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Abstract

The magnetic and electronic structures of 3d impurity atoms from Sc to Zn in ferromagnetic body-

centered cubic iron are investigated using the all-electron full-potential linearized augmented plane-wave

method based on the generalized gradient approximation (GGA). We found that in general, the GGA results

are closer to the experimental values than those of the local spin density approximation. The calculated

formation enthalpy data indicate the importance of a systematic study on the ternary Fe-C-X systems rather

than the binary Fe-X systems, in steel design. The lattice parameters are optimized and the conditions for

spin polarization at the impurity sites are discussed in terms of the local Stoner model. Our calculations,

which are consistent with previous work, imply that the local spin-polarizations at Sc, Ti, V, Cu, and Zn are

induced by the host Fe atoms. The early transition-metal atoms couple antiferromagnetically, while the late

transition-metal atoms couple ferromagnetically, to the host Fe atoms. The calculated total magnetization

(M) of bcc Fe is reduced by impurity elements from Sc to Cr as a result of the antiferromagnetic interaction,

with the opposite effect for solutes which couple ferromagnetically. The changes in M are attributed to

nearest neighbor interactions, mostly between the impurity and host atoms. The atom averaged magnetic

moment is shown to follow generally the well-known Slater-Pauling curve, but our results do not follow the

linearity of the Slater-Pauling curve. We attribute this discrepancy to the weak ferromagnetic nature of bcc

Fe. The calculated Fermi contact hyperfine fields follow the trend of the local magnetic moments. The effect

of spin-orbit coupling is found not to be significant although it comes into prominence at locations far from

the impurity sites.

PACS numbers: 75.50.Bb, 71.70.Ej, 71.20.Be
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I. INTRODUCTION

Each of the three allotropes of iron possess interesting magnetic properties which have a pro-

found influence on their stability.1 The body-centered cubic (bcc) form is ferromagnetic;2 the

face-centered cubic (fcc) Fe at low temperatures is antiferromagnetic,3 but its higher energy fer-

romagnetic state can be thermally excited with complex variations in magnetic structure as a

function of temperature.4,5 Ferromagnetism is eliminated when bcc iron transforms into the hexag-

onal close-packed (hcp) crystal structure at high pressures ∼ 29.5GPa.6

Density-functional theory has been proven to be reliable in estimating the magnetic proper-

ties of iron-based transition-metal alloys, for example the pioneering work by Akai et al.7 who

used the Korringar-Kohn-Rostoker (KKR) Green’s function method based on the local spin den-

sity approximation (LSDA), and Anismov et al.,8 who used the linear muffin-tin orbital (LMTO)

Green’s function method to obtain a consistent picture of the electronic and magnetic structures

of 3d impurities in bcc Fe. However, the LSDA is known to underestimate exchange effects,9,10

which are crucial for determining magnetism. Furthermore, lattice optimization, which may affect

the electronic and magnetic structures of the impurity and host, was not taken into account in

these previous calculations. Lattice optimization may not change the general conclusions drawn

previously, but can give more quantitative information. The relative stability of 3d impurities in

bcc Fe is also important for practical implementations in the steel industry which can be precisely

calculated at the optimized lattice parameters and for this purpose, the lattice parameters of the

3d impurities are also optimized. We focus also on the magnetic interactions between impurity and

the host element which can give a detailed picture of the magnetism of impurities in bcc Fe. The

purpose of the present work was to use the highly precise all-electron full-potential linearized aug-

mented plane-wave (FLAPW) method11 based on the generalized gradient approximation (GGA)12

to study the magnetic and electronic structures and hyperfine fields of Fe where it is substitution-

ally alloyed with the 3d transition metals. The longer term aim is to be able to contribute to

the development of the so-called electrical steels which are used in the manufacture of motors and

transformers.

II. CALCULATION METHOD

A 3× 3× 3 supercell of the primitive bcc cell containing 27 Fe atoms (Fig. 1) was used with 3d

solute atoms (X = Sc− Zn) substituting a body-centered iron atom, giving a composition X1Fe26
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FIG. 1. (Color online) The model of 3 × 3 × 3 supercell of the primitive cell of bcc Fe, which contains 27

atoms. The Fe1, Fe2, and Fe3 atoms are represented by black, white, and grey spheres, respectively, while

the impurity atom (corner atom) is marked with X.

equivalent to a concentration of 3.7 at.%, which is consistent with the levels of solute added to

steels. The impurity atom X has first, second and third nearest neighbors designated Fe1, Fe2,

and Fe3 respectively.

The Kohn-Sham equations13 were solved in the framework of the FLAPW11 method under

the GGA.12 An energy cutoff at 4 (2π/a), where a is the lattice parameter of each calculation,

employed for expanding the Linearized Augmented Plane Wave (LAPW) basis set, corresponding

to ∼ 2350 LAPWs per k-point and spin. A 16.1245 (2π/a) cutoff was used for the star functions

depicting the charge density and potential in the interstitial regions. Lattice harmonics with l ≤ 8

were employed to expand the charge density, potential, and wave-functions inside each muffin-tin

(MT) sphere of radius 2.2 a.u. for all the atoms. Integrations inside the Brillouin zone (BZ) were

performed using the improved tetrahedron method14 over a 13 × 13 × 13 mesh within the three

dimensional (3D) BZ, corresponding to 84k points inside the irreducible wedge of the 3D-BZ. All

core electrons were at first treated fully relativistically and valence states scalar relativistically,

i.e., without spin-orbit coupling (SOC).15 For spin-orbit coupling on valence states, we employed

the second variation method16 with the spin diagonal parts of the density subjected to a self-

consistency loop. During the second variation procedure, integrations inside the 3D-BZ were done

in the full-BZ, i.e., 1099 k points. The explicit orthogonalization (XO) scheme was employed to

ensure the orthogonality between the core and valence states.17
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TABLE I. Calculated lattice parameters a (in units of Å), bulk moduli B (in units of GPa), and formation

enthalpy per atom (∆H in units of eV/atom) of X1Fe26. Numbers in the parentheses are the formation

enthalpy in units of kJ/atom-mol.

X Sc Ti V Cr Mn Fe Co Ni Cu Zn

a 8.556 8.534 8.518 8.516 8.510 8.499 8.508 8.518 8.522 8.528

B 180.54 188.26 186.52 179.58 162.73 175.75 184.40 176.68 166.35 167.06

∆H 0.034 −0.011 −0.004 0.018 0.038 0.000 0.020 0.029 0.053 0.038

(3.26) (−1.04) (−0.40) (1.71) (3.68) (0.00) (1.91) (2.83) (5.14) (3.68)

All atoms were fully relaxed at each lattice volume until the atomic forces on each atom were less

than 2 mRy/a.u. The equilibrium lattice constants and bulk moduli B were determined by fitting

the total energy and volume to the Birch-Murnaghan equation of states.18 Using the optimized

lattice constants, further calculations were carried out in the spin-unpolarized and spin-polarized

states with and without SOC. Self-consistency was assumed when the difference between input and

output charge densities became less than 1.0×10−4 electrons/a.u.3 Note that all the computational

parameters used in the present calculations satisfy the convergence test.19

III. RESULTS AND DISCUSSIONS

A. Structural Properties

Table I and Fig. 2 show the optimized lattice parameters a (in units of Å) and bulk moduli B

(in units of GPa) of X1Fe26 supercell at zero kelvin. The optimized lattice constant of pure bcc

Fe is 2.83 Å, which is only 1.4% smaller than that of the finite temperature experimental value

2.87 Å.20 It is interesting to find out that the all the substitutional 3d impurities in bcc Fe increases

the lattice parameter. The calculated bulk modulus of bcc Fe, 175.5GPa is also comparable with

the experimentally observed value.21 We can see B has minimum when the d band is half filled,i.e.,

Mn. We also analyzed the local lattice expansion/contraction around the X impurities and we

arrive at a conclusion that the lattice distortions around the X impurities are negligible. However,

one can easily calculate the bond lengths of Fe-X, using the lattice parameters given in Table I.

The relative stability of X in bcc Fe can be understood through the formation enthalpy ∆H
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FIG. 2. Calculated optimized lattice constant a (in units of Å) and bulk modulus B (in units of GPa) of

X1Fe26. Filled squares (circles) on the left (right) axis show lattice constant (bulk modulus).

per atom of X1Fe26, which was calculated as follows:

∆H =
H (XnFem)−mH (Fe)− nH (X)

m+ n
(1)

where H(XnFem) is the enthalpy of XnFem for m = 26 and n = 1, and H(Fe) and H(X) are the

total energy/atom of bcc Fe and X at their ground state structures, respectively. For ∆H, the

optimized lattice parameters of the impurity X crystals were also calculated, e.g., bcc Cr (2.88 Å)

and hcp Co (a = 2.51 Å, c = 4.0 Å), which are close to the experimental values. Using the optimized

lattice parameters, ∆H was calculated by the above equation and the results are shown in Table I.

Note that ∆H of a system is nothing more than the total energy of the system at zero pressure

and zero Kelvin at the corresponding equilibrium lattice parameter and is an enthalpy change for

the sysnthesis of the composition from the component elements. It is interesting to find that ∆H

values of all the 3d elements are positive, except the Sc and V cases.

A category of the solution atoms in Fe-C system is available:22 Ni and Cu are considered as
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the elements which enter only the ferrite phase, while Ti, V, Cr, and Mn are considered as the

elements which form stable carbides and also enter the ferrite phase. It seems in this Fe-X system

that there is no strong significant relationship between ∆H and the solubilities of the elements.

Many noble properties found during the alloy design for steels are able to be contributed by the

characters of the ternary Fe-C-X systems rather than the binary Fe-X ones, in thermodynamic

point of view.

B. Local Stoner Criterion

It is known that bcc Fe is a ferromagnetic metal which will be shown using spin-polarized

(magnetic) calculations. The spin-unpolarized (non magnetic) state of bcc Fe is higher in energy

than the magnetic one, but a knowledge of spin-unpolarized calculstions is necessary to find out

the condition for the formation of local magnetic moment at the impurity site using the Stoner

crirerion.23 The calculated spin-unpolarized impurity-site-projected local density of states (LDOS)

for the solutes in bcc Fe are shown in Fig. 3, where the contribution from the d states are decom-

posed into the eg and t2g states. The Fermi levels (EF) were set to zero. Pure bcc Fe exhibits

the typical three-peak structure of 3d bcc metals. The positions of the bonding and antibonding

states relative to EF depend on the number of electrons of the impurity atoms. When a Sc atom

substitutes for a centered Fe atom, the lowest lying unoccupied d states are the t2g states. The

addition of one valence 3d electron, i.e., when the impurity Sc is replaced by Ti, causes the unoc-

cupied t2g states to shift towards EF. For Sc and Ti impurities the lowest lying unoccupied states

are mainly the t2g states. In contrast, with V the corresponding unoccupied states become sharp

and are dominated by the eg states.

For the other impurities, the antibonding states form virtual bound states (VBS)24 near EF,

are dominated by the eg states. The 3d impurities also affect the LDOS of the neighboring atoms

through bonding with the host atoms. For pure bcc Fe, one can see the dominant Fe1-eg states just

above EF. On adding 3d electrons using appropriate solutes, these Fe1 eg states become narrow

and their density is changed. After the d bands are filled, the p electrons will hybridize with the

host Fe and this happens with the Zn impurity, where one can expect the sp-d hybridization rather

than the d-d hybridization.

Figure 4 we show the calculated X atom projected LDOS at the Fermi energy, denoted by

n(EF). The condition for the formation of local spin polarization at the X atom in bcc Fe can be

determined approximately by adapting the Stoner criterion,23 i.e., In(EF) > 1, where I is the well
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FIG. 3. (Color online) Calculated spin-unpolarized impurity-atom-projected local density of states ofX1Fe26.

Solid (dotted) lines represent the t2g (eg) states, whereas the thin solid (dotted) lines show the s(p) states,

which are multiplied by a factor 20, of Zn impurity at the left bottom. First (second) column shows early

(late) transition metals. The Fermi energy (EF) is set to zero.
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FIG. 4. Calculated local density of states at the Fermi energy, n(EF), for the 3d impurities in nonmagnetic

bcc Fe. The dotted horizontal line represents the Stoner limits for the local spin-polarization.

known atomic exchange parameter equal to 0.925 eV for bcc Fe.25 The critical value of n(EF) above

which an intrinsic local magnetic moment arises on the impurity atom in bcc Fe was estimated

to be ∼ 1.081 states/eV·atom, shown in Fig. 4 as a dotted horizontal line. It is found that the

condition for the local spin polarization is not satisfied for the Sc, Ti, V, Cu, and Zn impurities.

In other words, the calculated local magnetic moments of impurity atoms which do not satisfy the

local Stoner criterion, are induced by the surrounding magnetic Fe atoms.

The elements from Cr to Ni, which satisfy the local Stoner criterion, induce the t2g and eg states

to move closer to EF. For the early 3d impurities, n(EF) is mainly contributed by the t2g states,

while for the late 3d transition-metal impurities n(EF) is contributed by the eg states. Once these

3d impurity bands cross EF, i.e., when the d bands are completely filled, the electronic structures

and the magnetism of the impurity atoms will be determined by the sp electrons as seen, for

example, in the LDOS of Zn in Fig. 3.

C. Magnetism

Figure 5 shows the calculated local magnetic moment (m) within each MT sphere of the 3d

impurity sites. Solutes from Sc to Cr are associated with negative values of m with antiferromag-
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FIG. 5. Calculated local magnetic moment of the 3d impurities in bcc Fe. Filled circles show our calculated

local magnetic moment (in units of µB) at the X site, filled triangles show the previously calculated values

(Other),8 and open triangles show the experimental (Expt.) values taken from Refs. 20, 26–31.

netic coupling with the host Fe atoms. It is noticeable that Sc, Ti, and V atoms have significant

magnetic moments, even though these elements are not magnetic elements—this is because the 3d

magnetism, according to the local Stoner criterion (Fig. 4), is not intrinsic but is induced via the

host iron atoms. It is considered that the largely induced m of the impurities from Sc to V are due

to the fact that their 3d states are induced.

Cr and Mn, which satisfy the Stoner criterion and are antiferromagnetically and ferromagnet-

ically coupled to the iron respectively, have intrinsically large magnetic moments which are not

attributed to the neighboring iron atoms. In the case of Co and Ni, the local magnetic moments

are positive and are coupled ferromagnetically to the host Fe. In contrast to the induced m of

the early transition-metal impurities from Sc to V, the calculated m for Cu and Zn impurities,

which have complete d shell occupation, are very small. Especially, the Zn impurity shows local

diamagnetism. We may say that Sc to Cr might not be useful due to antiferromagnetic coupling

when designing iron alloys where a high saturation magnetization is required.

It seems that as a general principle, similar to the Hund’s rules, impurity atoms with 3d states

less than half-filled will tend to couple antiferromagnetically with iron and ferromagnetic coupling
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occurs when the atoms have more than half-filled states, and this statement was also confirmed

by spin-density contours. Figure 5 also shows published data8,20,26–31 which seem to be consistent

with the trends illustrated in Fig. 4.

The case of Mn impurity attracts attention, because the local magnetic moments of Mn are

very sensitive to volume. Our analysis showed that Mn can couple antiferromagnetically as well

as ferromagnetically depending on the lattice volume. For example, at the experimental lattice

constant of bcc Fe (5.4169 a.u.), Mn couples antiferromagnetically with the host Fe atoms, but

couples ferromagnetically at the optimized lattice constant of Fe26Mn (5.3608 a.u.). The unsta-

ble behavior of local magnetic moments of Mn may cause disagreement between experiments and

theoretical calculations. There is a significant discrepancy with the experimental data for Mn;

spin-unpolarized neutron diffraction measurements of FeMn alloys gave values of a Mn local mo-

ment from 0.0 ± 0.2µB
32 to 1.0 ± 0.2µB,

26 while polarized neutron diffraction measurements give

0.77 µB for parallel33 and −0.82µB for antiparallel27 to the orientation of m of Mn. The previously

calculated m of Mn in Fe are: 0.6µB,
7 1.6µB,

34 and −2.30 µB and 1.6µB.
35 The discrepancies

between the individual calculations are due to the use of different computational methods and the

exchange-correlation potentials. The KKR-Green’s function method by Akai et al.7 showed that

the variation of m with the impurity nonintegral nuclear charges Z, leads m with negative values for

Z ≤ 25, but that the sign is reversed beyond Z = 25.17. This implies that the m of Mn is not only

susceptible to nuclear charges but also to volumes. On the other hand, recent calculations indicate

the noncollinear magnetic structures for FeMn.36 The discrepancies between the calculated and the

experimental values of m of Mn shows that the exact experimental determination of the value of

the Mn impurity magnetic moment might be complicated by its pronounced concentration27 and

temperature dependence26 in FeMn alloys.

Judging from the dependence of local magnetic moments, one can expect that solutes from Sc to

Cr will decrease the magnetization M of bcc Fe due to antiferromagnetic coupling, while Co to Ni

will have the opposite effect based on ferromagnetic coupling to the host Fe atoms. This is indeed

observed as shown in Fig. 6, where the calculations are presented with and without SOC. M is seen

to vary linearly with the atomic number from Sc to Mn with a large increase from Mn to Fe. The

Mn case is quite different because the sign of m of Mn is very sensitive to external perturbation

(volume in this case) around the equilibrium volume. Therefore, there are two competing factors

that determine the change in M with respect to pure bcc Fe, i.e., nearest neighbor (NN) interaction

and lattice volume. The lattice volume of X (Sc–Mn) is larger than bcc Fe, so one can expect

small M , and at the same time the nearest-neighbor interactions favor the AFM coupling between
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FIG. 6. Calculated total magnetization M of X1Fe26 (in units of T). Open squares show M without spin-

orbit coupling (SOC) and filled squares show M with SOC. The horizontal dotted line shows M of pure

Fe without SOC. The inset shows the atom averaged magnetic moment (m̄) (open circles) in units of µB

without SOC versus the number of electrons per atom of X1Fe26. The filled circles show the experimental

values taken from Ref. 44.

X (Sc–Cr) and Fe atoms and decreases M .

For Co and Ni impurities, although the lattice volume is larger but the NN interactions favor

FM coupling and increases M . From Fe to Ni, M increases linearly and we already discussed the

enhanced M of Ni in bcc Fe due to the spin-flip of Fe1 d states.37 On the other hand, M decreased

sharply for Cu and Zn, because as stated previously, their 3d bands are fully occupied and hence

are not susceptible to magnetic interactions with the host atoms. The calculated magnetic moment

of bcc Fe is found to be 2.22 µB, the same as that observed experimentally.20 The calculated trend

that solutes from Sc to Mn decrease the total magnetization of the system has been observed

experimentally.38–40 Co and Ni enhance the magnetization of Fe and this compares well with

experimental measurements.29,30,41

Before going into the microscopic description of the magnetic interaction of an X impurity with

the neighboring Fe atoms, our calculated trends of M can be compared with the Slater-Pauling

curve,42,43 which is a plot of atom averaged magnetic moment (m̄) of ferromagnets versus the

electron-to-atom ratio. Here, we used m̄ to distinguish it from the magnetization M . Bcc iron as
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represent Fe2 atoms.

a weak ferromagnet and alloys based on bcc iron can form the left branch of the Slater-Pauling

curve. Our calculated m̄ of X1Fe26 can follow the simple phenomenological relation discussed in

Ref. 23, i.e.,

m̄ = m0
A + x(ZB − ZA), (2)

for the left branch, i.e., m̄ increasing branch,

m̄ = m0
A − x(ZB − ZA), (3)

for the right branch, i.e., m̄ decreasing branch, where m0
A is the magnetic moment of the host

atom, x is the solute concentration, and ZA and ZB are the valences of the host and the solute

atoms, respectively. The inset of Fig. 6 shows m̄ versus the number of electrons per atom. The m̄

curve shows a local maximum at about 26.074 electrons per atom, which is approximately similar

to the other bcc alloys on the Slater-Pauling curve. However, it is noticeable that the left branch

does not follow the simple linear relation in Eq. (2). We attribute that this offset from the linear

behavior is caused by the weak ferromagnetic nature of bcc Fe, discussed in the following.

Figure 7 and the results in Table II show that it is the interaction of X = Sc–Mn with first
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TABLE II. Calculated site-projected local spin magnetic moments (in units of µB) of X1Fe26 inside each

muffin-tin (MT) sphere with and without spin-orbit coupling (SOC). M is the total magnetization in units

of T. The lower portion of the table shows the effect of SOC.

Without SOC

Site Sc Ti V Cr Mn Fe Co Ni Cu Zn

M 2.059 2.088 2.103 2.120 2.172 2.235 2.271 2.287 2.188 2.168

X −0.251 −0.628 −1.173 −1.727 0.440 2.237 1.802 0.999 0.150 −0.053

Fe1 2.160 2.194 2.244 2.288 2.266 2.237 2.387 2.463 2.360 2.311

Fe2 2.271 2.271 2.253 2.262 2.204 2.237 2.256 2.283 2.223 2.240

Fe3 2.207 2.234 2.261 2.300 2.263 2.237 2.261 2.301 2.266 2.276

With SOC

Site Sc Ti V Cr Mn Fe Co Ni Cu Zn

M 2.056 2.083 2.101 2.116 2.173 2.234 2.268 2.283 2.186 2.164

X −0.251 −0.628 −1.171 −1.723 0.470 2.235 1.797 0.996 0.151 −0.052

Fe1 2.156 2.189 2.242 2.285 2.264 2.235 2.382 2.458 2.357 2.306

Fe2 2.267 2.265 2.251 2.259 2.205 2.235 2.252 2.280 2.221 2.236

Fe3 2.203 2.229 2.258 2.295 2.262 2.235 2.259 2.298 2.263 2.272

neighbor Fe1 atoms that is most responsible for the reduction in M of the alloy. With Cr and

Mn which exhibit local intrinsic spin polarizations, the reduction in M is caused mainly by the

interaction with the Fe2 atoms. The importance of Fe2 can be understood in terms of the local

symmetry of the Cr and Mn atoms in bcc Fe. The width of the splitting of the bonding and

antibonding states usually depends on the spatial separation of the atoms, and becomes large if

the atoms are close together. The Cr and Mn atoms, surrounded by the nearest eight Fe1 atoms,

are located at the corners of a cube at a distance of
√
3a/2. The atomic wave-functions of Cr

or Mn-eg and Fe1-t2g overlap strongly and form hybrid orbitals. The impurity atoms are also

surrounded by six next nearest neighboring Fe2 atoms, which form an octahedral cage around Cr

and Mn atoms at a distance of a. Consequently, the hybridization is smaller and hence so is the

resulting splitting of the hybrid orbitals. Due to the weak antiferromagnetic interaction between

the Cr (or Mn) and the Fe2 atoms, the magnetic moment of the Fe2 atom is smaller than that of

the Fe1 atom.

The variation in m of Fe1, Fe2, and Fe3 atoms is not monotonic for solutes with d > 5. The

Fe1 atoms have a much larger m than those of Fe2 and Fe3 atoms for the late transition-metal

solutes. The enhancement of magnetization due to the late transition-metal impurities in bcc Fe

is caused mainly by the Fe1 atoms. The origin of such an enhanced magnetization in bcc Fe was
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already discussed in Ref. 37 where we found strong interactions between the Fe1-t2g and Ni-eg

states, through the VBS.

For further insight, it is useful to compare the spin-unpolarized LDOS in Fig. 3 and the spin-

polarized one in Fig. 8. Considering bcc Fe, or the Fe impurity case, the eg majority spins are

almost completely occupied, but the t2g majority spins are partially filled. Due to this latter

property, bcc Fe is so-called a weak ferromagnet.45 This makes the magnetic moment of bcc Fe

sensitive to perturbations due to X impurities.

With the substitution of Sc, the valence 3d electron is accommodated in the minority t2g states;

if instead Ti is added, its additional 3d electron occupies the minority t2g states with both the

latter and eg states shifting towards lower energy. Thus, by adding electrons, the unoccupied

states move closer to EF. Therefore, the spin-polarized LDOS indicates that for the impurities

from Sc to Cr all the 3d electrons occupy in the local minority spin bands to achieve charge

neutrality and consequently to align the impurity magnetic moments in an opposite sense to the

host magnetic moments. For Mn impurity, the majority eg spin staes also become occupied. We

verified that the local DOS at Mn site depends on the volume.

The t2g minority spin states are filled beyond Mn so that further additional 3d electrons are

forced to enter the t2g majority spin states and couple ferromagnetically to the host Fe atoms.

It follows that from Mn to Cu the impurity magnetic moments are parallel to those of the host,

whereas for Sc to Cr they are coupled antiparallel to the Fe host. The transition from antiferro-

magnetic to ferromagnetic coupling occurs when the VBS in the majority spin band crosses EF,

i.e., the majority spin d bands being occupied46 (see Fig. 3 and Fig. 8).

The effects of 3d impurities on the electronic structures of Fe1, Fe2, and Fe3 atoms (not shown

here) are generally that the minority spin eg states at ∼ 2.0 eV above EF are not strongly affected

by the 3d impurity atoms. The hybridization between X and the host Fe become important when

the d bands of impurity atoms are more than half filled, e.g., see the Ni and Cu where the additional

peaks at Fe1 are caused by the hybridization of the X impurities with the host Fe, through the

location of the VBS.

The above mentioned facts can also be confirmed by using the calculated spin density contours.

Representative cases (Cr, Mn, and Fe impurities in bcc Fe) are shown in Fig. 9. The interstitial

regions are negatively polarized. The spin density contours of pure bcc Fe show considerable

magnetic interaction with its first neighbor, Fe1, and one can also examine the interactions with

Fe2 and Fe3 atoms. This magnetic interaction is not a surprise, because the distance between the

Fe1 and Fe2 atoms and Fe2 and Fe3 atoms is the same, i.e.,
√
3a/2. Very recently, such kinds of
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FIG. 8. (Color online) Calculated spin-polarized impurity-site-projected local density of states of X1Fe26.

The upper (lower) panels show majority (minority) spin states. Solid (dotted) lines show the t2g (eg) states,

whereas for the Zn impurity at the left bottom the thin solid and dotted lines show the s and p states, which

are multiplied by a factor 20. First (second) column shows early (late) transition metals. The Fermi levels

(EF) are set to zero.
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 (a)   
  X    

  Fe1   

  Fe2   

  Fe3  

 (b)   

 (c)   

FIG. 9. Calculated spin density contour plots in the (110) plane for (a) Cr, (b) Mn and (c) Fe inpurities in

bcc Fe. Solid lines represent the spin-up whereas dotted lines represent the spin-down densities. The lowest

contour starts from 2×10−4 electrons/a.u.3 and the subsequent lines differ by a factor
√
2. The Fe1, Fe2,

and Fe3 atoms are also shown.

interactions were also observed even for monatomic bcc Fe, when examined in the (110) plane.47

The spin density at Cr site is negatively polarized and the sign reversal of the local impurity

moments was also observable at the Mn–Cu impurity sites, which show positive spin polarization

and couple ferromagnetically to the host Fe. When the d bands of the impurity atom are filled, it

not only affects the neighboring Fe atoms, but also its local impurity magnetic moment, and this

is the case of the Zn impurity which has a small negative spin polarization (not shown here), the

sp diamagnetism.

We did not find any significant effects of SOC on M as well as on the spin density contour

plots in Fig. 9. The calculated M of pure bcc Fe is ∼ 2.22 T and upon SOC, M is found to be

2.20 T. Table II shows that the effect of SOC is not very affective at the impurity sites, but slightly

affects m at the Fe1, Fe2, and Fe3 atoms. This feature is well understood by the concept of the

orbital quenching, along with the fact of no significant Jahn-Teller distortion, i.e. the interatomic

distortions of the neighboring Fe atoms are negligible.20
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FIG. 10. Calculated Fermi contact hyperfine fields (in units of kG) of the 3d impurities in bcc Fe. The

filled circles represent the total hyperfine field. The open circles and triangles represent the valence and core

contributions, respectively. The inset shows the variation of Bcore

hf
and Bval

hf
with the local magnetic moment

of the impurity atoms.

D. Fermi contact hyperfine fields

The hyperfine fields in bcc iron are dominated by the Fermi contact term, which depends

essentially on the s-electron spin density at the nucleus; Fig. 10, shows both the core (Bcore
hf ) and

valence (Bval
hf ) state contributions to the fields. For the impurities considered, Bcore

hf and Bval
hf are

opposite in sign with magnitudes increasing from Sc to Cr and then decreasing from Co to Zn. As

a consequence there is a change of sign for the total hyperfine field in going from Mn to Fe.

The trend of Btotal
hf is similar to that for the local impurity magnetic moments. Generally, Bcore

hf

is proportional to the local impurity magnetic moment, as shown in the inset of Fig. 10, and its

sign is negative for a parallel moment and vice versa, as seen in Fig. 10. This linear dependence

is due to the exchange interaction of the polarized d shell with the s orbitals of the core. As a

result, a weak s polarization is induced at the nuclear position, which is typically opposite to the

local magnetic moment. Since the exchange interaction is weak, the core hyperfine field Bcore
hf is

expected to scale with the local moment. The behavior of Bval
hf is more complicated—it scales

approximately with the local magnetic moments but in an opposite sense to Bcore
hf . The two major
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FIG. 11. Calculated Fermi contact hyperfine field changes ∆Bn normalized by the host Fermi contact

hyperfine field Bhostin the 1st, 2nd and 3rd shell around the 3d impurities in bcc Fe. Here n represents

the 1st, 2nd, and 3rd Fe atoms. The filled squares, triangles, and circles represent ∆B1, ∆B3, and ∆B2

respectively, whereas open symbols represent the experimental values taken from Ref. 50.

contributions to Bval
hf are: (a) from the polarization of the outer s orbitals of the impurity by

its own local moment and (b) polarization of valence electrons due to the magnetic moments of

the neighboring atoms which is usually proportional to the magnetic moment of the surrounding

host atoms. The proportionality constants for the linear relationships described are the hyperfine

coupling constants, calculated from Fig. 10 to be Ccore ∼ −145 kG/µB and Cval ∼ 119 kG/µB.

These values are comparable to the results reported for 3d impurities in Cr, Fe, and Ni hosts.48,49

Figure 11 illustrates the changes, ∆B1, ∆B2, and ∆B3 in the Fermi contact hyperfine fields

of the Fe1, Fe2, and Fe3 atoms, respectively, with the normalization by the host Fermi contact

hyperfine field, Bhost. Positive values imply that the hyperfine field of Fen neighbor is smaller than

that of the host and vice versa. The calculated ∆B1 for Ni and Co are negative, in agreement with

experiments,50 whereas ∆B1 is inconsistent with the calculations done by Dederichs et al.,50 who

found a zero value for ∆B1. This discrepancy is due to partly the different computational method.

Our calculated GGA trend of ∆Bn can be compared with the experimental observations and the

other previous calculations.50

The Bhf results in Table III show that Bval
hf of Fe1 is negative for all the 3d impurities except
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TABLE III. Calculated Fermi contact hyperfine fields in units of kG. The left (right) column shows the

Fermi contact field without (with) spin-orbit coupling (SOC).

Without SOC With SOC

Atom Total Valence Core Total Valence Core

Sc −164.2 −209.42 54.22 −163.9 −209.17 45.31

Fe1 −357.3 −41.95 −315.34 −356.3 −41.51 −314.82

Fe2 −346.6 −14.21 −332.35 −345.7 −13.93 −331.74

Fe3 −359.3 −36.44 −322.86 −358.3 −36.05 −322.23

Ti −167.3 −267.54 100.21 −166.6 −266.98 104.41

Fe1 −348.4 −27.43 −320.93 −347.2 −26.96 −320.24

Fe2 −340.6 −8.84 −331.80 −339.6 −8.60 −331.01

Fe3 −360.9 −34.25 −326.66 −359.7 −33.90 −325.81

V −164.9 −334.54 169.60 −164.2 −333.61 169.45

Fe1 −337.4 −8.86 −328.56 −336.4 −8.23 −328.14

Fe2 −334.9 −6.08 −328.83 −334.0 −5.54 −328.46

Fe3 −361.6 −30.95 −330.66 −360.5 −30.35 −330.17

Cr −157.0 −395.25 238.25 −156.2 −394.07 237.84

Fe1 −326.3 8.21 −334.52 −325.1 8.98 −334.11

Fe2 −333.1 −3.51 −329.54 −332.1 −3.21 −328.91

Fe3 −363.0 −26.74 −336.28 −362.0 −26.42 −335.56

Mn −269.2 −202.41 66.82 −269.7 −198.83 −70.90

Fe1 −334.5 −3.19 −331.29 −337.7 −2.73 −330.95

Fe2 −360.7 −38.69 −322.04 −360.0 −37.99 −322.03

Fe3 −363.1 −32.20 −330.87 −362.1 −31.43 −330.66

Fe −362.0 −34.84 −327.12 −360.2 −33.48 −326.74

Fe1 −361.9 −35.01 −326.88 −360.3 −33.80 −326.53

Fe2 −361.8 −34.80 −327.03 −360.3 −33.79 −326.55

Fe3 −361.8 −44.74 −327.02 −360.3 −33.73 −326.61

Co −394.4 −120.87 −273.52 −493.2 −120.45 −272.72

Fe1 −374.4 −25.19 −349.26 −373.7 −25.18 −348.53

Fe2 −358.2 −28.75 −329.44 −354.4 −28.58 −328.86

Fe3 −366.4 −35.65 −330.75 −365.7 −35.46 −330.24

Ni −389.0 −225.99 −163.02 −387.4 −225.01 −162.38

Fe1 −375.7 −15.49 −360.25 −374.8 −15.29 −359.48

Fe2 −359.0 −26.40 −332.65 −358.1 −25.89 −332.17

Fe3 −370.2 −33.71 −336.48 −369.1 −33.13 −335.96

Cu −321.3 −284.25 −37.01 −321.1 −284.00 −37.07

Fe1 −366.2 −20.74 −345.44 −365.9 −20.79 −345.11

Fe2 −374.6 −49.30 −325.24 −374.2 −49.33 −324.88

Fe3 −361.9 −30.76 −331.13 −361.6 −30.76 −330.81

Zn −304.2 −297.77 −6.48 −303.3 −296.85 −6.46

Fe1 −363.1 −24.89 −338.23 −362.1 −24.56 −337.55

Fe2 −374.4 −46.13 −328.23 −373.4 −45.81 −327.62

Fe3 −362.9 −29.95 −332.96 −362.0 −29.67 −332.34
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for Cr, and these positive quantities increase the transfer field of the Fe1 atoms through its pro-

portionality to the magnetic moment of the surrounding atoms, i.e., the Fe1, Fe2, and Fe3 atoms.

Hence, the transfer field of the Fe2 atom is smaller than that of the Fe1 atom and this supports the

notion that the reduced M of bcc Fe alloyed with Cr and Mn is caused mainly by the Fe2 atoms.

Reported Bhf values for pure bcc Fe calculated using LSDA and GGA are, without SOC,

−278 kG and −298 kG, respectively, and, with SOC, −253 kG and −276 kG, respectively.51 Our

GGA result is −371 kG (and −364 kG with SOC), which is close to the experimental value of

−339.0 kG.52 The somewhat larger values obtained here are consistent with FLAPW-LSDA value

of −366.0 kG reported by Ohnishi.53 Table III shows again that SOC does not significantly affect

the calculations because of the localization of the impurity.

Finally, some test calculations were also carried out for big and small supercells of Fe52Ni2 and

Fe15Ni and the local properties around Ni were similar to Fe26Ni. This indicateds that 3 × 3 × 3

supercell of the primitive bcc cell as discussed in Sec. II is sufficient for 3.7 at.% impurities in bcc

Fe, but may not be sufficient for the other host, e.g. bcc Cr.48

IV. SUMMARY

The magnetism and electronic structures of 3d impurities in body-centered iron have been

investigated in terms of the FLAPW method based on the generalized gradient approximation.

The results compare favorably with existing experimental data, and have been contrasted with

published calculations where available.

The lattice parameters were optimized and it is shown that the lattice constant decreases with

the atomic number of the impurity X (Sc–Fe), whereas it increases for Co–Zn. The calculated

formation energy results are good agreement with the alloying experiences in steels design. It is

found that iron induces a magnetic moment at the Sc, Ti, V, Cu, and Zn atoms substituted into

the iron lattice; Sc, Ti, V, Cr, and Zn couple antiferromagnetically with iron, resulting in an overall

reduction in the saturation magnetization relative to pure iron. In contrast, Co, and Ni couple

ferromagnetically with iron and resulting in increase in saturation magnetization. The trend of

the atom averaged magnetic moment versus effective atomic number is shown to lie on the left

branch of the well-known Slater-Pauling curve, but it is not simply linear—the deviation from

the standard Slater-Pauling curve is attributed by the nature of the weak ferromagnetism of bcc

iron. These results have been interpreted by examining in detail the local density of states, near

neighbor interactions, and other features of the electronic structure of the alloys resulting from the
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substitution of impurity atoms into iron.

An important outcome is that calculations of the type reported here are not significantly in-

fluenced by spin-orbit coupling. The calculated Fermi contact hyperfine fields also support this

conclusion. In the light of previous theoretical calculations, where LSDA was used our calculations

showed that although LSDA can not describe the correct magnetic properties of bcc Fe, but can

describe the correct magnetic properties (qualitatively) of bcc Fe because our GGA results are

close to the previous LSDA results. Comparing the LSDA and GGA, we showed that the GGA

results are closer to the experimental data.
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