
integration of electrical stress over the droplet-fluid interface
is replaced by the integrations over the straight droplet-solid
and fluid-solid interfaces and the boundaries at infinity. In
that way, the formulas for the steric effects of the finite-size
ions on wetting phenomena are obtained. By analyzing the
formulas, we have reached the following conclusions:

�1� the osmotic pressure decreases as the steric effect of
ions increases;

�2� for the electrowetting problem with no steric effect,
we have identified a very important parameter �. That is the

ratio of the capacitance of the electrical double layer to that
of the dielectric layer, i.e., �=CEDL /Cd= ��1 /�1

−1��d /�3�,
where �1 ,�3 are the electrical permittivities of electrolyte so-
lution and dielectric layer, �1

−1 the thickness of EDL, and d
the dielectric layer thickness. As � increases, the thickness of
EDL decreases and the droplet phase behaves like a pure
conductor.

�3� When the applied potential is low and there is no steric
effect, the formula of the wetting tension derived using the
electromechanical approach for the electrowetting problem is
reduced to

Wel
�III� =

1

2
CtotV

2 with
1

Ctot
=

1

CEDL
+

1

Cd
.

This result is exactly consistent with the formula based on
the model of serial capacitances, which has been adopted by
many previous researchers.

�4� In the case of steric effect, the effects of finite-size
ions become more significant as the parameter � decreases.
Small � means that CEDL is small compared to Cd and EDL
has more effect on the overall capacitance as we can see in
the above equation. Thus the steric hindrance effect becomes
more prominent when � is small. When � is large, the drop-
let behaves like a pure conductor and the steric effect of
finite-size ions becomes negligible.

�5� As the steric effect increases, the shielding effect due
to concentrated charges near the liquid-solid interface de-
creases. Consequently, when the positive potential is applied
to the bottom electrode, the potential value at the liquid-solid
interface increases.
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FIG. 8. The dimensionless wetting tension as a function of di-
mensionless applied voltage �Wel

�III��� vs �V� in the case of �=1.

FIG. 9. The dimensionless wetting tension as a function of di-
mensionless applied voltage �Wel

�III��� vs �V� in the case of �=10.

FIG. 10. The ratio of the potential at liquid-solid interface to the
applied voltage.
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