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We have investigated the excitation spectra of jeff=
1
2

Mott insulator Na2IrO3. Taking into
account a relativistic multiplet structure of Ir ions, we have calculated the optical conductivity σ(ω)
and resonant inelastic x-ray scattering (RIXS) spectra, which manifest different features from those
of a canonical jeff=

1
2
system Sr2IrO4. Distinctly from the two-peak structure in Sr2IrO4, σ(ω)

in Na2IrO3 has a broad single peak dominated by interband transitions from jeff=
3
2
to 1

2
. RIXS

spectra exhibit the spin-orbit (SO) exciton that has a two-peak structure arising from the crystal-
field effect, and the magnon peak at energies much lower than in Sr2IrO4. In addition, a small peak
near the optical absorption edge is found in RIXS spectra, originating from the coupling between
the electron-hole (e-h) excitation and the SO exciton. Our findings corroborate the validity of the
relativistic electronic structure and importance of both itinerant and local features in Na2IrO3.

PACS numbers: 71.10.Li,71.70.Ej,78.20.Bh

Rich physical properties in 4d and 5d transition metal
(TM) oxides arise from the mutual interplay of electronic
degrees of freedom such as bandwidth W , Coulomb cor-
relation U , and spin-orbit (SO) coupling λ [1]. Sr2IrO4 is
one of the most-studied 5d TM systems to examine coop-
erative effects of the electronic degrees of freedom, which
yield the intriguing jeff=

1
2 Mott insulating nature [2–6].

Another iridate Na2IrO3 also draws the recent attention
because of its insulating nature similar to that of Sr2IrO4.
In contrast to Sr2IrO4 with corner-shared IrO6 octahe-
dra, Na2IrO3 is composed of edge-shared octahedra (see
Fig. 1), and Ir ions form a honeycomb lattice. Early pro-
posals that Na2IrO3 may be a topological insulator [7]
or host Kitaev model physics [4] triggered a theoretical
and experimental activity aimed to understand insulat-
ing nature and magnetic structure of Na2IrO3 [8–18].

The strong SO coupling in iridates causes t2g orbitals
to split into jeff=

1
2 and 3

2 states [see Fig. 1(c)], and
then the resulting narrow half-filled jeff=

1
2 band is to

be split even by a weak Coulomb repulsion to become
a Mott insulator [2]. This scenario, however, has been
questioned recently by Mazin et al.[18–20], who argued
that the insulating nature of Na2IrO3 originates from
the formation of quasi-molecular orbital (QMO) states
of Ir hexagon, which have a considerable itinerant char-
acter. Physically, this kind of controversy is evoked due
to dual (atomic/band) nature of Ir 5d orbitals. Because
three relevant physical parameters W , λ, and U of Ir
5d orbitals are of similar energy scale, it is not easy to
identify which parameter is dominant in determining the
electronic structures of iridates.

In fact, dual nature of 5d orbitals is reflected on excita-
tions, which manifest various peculiar features in iridates.
In the case of Sr2IrO4, the local d-d transition between
jeff=

1
2 and 3

2 , termed as the SO exciton, is observed
in resonant inelastic x-ray scattering (RIXS) spectra [5],
and optical conductivity σ(ω) exhibits a prominent two-

peak structure at 0.5 and 1.0 eV in the vicinity of Mott
gap region [21]. σ(ω) and RIXS spectra for Na2IrO3 dis-
play some features distinct from those in Sr2IrO4. In-
stead of a two-peak structure, σ(ω) of Na2IrO3 shows just
a broad single peak at higher energy of ∼ 1.5 eV [17, 22].
SO exciton peak is present in RIXS spectra of Na2IrO3

too, but it has a well resolved two-peak structure and
a negligible momentum dependence. The origin of these
two RIXS-peaks is under debate, whether they come from
the trigonal crystal-field [23] or not [20]. In addition, an
extra RIXS-peak was detected in Na2IrO3 near the op-
tical absorption edge (∼ 0.4 eV), whose origin is not yet
settled. It is important to examine the similarities and
differences between Sr2IrO4 and Na2IrO3 including both
correlation and itineracy effects, in order to clarify what
kind of electronic nature prevails in these compounds:
atomic, band, or dual nature.

In this Letter, we have investigated characteristic fea-
tures of excitation spectra in Na2IrO3. More specifically,
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FIG. 1: (Color online) (a) Top view of edge-shared Na2IrO3.
X, Y , and Z represent directions of nearest neighboring Ir
sites. (b) The trigonally compressed IrO6 octahedron, where
the angle α between z-axis and Ir-O bond direction is about

57.96◦, instead of cos−1
√

1
3
≈ 54.74◦ for Oh symmetry. (c)

Energy splitting of local d levels in the presence of the trigonal
distortion and SO coupling.
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we addressed the following questions currently in dispute:
(i) why σ(ω) has a single-peak structure distinctly from
that of Sr2IrO4, (ii) what is the origin of two peaks of
the SO exciton in RIXS spectra, and (iii) what is the
identity of an extra RIXS peak observed near the optical
edge. For this purpose, we have generated the micro-
scopic model incorporating the full local multiplets of Ir
ions and their hopping integrals. Using the exact diag-
onalization (ED) method, we have calculated σ(ω) and
RIXS spectra for Na2IrO3, and extracted the physical pa-
rameters that best describe the experimental data. We
have demonstrated that the coupling between the itiner-
ant e-h excitations and the local SO exciton is essential in
Na2IrO3 but, due to different hopping topology in a hon-
eycomb lattice, the manifestations of this effect in σ(ω)
and RIXS spectra are different from those in Sr2IrO4.
To investigate electronic structures of two dimensional

honeycomb lattice Na2IrO3, we considered a four-site Ir
cluster as shown in Fig. 1(a). The local Hamiltonian of
a Ir site reads as:

Hion =
∑

µσ

ǫµnµσ + λ
∑

µνσσ′

(l · s)µσ,νσ′c†µσcνσ′

+
1

2

∑

σσ′µν

Uµνc
†
µσc

†
νσ′cνσ′cµσ +

1

2

∑

σσ′

µ6=ν

Jµνc
†
µσc

†
νσ′cµσ′cνσ

+
1

2

∑

σ
µ6=ν

J ′
µνc

†
µσc

†
µ−σcν−σcνσ, (1)

where µ and σ refer to orbital and spin states of Ir, re-
spectively. Because of the trigonal distortion [24] and the
strong SO coupling (first and second terms in Eq. 1), Ir
5d orbitals are split into five double group states (τ1-τ5),
as shown in Fig. 1(c) [25]. Uµν , Jµν , and J ′

µν are direct
Coulomb, exchange Coulomb, and pair hopping integrals,
which can be given by U and JH parameters [26]. Fig-
ure 2(a) presents local electronic energies of Ir multiplets
calculated with physical parameters in Table I. Because
10Dq is large enough (∼ 3.3 eV), the lowest three double
group states (τ1,τ2,τ3) mainly contribute to low energy
multiplets of d4, d5, and d6 configurations, see Fig. 2(b).
In describing the Hilbert space of the four-site cluster,
we took into account several lowest multiplets, e.g., six
(D̄,Q̄) for d5, fourteen (S̄,T̄ ,P̄ ,P̄ ′) for d4, and one (Ā) for
d6. Note that S̄ corresponds to the hole state mainly of
jeff=

1
2 band, whereas T̄ , P̄ , and P̄ ′ correspond to those

TABLE I: Physical parameters of Na2IrO3 in units of eV.
They are adopted to be consistent with literature (∆ [17],
∆tr [20]) and to optimize theoretical RIXS spectra (10Dq,
JH , λ, tpdσ) and σ(ω) (U).

10Dq ∆ ∆tr U JH λ tpdσ tpdπ

3.3 3.3 0.075 1.35 0.25 0.43 −1.90 −0.46tpdσ
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FIG. 2: (Color online) (a) Relative energies for d4, d5, and
d6 multiplets of Na2IrO3 with physical parameters from Table
I. When the trigonal distortion is absent (∆tr=0.0), each Q̄,
T̄ , P̄ , and P̄ ′ multiplets are degenerate. (b) Relevant config-
urations that give dominant contributions to low energy mul-
tiplets. Violet dotted arrows represent removed spins from D̄
multiplet. Because 10Dq is large enough, isospins in relevant
multiplets occupy three double group levels (τ1, τ2, τ3), which
are mainly attributed to t2g manifolds (jeff=

1
2
, jeff=

3
2
). But

we consider all the five double group states (τ1-τ5) in describ-
ing the multiplets. (c) Schematic diagrams of possible cluster
multiplets included in each subspace.

of jeff=
3
2 bands.

In order to save computational cost, we restricted the
Hilbert space into all possible multiplets of d5-d5-d5-
d5 and d4-d6-d5-d5 configurations, which are expressed
as the direct product of relevant multiplets of Ir ions
(D̄ · · · Ā). Because this restricted space already includes
all possible states with energies lower than 2.0 eV, it will
provide appropriate details of low energy excitations in
Na2IrO3. To discern excitation distributions, we classi-
fied the Hilbert space into seven subspaces: H1-H7 [27].
Some examples included in each subspace are shown in
Fig. 2(c). To include the itineracy effects, we considered
the hopping between nearest neighboring (NN) Ir’s via
intermediate oxygen [28]. Employing the Slater-Koster
theory [29], we calculated the pd-hopping matrix in terms
of tpdσ and tpdπ parameters and evaluated the effective
hopping tdd(τσ̃; τ

′σ̃′) between NN double group states τσ̃

and τ ′σ̃′ by summing
∑

pσ

tpd(τσ̃;pσ)t
∗

pd(τ
′σ̃′;pσ)√

(∆+ǫτ)(∆+ǫτ′)
values of

two Ir-O-Ir paths (∆ is p-d charge transfer energy) [30].

Using the ED method, we have solved the Hamilto-
nian of the four-site cluster and investigated the exci-
tation spectra. Let En and |Ψn〉 be the n-th eigen-
value and the eigenvector of the cluster, respectively.
To examine the excitation distribution, we obtained
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the projected excitation spectrum (PES) as Λi(ω) =
∑

n

∑

m∈Hi
|〈Ψn|m〉|2δ(ω − En), where |m〉 represents

the orthonormal basis of the subspace Hi. To compare
theoretical PES to observed excitations in Na2IrO3, we
calculated σ (ω) and RIXS spectra by using the Kubo
formula [6]. We set kBT = 30 meV.

Figure 3(a) shows the PES for Na2IrO3. Let us first
explore the relation between a specific PES and each ex-
citation. Because H1 includes all possible fluctuations
of isospin Jeff=1/2 for d5, Λ1 (D̄D̄D̄D̄) represents the
magnon excitation. Λ2 (D̄Q̄D̄D̄) represents one or more
SO excitons because Q̄ is one hole state of jeff=

3
2 for

d5 [Fig. 2(b)]. Λ3 (ĀS̄D̄D̄) and Λ4-Λ6 are related to the
e-h excitations involving hole states of jeff=

1
2 (S̄) and

jeff=
3
2 (T̄ , P̄ , P̄ ′), respectively.

We can notice interesting features in the PES of Fig. 3.
(1) Λ1 shows a magnon peak at low energies, below 50
meV. This feature is very different from that of Sr2IrO4,
in which magnon spectra spread over 0-250 meV [6]. It
implies strong suppression of the magnetic interaction in
Na2IrO3 due to its edge-shared bonding nature. Because
the Ir-O-Ir bond angle is nearly 90◦, the effective hopping
between jeff=

1
2 (τ3) states is suppressed a lot. Actually,

this hopping is almost one-order of magnitude smaller
than that between jeff=

1
2 and 3

2 (τ1) states [30]. (2)
Λ2 exhibits two peaks at 0.73 and 0.86 eV. This spec-
trum is attributed to the on-site d-d transition from oc-
cupied jeff=

3
2 (τ1,τ2) to unoccupied jeff=

1
2 (τ3), which

is reminiscent of the SO exciton in Sr2IrO4. Indeed, as
will be shown in Fig. 4(a), this spectrum is consistent
with experimental RIXS peak positions for Na2IrO3 [23].
Λ2 has peaks above 1.0 eV too. They, however, hardly
produce RIXS spectra because they correspond to two
or more simultaneous SO excitons. (3) Λ3 spreads over
broad energy range above ω ≈ 0.4 eV. It does not look
like a single peak corresponding to the ĀS̄D̄D̄ multiplet,
which indicates that simple atomic picture is inadequate
to describe the jeff=

1
2 e-h excitation of Na2IrO3. There

should be considerable mixing among a few multiplets
due to itinerant character of Ir 5d bands. Moreover, Λ3

shows a small peak near the e-h excitation edge (ω ∼ 0.4
eV). Interestingly, Λ2 also has a peak in the same region
with almost the same intensity. This feature suggests
that there is a strong mixing between Λ2 and Λ3, which
is supposed to produce both the broad dispersion and the
edge state in Λ3. (4) Λ4-Λ6 are distributed above ω =1.2
eV. Despite their broad dispersions, each PES has its
own predominant peak, implying that local multiplets of
jeff=

3
2 hole are retained. As shown in Fig. 3(b), in this

region of ∼ 1.5 eV, there appears a broad peak of σ(ω)
in Na2IrO3. It is thus expected that the interband e-h
transitions from jeff=

3
2 to 1

2 (T̄ ,P̄ ,P̄ ′) give rise to main
spectral weight in σ(ω) of Na2IrO3.

Figure 3(b) presents theoretical result for σ (ω). Simi-
lar to experimental data, it exhibits a predominant peak
at around 1.5 eV, which certainly reflects the major

0.0

0.4

0.8

1.2

1.6

0.0 0.5 1.0 1.5 2.0

(b)

σ(
ω

) (
10

3 Ω
-1

cm
-1

)

ω (eV)

Theory
Exp.[17]
Exp.[22]

0.0

0.4

0.8

1.2

     

(a)

S
W

(a
. u

.)

Λ1
Λ2
Λ3
Λ4
Λ5
Λ6

FIG. 3: (Color online) (a) Spectral weight (SW) of projected
excitation spectra (PES) for Na2IrO3. (b) Optical conduc-
tivity of Na2IrO3 as calculated (solid line) and measured at
T = 300 K (dotted line [17], dot-dashed line [22]). The ob-
served sharp peak near 0.1 eV is of phonon origin (not in-
cluded in our calculations).

role of jeff=
3
2 states, as explained above. The spectral

weight of jeff=
1
2 band (which dominates in Sr2IrO4) is

suppressed because of hopping topology of edge-shared
Na2IrO3. This behavior in Na2IrO3 is contrary to that
in Sr2IrO4, for which two prominent peaks of jeff=

1
2

band origin appear through the Fano-type overlap be-
tween the e-h continuum of the jeff=

1
2 band and the

on-site SO exciton [6].

Shown in Figure 4(a) is the theoretical RIXS spectra
at q = 0 [31]. Noteworthy is the emergence of three-peak
structure (denoted by A, B, and C), which is consistent
with the experiment. To elucidate the origin of these
three peaks, we also calculated RIXS spectra for a single-
site IrO6 cluster, including all possible d5 multiplets. In
this case, only two peaks appear at 0.67 and 0.78 eV [see
inset of Fig. 4(a)], which are equivalent to B and C peaks
for the four-site cluster. This implies that both B and
C correspond to local excitations, which are attributed
to on-site d-d transitions between jeff = 1

2 and 3
2 or-

bitals. Then it is natural to conjecture that the energy
difference between B and C comes from the crystal-field
splitting of jeff=

3
2 states. Indeed, as shown in Fig. 4(b),

the splitting between B and C increases with increasing
the trigonal distortion strength of ∆tr. We point out
that the observed B-C splitting of the order of 110 meV
is well explained by our calculations which include corre-
lation effects, even though we used a rather small input
value of ∆tr = 75 meV [20]. This can be understood
as a correlation-induced enhancement of the crystal-field
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FIG. 4: (Color online) (a) Calculated RIXS spectra (solid
line) for the four-site cluster of Na2IrO3. Dashed line: ex-
perimental data measured at room temperature [23]. Inset:
calculated RIXS spectra for a single-site cluster incorporating
all possible d5 multiplets at two different JH . Peak positions
as functions of (b) the trigonal distortion and (c) the hopping
strength. Vertical lines in (b) and (c) denote the possible
optimal parameters of ∆tr and tpdσ.

splitting [32].

It is seen in Fig. 4(a) that the peak A near 0.4 eV
is missing in the single-site calculation of inset. This
finding suggests that the peak A is related to itinerant
nature of Ir 5d orbitals, especially, the inter-site hop-
ping between jeff = 1

2 and 3
2 states, which is dominant

here [30]. We already noticed in the PES of Fig. 3(a) that
there is a strong coupling between SO exciton Λ2 and e-h
continuum Λ3 in the vicinity of peak A. More convincing
evidence is found in Fig. 4(c), which presents the peak
positions as a function of the hopping strength. We note
that the larger the hopping strength is, the lower the peak
position of A is. This behavior reveals that the peak A
at the edge of e-h excitation certainly originates from
the inter-site hopping, which brings about the coupling
of broad e-h continuum with the local SO exciton. Note
that, this e-h excitation is hardly detectable in the opti-
cal spectra. It is due to the large suppression of the direct
hopping between jeff = 1

2 bands in the edge-shared of
Na2IrO4. This finding is different from a suggestion of
Ref. 23 that the peak A is an excitonic bound state due
to long-range Coulomb interaction.

The single-site calculation in the inset of Fig. 4(a) also
gives D and E peaks above 2.0 eV, which are in good
agreement with experiment [23]. Note that the peak po-
sition of D moves with varying JH , while that of E does

not. Both D and E correspond to local excitations to
t42ge

1
g configurations. But they have different spin states:

D has high-spin S= 3
2 while E has low-spin S= 1

2 , as
shown in Fig. 2(a) for d5. Energies of the former and
the latter with respect to the ground state are given by
10Dq − 4JH and 10Dq, respectively. Accordingly, from
the peak positions of D and E, one can determine 10Dq
and JH values.

Our RIXS calculation yields the magnetic peak be-
low ∼50 meV, in a qualitative agreement with the re-
cent RIXS experiment for Na2IrO3, where the magnetic
excitations dispersing up to energy of ∼35 meV have
been observed [33]. The agreement is not surprising since
our calculations fully include the exchange processes dis-
cussed in Ref. 16 that contribute to Kitaev-Heisenberg
interactions (except a direct hopping between Ir’s which
is small [18]).

Our successful description of various excitations in
Na2IrO3 indicate the realization of the relativistic elec-
tronic structure in this material. According to recent
DFT calculation [34], the majority of Wannier orbitals
near the Fermi level have indeed a dominant jeff=

1
2

character, with only small jeff=
3
2 tails on the NN sites.

More importantly, the results presented above make it
clear that both itinerant and local features have to be
accounted for to describe the experimental observations.

In conclusion, we have clarified controversial issues of
Na2IrO3, by unraveling the identities of low energy exci-
tations observed in σ (ω) and RIXS spectra. The broad
peak of σ (ω) in Na2IrO3 is attributed to e-h excitations
from jeff=

3
2 to 1

2 bands, in contrast to Sr2IrO4 where
two-peak structure arises from e-h excitations of jeff=

1
2

band through the Fano-type overlap with the on-site SO
exciton. Two peaks at 0.7-0.8 eV in RIXS spectra of
Na2IrO3 come from local d-d transitions between two rel-
ativistic states, and their splitting is caused by the trig-
onal crystal-field enhanced by correlation effects. The
RIXS peak found in Na2IrO3 near ω ∼ 0.4 eV originates
from the coupling between the e-h excitation of jeff=

1
2

band and the SO exciton in the vicinity of optical absorp-
tion edge. Altogether, our study confirms the relativis-
tic Mott insulating nature of Na2IrO3, and demonstrates
that the Fano-type coupling between the itinerant e-h ex-
citations and the local SO transition is an intrinsic nature
in iridate systems including both Na2IrO3 and Sr2IrO4.

We thank B. J. Kim and Heung-Sik Kim for fruit-
ful discussions. This work was supported by the NRF
(No.2009-0079947).
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RELATIVISTIC ORBITAL STATES

In the trigonal distortion (see Fig. 1(b)), d orbital states are split into the following eigenstates:

|e′g1〉 = cosα′|xy〉 − sinα′|yz〉,
|e′g2〉 = cosα′|x2 − y2〉+ sinα′|zx〉,
|a1g〉 = |z2〉,
|eg1〉 = cosα′|zx〉 − sinα′|x2 − y2〉,
|eg2〉 = cosα′|yz〉+ sinα′|xy〉.

Note that, when cosα′ =
√

2
3 ≈ 0.816, e′g and a1g orbitals correspond to t2g orbitals in the local Oh symmetry. In

the presence of the trigonal distortion, cosα′ is to be reduced from
√

2
3 . In our calculation for Na2IrO3, we have

adopted cosα′ ≈ 0.776 to fit 10Dq and ∆tr parameters based on the crystal field calculation[S1]. Thus, the double
group states for given parameters in Table I are expressed as following:

|τ1↑̃〉 ≈ 0.811|a1g ↑〉 − 0.402i
(

|e′g1 ↓〉+ i|e′g2 ↓〉
)

+ 0.098 (|eg1 ↓〉+ i|eg2 ↓〉) ,
|τ2↑̃〉 ≈ 0.437

(

|e′g1 ↑〉+ i|e′g2 ↑〉
)

+ 0.028i (|eg1 ↑〉+ i|eg2 ↑〉)− 0.545
(

|e′g1 ↓〉 − i|e′g2 ↓〉
)

− 0.103i (|eg1 ↓〉 − i|eg2 ↓〉) ,
|τ3↑̃〉 ≈ 0.579

(

|e′g1 ↑〉 − i|e′g2 ↑〉
)

− 0.006i (|eg1 ↑〉 − i|eg2 ↑〉)− 0.575i|a1g ↓〉,
|τ4↑̃〉 ≈ −0.077

(

|e′g1 ↑〉+ i|e′g2 ↑〉
)

− 0.690i (|eg1 ↑〉+ i|eg2 ↑〉)− 0.075
(

|e′g1 ↓〉 − i|e′g2 ↓〉
)

− 0.115i (|eg1 ↓〉 − i|eg2 ↓〉) ,
|τ5↑̃〉 ≈ 0.061

(

|e′g1 ↑〉 − i|e′g2 ↑〉
)

+ 0.700i (|eg1 ↑〉 − i|eg2 ↑〉) + 0.109i|a1g ↓〉,
|τ1↓̃〉 ≈ 0.402

(

|e′g1 ↑〉 − i|e′g2 ↑〉
)

− 0.098i (|eg1 ↑〉 − i|eg2 ↑〉) + 0.811i|a1g ↓〉,
|τ2↓̃〉 ≈ 0.545

(

|e′g1 ↑〉+ i|e′g2 ↑〉
)

− 0.103i (|eg1 ↑〉+ i|eg2 ↑〉) + 0.437
(

|e′g1 ↓〉 − i|e′g2 ↓〉
)

− 0.028i (|eg1 ↓〉 − i|eg2 ↓〉) ,
|τ3↓̃〉 ≈ 0.575|a1g ↑〉+ 0.579i

(

|e′g1 ↓〉+ i|e′g2 ↓〉
)

− 0.006 (|eg1 ↓〉+ i|eg2 ↓〉) ,
|τ4↓̃〉 ≈ 0.075

(

|e′g1 ↑〉+ i|e′g2 ↑〉
)

− 0.115i (|eg1 ↑〉+ i|eg2 ↑〉)− 0.077
(

|e′g1 ↓〉 − i|e′g2 ↓〉
)

+ 0.690i (|eg1 ↓〉 − i|eg2 ↓〉) ,
|τ5↓̃〉 ≈ 0.109|a1g ↑〉 − 0.061i

(

|e′g1 ↓〉+ i|e′g2 ↓〉
)

− 0.700 (|eg1 ↓〉+ i|eg2 ↓〉) .

Due to the time-reversal symmetry, all double group pairs are satisfied with T |τa↑̃〉 = eiδa |τa↓̃〉, where T is the time-
reversal operator and δa is the phase term raised by numerical process. However, δa does not cause any calculation
complexity.

HOPPING HAMILTONIAN

To describe the hopping interaction, we adopted the tight binding method based on the linear combination of atomic
obritals (LCAO). Because the double group state τ with σ̃ isospin is expressed by |τσ̃〉 =

∑

µσ Uτσ̃,µσ|µσ〉, where
Uτσ̃,µσ is the unitary transformation between τσ̃ and conventional d orbital and spin, the pd-hopping matrix is written
by tpd(τσ̃; pσ) =

∑

µσ′ Uτσ̃,µσ′δσσ′ 〈p|Vh|µ〉, where 〈p|Vh|µ〉 is the hopping strength between p and d atomic orbitals.
〈p|Vh|µ〉 is a function of two parameters (tpdσ and tpdπ) and normal displacement vector between Ir and O. Next, we
estimated the effective hopping between nearest neighboring (NN) Ir’s based on the second-order perturbation because
the charge transfer energy (∆) is much larger than the pd-hopping strengths. In this limit, tdd(τσ̃; τ

′σ̃′) between NN

double group states τσ̃ and τ ′σ̃′ is calculated by summing
∑

pσ

tpd(τσ̃;pσ)t
∗

pd(τ
′σ̃′;pσ)√

(∆+ǫτ )(∆+ǫτ′)
for two different Ir-O-Ir paths.

The hopping Hamiltonian between i and j-th Ir’s is as following:

Hij =
∑

τiσ̃iτ
′

j
σ̃′

j

tdd(τiσ̃i; τ
′
j σ̃

′
j)c

†

τ ′

j
σ̃′

j

cτiσ̃i
+ h.c.. (2)
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Note that the full hopping matrix (10×10) is Hermitian. Namely, the full hopping matrix elements satisfy the relation

such that 〈τa↓̃|Ht|τb↑̃〉 = 〈τb↑̃|Ht|τa↓̃〉. Table S1 and S2 present the hopping matrix between neighboring Ir’s along
the y-axis. The hopping between τ1↓̃ and τ3↑̃ (0.2074) is strongest one, which is about ten times larger than that
between τ3↑̃’s (0.0219).

TABLE S1: Hopping parameters between neighboring double group state with same isospins in units of eV.

τ1↑̃ τ2↑̃ τ3↑̃ τ4↑̃ τ5↑̃

τ1↑̃ 0.1362 0.0797i 0.0213i 0.1348i -0.1125i

τ2↑̃ -0.0797i -0.0520 -0.0975 0.1306 -0.1186

τ3↑̃ -0.0213i -0.0975 0.0219 -0.1301 0.1119

τ4↑̃ -0.1348i 0.1306 -0.1301 0.0558 0.0709

τ5↑̃ 0.1125i -0.1186 0.1119 0.0709 0.0976

TABLE S2: Hopping parameters between neighboring double group state with different isospins in units of eV.

τ1↑̃ τ2↑̃ τ3↑̃ τ4↑̃ τ5↑̃

τ1↓̃ 0.0000 -0.0212 -0.2074 -0.0933 0.0978

τ2↓̃ 0.0212i 0.0000 -0.1504 0.1426 -0.1322

τ3↓̃ 0.2074 -0.1504i 0.0000 0.0362i -0.0679i

τ4↓̃ 0.0933i -0.1426 0.0362 0.0000 -0.0130

τ5↓̃ 0.0978 0.1322i -0.0679i 0.0130i 0.0000

[S1] K. Yosida, Theory of magnetism, (Springer, New York, 1996).


