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The role of micropipes in pore formation in SiC crystals with foreign polytype inclusions is studied by
means of synchrotron phase sensitive radiography, optical and scanning electron microscopies, and color
photoluminescence. The pores at the inclusion boundaries are revealed, and their shapes and locations are
analyzed. It is found that the pores arise due to the attraction of micropipes by the foreign polytype interfaces,
followed by micropipe coalescence. The observed pores have tubular or slit shapes. Tubular pores nucleate at
the inclusion corners, where the inclusion-associated stresses are concentrated. Slit pores spread between them
and follow the shape of the inclusion boundaries. We explain the observations within a two-dimensional model
of elastic interaction between micropipes and inclusion boundaries, which accounts for free surfaces of
micropipes.

DOI: 10.1103/PhysRevB.76.064117 PACS number�s�: 61.72.Lk, 61.72.Bb, 61.72.Ff

I. INTRODUCTION

An interesting feature of silicon carbide is its ability to
crystallize into various polytypic structures differing in the
stacking sequence in one direction. The electronic properties
of SiC can widely vary depending on its polytypic structure.
However, the controlled formation of a designed SiC poly-
type, either a bulk crystal or a layer, is difficult. For SiC
crystals grown by the modified Lely technique,1 the polytype
occurrence and stability depend on the growth conditions
and orientation of the substrate,2–6 as well as on the probabil-
ity of formation of singular faces during growth.7 Even
though the conditions for stable growth of a single polytype
were developed,2–6,8 uncontrolled formation of inclusions of
other polytypes might occur. At the boundaries of foreign
polytype inclusions, lattice defects are generated and lattice
tilts are produced.9 Since high-quality SiC wafers are re-
quired for SiC-based electronic devices, it is of special inter-
est to elucidate the mechanisms for defect formation at the
foreign polytype boundaries in SiC crystals.

Apart from dislocations, micropipes �MPs�, cylindrical
pores that generally contain dislocations with giant Burgers
vectors,10 were frequently observed at the boundaries of
polytype inclusions.11–13 MPs were supposed to nucleate at
low-angle boundaries between a polytype inclusion and a
matrix.3,4,14 The evolution of polytype boundaries via the for-
mation of microcracks was addressed by Siche et al.15 They
assumed that dislocation bundles in the basal plane, located
within and near the MPs, and the stress concentrated at the
MP surfaces might generate microcracks. This statement was
supported by the results of optical and electron beam induced
current investigations.15 Recently, white beam topography,6

Raman spectroscopy combined with optical microscopy,16

transmission electron microscopy,17 and scanning electron
and optical microscopies with the aid of etching by molten
KOH �Refs. 18 and 19� provided evidences for MP agglom-
eration at the boundaries of foreign polytype inclusions.
Phase sensitive radiography, which has proven to be effec-
tive for the detection and mapping of MPs throughout the
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crystal bulk, has demonstrated that closely spaced MPs inter-
act and merge into pores.20,21

However, the mechanism by which MPs interact with the
boundaries of foreign polytype inclusions, agglomerate, and
coalesce into pores was not discussed in previous papers.
Gutkin and co-workers20,21 proposed that MPs diminish the
orientational component of lattice mismatch between a poly-
type inclusion and a matrix and suggested a three-
dimensional �3D� model of elastic interaction between MPs
and inclusion boundaries.22 What the model22 lacks is that it
does not take into account the inner cylindrical free surfaces
of MPs whose effect must be significant for short-range in-
teraction of MPs with the inclusion boundaries, as is the case
with elastic interaction of MPs with each other.13,23,24

In the present paper, we provide experimental evidences
to agglomeration of MPs into pores at the boundaries of
foreign polytype inclusions and develop a two-dimensional
�2D� model of elastic interaction between MPs and inclusion
boundaries, which accounts for free surfaces of MPs.

II. EXPERIMENT

A. Crystals and techniques

SiC boule was grown in Ar by the sublimation sandwich
method4 on the carbon-terminated surface of 6H-SiC sub-
strate in the presence of Sn vapor. The growth temperature
was 2180 °C and the growth rate was 0.5 mm h−1. The Sn
vapor caused the transformation of the polytype of the sub-
strate into 4H-SiC,4 which was identified by x-ray diffrac-
tometry and white beam topography. To enhance lumines-
cence in visible light range, crystal was N doped; the N
pressure in the growth chamber was 133 mbar. The 0.4 mm
thick wafers were cut off perpendicularly to the growth axis
and mechanically polished on both sides.

The foreign polytype inclusions were revealed and iden-
tified by means of color photoluminescence �PL�. Optical
microscopy was performed on a Zeiss Universal microscope.
Scanning electron microscopy �SEM� of the samples was
done on JEOL JSM-6330F field emission SEM operating at
12 kV. MPs and macropores were studied using phase sen-
sitive radiography at the 7B2 x-ray microscopy beamline of
the Pohang Light Source, Korea. The energy of coherent
beam from the source with the size 60 �H��160 �V� �m2

continuously varied from 6 to 40 keV. A charge coupled de-
vice detector placed 34 m from the source had the matrix
size of 1600�1200 pixels. The conversion of x rays into
visible light was performed via CdWO4 scintillator. The
view field was switched between 4 and 0.5 mm horizontally,
and the sample-to-detector distance was 6 cm.

B. Experimental results

Figure 1�a� shows a SEM image of typical pores located
at the boundaries of foreign polytype inclusions. The PL im-
age of Fig. 1�b� demonstrates the 6H-SiC inclusions in 4H
matrix, as seen by the N activated luminescence taken at
room temperature �yellow�.25 On a molten KOH treated sur-
face, we observe slit pores that enclose smooth edges of the
inclusions, as schematically illustrated in the inset of Fig.

1�a�. Tubular pores are also seen at inclusion corners. Hex-
agonal etch pits near the inclusions represent MPs. The clear-
ance of the slit pore is comparable with the MP diameters.

Similar features are also visible in the images of Fig. 2.
Here, optical �a� and PL �b� micrographs of a big 6H-SiC
inclusion in another 4H-SiC wafer are demonstrated. The
inclusion exhibits a dendritic shape. The numbers listed from
1 to 4 indicate the corners of the dendrite. At the corners,
tubular pores are partially and fully seen on the optical �a�
and phase-radiographic �c� images, respectively. Note that
the radiographic images of pore etch pits in Fig. 2�c� dem-
onstrate the external regions of the pores on the wafer sur-
face. In the phase radiography regime, by tilting the wafer
around the axis perpendicular to the incident beam and par-
allel to the wafer surface, different projections of tubular
pores were recorded. Using these projections, we confirm
that the tubular pores penetrate the sample. Some of the
tubes are joined together in the sample interior �see corners 3
and 4 in Fig. 2�c��.

MPs near the inclusion interact with the inclusion bound-
ary, which is illustrated in the inset to Fig. 2�c�. Here, the
phase radiograph of a tube with a hexagonal cross section at
an inclusion corner �labeled by 1� is shown. MPs bend to-

FIG. 1. �Color online� �a� SEM image of the pores bordering
6H-SiC inclusions in 4H-SiC wafer. The inset outlines the inclu-
sions and the pores as pointed by black and white arrows, respec-
tively. Hexagonal etch pits represent MPs. �b� PL image of the
inclusions.
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ward the tube and, at the same time, remarkably deviate from
the growth direction, which is almost perpendicular to the
sample surface. By evaluating the variation of the MP den-
sity, we confirmed that MPs were sparse around inclusions,
while a high density of MPs was detected in inclusion-free
regions throughout the wafer.

The observations of these foreign polytype inclusions and
many other similar inclusions provide strong evidences for
the attraction of MPs to the inclusion boundaries. These MPs
may coalesce and form pores. Although generation of pores
due to agglomeration of MPs originated from screw disloca-
tions at the inclusion boundary cannot be ruled out, we be-
lieve that pore growth proceeds at the expense of MPs pulled
out of the neighboring bulk. Tubular pores at inclusion cor-
ners are the first to form. �It should be noted that the term
“tube” is used here to define a pore around an inclusion
corner while the term “MP” is used to define a cylindrical
pore formed in an arbitrary crystal area. As for MPs, the
diameters of the tubular pores lie in the micrometer range,
and so these pores are assumed either to form due to the
coalescence of several MPs or to represent a single MP. The
Burgers vector of these pores is added up from the Burgers
vectors of the dislocations within the MPs merging to form a
tubular pore and, if the inclusion boundary contains disloca-
tions, the total Burgers vector of the dislocations lying in the
fragment of the inclusion boundary removed by the tubular
pore. Since different MPs have different Burgers vectors, the
dislocation content of tubular pores can vary. Such pores can
either contain dislocations or be dislocation-free.� Slit pores
spread between tubular pores via joining the MPs aligned
parallel to the borders of the slit pores.

The propagation of MPs together with the growth front is
accompanied by their lateral motion toward the inclusion

boundaries. This results in deviations of MPs from the
growth direction. When MPs are inclined toward the inclu-
sion, they become stepped, as exemplified in Fig. 3. Here, a
pair of phase radiographs taken from the regions close to
different 6H-SiC inclusions in the same 4H-SiC crystal is
displayed. Twisting, bundling, and merging of MPs are
clearly seen. The reactions of MPs provide strong evidence
that MPs experience the influence of the stress fields pro-
duced by inclusion boundaries.26

III. THEORY

In this section, we propose a 2D model of elastic interac-
tion between a MP and a polytype inclusion in SiC, which
takes into account both dislocation charge and free surfaces
of MPs, in contrast with our previous 2D and 3D models22

which neglect the effect of MP free surfaces. Within this
model, the MP and inclusion are supposed to lie in an iso-
tropic infinite medium and are infinite along the z axis of the
Cartesian coordinate system �x ,y ,z� �Fig. 4�. The MP has a
radius R0, the coordinates of the MP axis are denoted by

FIG. 2. �Color online� Dendritic 6H-SiC inclusion in 4H-SiC
wafer: �a� optical micrograph; �b� PL image; and �c� phase radio-
graph. Numbers 1–4 indicate the inclusion corners where tubular
pores are located. The inset to �a� shows the optical micrograph of
the region indicated by 4 in �b� and �c�. The inset to �c� displays the
tube �indicated by 1� and the nearby MPs. The growth direction is
nearly perpendicular to the sample surface.

FIG. 3. Phase radiographs of slit pores located at the boundaries
of 6H-SiC inclusions in 4H-SiC wafer; �a� bundling and merging of
MPs near the pore; �b� the coalescence of MPs into the pore. White
arrow in �a� represents the projection of the growth direction.

FIG. 4. Straight dislocated micropipe near a 2D inclusion.
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�xp ,yp� and the Burgers vector of the MP dislocation is des-
ignated by b=bzez. The inclusion occupies the region �x1

�x�x2 ,y1�y�y2 ,−��z��� and possesses two nonvan-
ishing components, �xz

i* and �yz
i*, of plastic distortion. The

plastic distortion components �xz
i* and �yz

i* may be introduced
by free shears of the inclusion domain along the yz and xz
planes, respectively, as is shown in detail in Ref. 22. These
plastic distortions cause the corresponding elastic stresses
both inside and around the inclusion, which can interact with
the stress field of MPs.

For example, the component �xz
i* may be introduced by a

free shear of the inclusion domain along the yz plane. To
provide such a shear, the inclusion domain is imaginarily
extracted from the solid �matrix�, freely sheared along the yz
planes in the z direction by the angle �xz

i* and embedded back
into the matrix. As a result, the matrix also becomes dis-
torted. If there is no plastic relaxation within the matrix and
inclusion, both of them suffer elastic strains and stresses
which are totally determined by the plastic distortion �anti-
plane eigenstrain� �xz

i* and the inclusion geometry.27

We consider only pure plastic antiplane shear as the
eigenstrain due to that, within our 2D model, any other
eigenstrain component would create the elastic stress com-
ponents which do not interact elastically with the superscrew
dislocations contained in MPs. In that case, there would be
only a short-range elastic attraction of MPs to the inclusion
due to the image force of interaction between the inclusion

and free cylindrical surfaces of MPs. We will investigate this
image interaction as a special case of dislocation free MPs
within our model. We believe these special results will re-
main qualitatively correct for any kind of the eigenstrain
tensor.

Due to the interaction of the inclusion elastic stresses with
the free surface of the MP and dislocation within it, the in-
clusion exerts a force Fp=Fx

pex+Fy
pey on the MP. The forces

Fx
p and Fy

p equal to the projections of the force Fp on the x
and y axes, respectively, are calculated in the Appendix.
These forces are plotted in Figs. 5 and 6 for positive and
negative signs of the MP dislocation, respectively as func-
tions of the dimensionless MP axis coordinate yp /c �where c
is the magnitude of an elementary Burgers vector� at differ-
ent values of the other MP axis coordinate xp. The force Fx

p in
�a� ��b� and �c�, respectively� of Figs. 5 and 6 and the force
Fy

p in �d� ��e� and �f�, respectively� of Figs. 5 and 6 are
plotted using the same parameter values. In Figs. 5�c�, 5�f�,
6�c�, and 6�f�, the continuous lines are not shown in the
regions �yp−y1 � �R0 and �yp−y2 � �R0, where the MP inter-
sects the inclusion boundary, because the corresponding
forces are not calculated in these regions. It is seen from
Figs. 5 and 6 that the forces Fx

p and Fy
p acting on a dislocation

within a MP may significantly differ from the corresponding
forces acting on a similar dislocation without a MP if the
dislocation lies close to the inclusion boundary �see Figs.
5�b�, 5�c�, 5�e�, 5�f�, 6�b�, 6�c�, 6�e�, and 6�f��. The differ-
ence of the forces acting on the dislocation within a MP and

FIG. 5. The forces ��a�–�c�� Fx
p

and ��d�–�f�� Fy
p exerted by an in-

clusion on a dislocated micropipe
�continuous lines� and a screw
dislocation without a micropipe
�dashed lines� as functions of the
dimensionless micropipe axis co-
ordinate yp /c for bz /c=8, x1 /c
=y1 /c=−10 000, x2 /c=y2 /c
=10 000, �=0.3, �xz

i* =0.05, and
�yz

i* =0; R0=1000c �continuous
lines� and R0=0 �dashed lines�;
��a� and �d�� xp /c=−20 000, ��b�
and �e�� xp /c=−12 000, and ��c�
and �f�� xp /c=−8000. c is the
magnitude of an elementary Bur-
gers vector. The forces are given
in units of �c / �4��. In �c� and �f�,
the forces acting on a dislocated
micropipe �depicted by continu-
ous lines� are not shown in the re-
gions �yp−y1��R0 and �yp−y2�
�R0, where the micropipe inter-
sects the inclusion boundary, be-
cause these forces are not calcu-
lated in these regions.
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that without a MP is particularly strong in the vicinities of
inclusion corners. However, the variance of these forces di-
minishes as the dislocation moves away from the inclusion
boundary �see Figs. 5�a�, 5�d�, 6�a�, and 6�d��.

In the following, besides dislocated MPs and dislocations
without MPs, we consider dislocation-free MPs. Such MPs
may exist as nonequilibrium structures due to the coales-
cence of two MPs with opposite Burgers vectors. The vector
fields of the force Fp= �Fx

p ,Fy
p� acting on the dislocated

MP �dislocation without a MP and dislocation-free MP�
are shown in Figs. 7�a� and 7�d� �Figs. 7�b� and 7�e�, and
Figs. 7�c� and 7�f��, respectively, in the coordinate space
�xp /c ,yp /c� for the cases �xz

i* =0.05 and �yz
i* =0 �Figs.

7�a�–7�c�� and �xz
i* =�yz

i* =0.05 �Figs. 7�d�–7�f��. Comparison
of Figs. 7�a� and 7�b� shows that although the magnitudes
and directions of the forces Fp, calculated for the cases of
a dislocated MP and dislocation without a MP, differ near
the inclusion boundaries, the overall pictures of the vector
fields in the two cases are similar, and the dislocation equi-
librium positions in both the cases are the same and are lo-
cated at the center of one of the facets. Similar pictures of
vector fields are also seen in Figs. 7�d� and 7�e�. �It should,
however, be noted that in Fig. 7�e�, the equilibrium disloca-
tion position is at the inclusion corner, while in Fig. 7�d�, it

lies at another point of the inclusion boundary. The exact
position of this point cannot, however, be determined from
Fig. 7�d� and requires a separate calculation of the force
acting on the dislocated MP at the inclusion boundaries. This
calculation is beyond the scope of our paper.� In contrast, the
equilibrium positions of a dislocation-free MP lie at the in-
clusion corners �see Figs. 7�c� and 7�f��. Thus, from Fig. 7, it
follows that the equilibrium positions of a dislocated MP lie
at the inclusion boundary, but the exact equilibrium position
of a dislocated MP at the inclusion boundary is determined
by a balance of the force acting on the cavity �which attracts
it to the inclusion corner� and the force acting on a MP
dislocation �which attracts it to other points of the inclusion
boundary�.

FIG. 6. The forces ��a�–�c�� Fx
p and ��d�–�f�� Fy

p exerted by an
inclusion on a dislocated micropipe �continuous lines� and a screw
dislocation without a micropipe �dashed lines� as functions of the
dimensionless micropipe axis coordinate yp /c for bz /c=−8, x1 /c
=y1 /c=−10 000, x2 /c=y2 /c=10 000, �=0.3, �xz

i* =0.05, and �yz
i*

=0; R0=1000c �continuous lines� and R0=0 �dashed lines�; ��a� and
�d�� xp /c=−20 000, ��b� and �e�� xp /c=−12 000, and ��c� and �f��
xp /c=−8000. c is the magnitude of an elementary Burgers vector.
The forces are given in units of �c / �4��. In �c� and �f�, the forces
acting on a dislocated micropipe �depicted by continuous lines� are
not shown in the regions �yp−y1��R0 and �yp−y2��R0, where the
micropipe intersects the inclusion boundary, because these forces
are not calculated in these regions.

FIG. 7. The forces Fp acting on a ��a� and �d�� dislocated mi-
cropipe, ��b� and �e�� screw dislocation without a micropipe, and
��c� and �f�� micropipe without a dislocation. The arrows indicate
the force directions, and their length is proportional to the force
magnitude. The large rectangles show the cross sections of the in-
clusion boundaries. The circles show equilibrium positions of the
�a� dislocated micropipe, ��b� and �e�� screw dislocation, or ��c� and
�f�� dislocation-free micropipe. The figures are displayed for the
following parameter values: x1 /c=y1 /c=−10 000, x2 /c=y2 /c
=10 000, and �=0.3; ��a�–�c�� �xz

i* =0.05 and �yz
i* =0 and ��d�–�f��

�xz
i* =�yz

i* =0.05; ��a�, �b�, �d�, and �e�� bz /c=8 and ��c� and �f�� bz

=0; ��a�, �c�, �d�, and �f�� R0=1000c and ��b� and �e�� R0=0.

ROLE OF MICROPIPES IN THE FORMATION OF PORES… PHYSICAL REVIEW B 76, 064117 �2007�

064117-5



IV. SUMMARY

Using synchrotron phase sensitive radiography, optical
and scanning electron microscopies, and color photolumines-
cence, we have revealed and identified foreign polytype in-
clusions in SiC. We have shown that MPs are attracted to
their boundaries due to the action of inclusion and MP stress
fields. The accumulation of MPs at the boundaries of poly-
type inclusions has been shown to result in their merging into
pores. We have explained the observations within a 2D
model of MP-inclusion interaction and calculated the forces
exerted on MPs by a foreign polytype inclusion with a rig-
orous account for both inclusion and MP dislocation stress
fields, as well as MP surfaces. The calculations demonstrated
that the equilibrium positions of MPs lie at polytype inclu-
sion boundaries.
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APPENDIX: INTERACTION FORCE BETWEEN TWO-
DIMENSIONAL INCLUSION AND DISLOCATED

MICROPIPE

In this appendix, we calculate the force exerted by the 2D
inclusion shown in Fig. 4 on the dislocated MP displayed in
the same figure. As will be shown below, the interaction
force between the dislocated MP and inclusion may be pre-
sented as the sum of two terms. The first one is the
dislocation-inclusion interaction force, which would act in
the absence of the MP. This force was calculated before for
both the 2D and 3D cases.22 The second term takes into
account the presence of the cavity and may be interpreted as
an image force applied within the cavity.

To calculate the total force exerted by the inclusion on the
MP, we consider the effect of the cavity surface on the in-
clusion stress field. For this purpose, we present the total
inclusion stress field �ij

i in the form �ij
i =�ij

i�+�ij
� , where �ij

i�

is the stress field of the inclusion in the absence of the MP
and �ij

� is an extra inclusion stress field associated with the
presence of the MP. This stress field is necessary to satisfy
the free-traction condition at the MP surface. Hereafter, in
the calculation of the MP-inclusion interaction force, we will
not need the explicit expression for the stress �ij

i�, and so we
restrict ourselves by computing the stress �ij

� .
In the following, we consider the case where the MP does

not intersect the inclusion boundary. In this case, to cast �ij
� ,

we model the inclusion by virtual screw dislocations con-
tinuously distributed over the inclusion interface �Fig. 8�.
The first two continuous ensembles of virtual screw disloca-
tions are distributed within the interval x1�x�x2 over the
inclusion facets y=y1 and y=y2. The dislocations of these

two ensembles have infinitesimal Burgers vectors bs=bsez
and −bs=−bsez, respectively, and are distributed with the lin-
ear density 	1=�xz

i* /bs. The other two dislocation ensembles
are distributed over the inclusion facets x=x2 and x=x1
within the interval y1�y�y2. The dislocations of these two
ensembles also have infinitesimal Burgers vectors bs and
−bs, respectively, but their distribution density 	2=�yz

i* /bs
differs from that of the first two dislocation ensembles. Using
the definition27 of dislocation plastic distortion, one can see
that the total plastic strain induced by the four virtual dislo-
cation ensembles that model the inclusion is equal to the
plastic strain of this inclusion.

The total inclusion stress field may then be presented as

�ij
i = − �	1�

x1

x2

�ij
d �x,x�,y,y��dx��

y�=y1

y�=y2

+ �	2�
y1

y2

�ij
d �x,x�,y,y��dy��

x�=x1

x�=x2

, �A1�

where �ij
d �x ,x� ,y ,y�� is the stress field of a virtual screw

dislocation with the Burgers vector bs lying at the line �x
=x�, y=y��.

The stress field �ij
d of the above virtual screw dislocation

in the presence of the MP may be written as the sum of the
stress field �ij

d��x−x� ,y−y� ,bs� that such a dislocation would
create in an infinite medium and the two stress fields,
�ij

d��x−xp ,y−yp ,bs� and −�ij�x−xim ,y−yim ,bs�, of two im-
age screw dislocations, the first lying at the MP axis and
having the Burgers vector bs and the second lying within the
cavity at the line �x=xim, y=yim� and having the Burgers
vector −bs. The line �x=xim, y=yim� of the second image
dislocation is located at the plane that joins the virtual dislo-
cation and the MP axis at the distance d−R0

2 /d from the
virtual dislocation, where d is the distance between the vir-
tual dislocation and the MP axis28 �Fig. 9�. The image dislo-
cations make the MP surface traction-free, providing the con-
dition �nz=0 �where n is the normal to the MP surface� at
any point of this surface. Thus, using the expressions29 for
the nonvanishing stress components �xz

d� and �yz
d� of a screw

dislocation, which is placed at the origin of a Cartesian co-
ordinate system in an isotropic infinite medium,

FIG. 8. Inclusion and its representation as four continuous ar-
rays of virtual screw dislocations distributed over the inclusion
facets.
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�xz
d��x,y,bs� = −

�bsy

2��x2 + y2�
, �yz

d��x,y,bs� =
�bsx

2��x2 + y2�
,

�A2�

and employing the relations

xim = xp −
�xp − x��R0

2

�xp − x��2 + �yp − y��2 , yim = yp

−
�yp − y��R0

2

�xp − x��2 + �yp − y��2 , �A3�

we obtain

�xz
d = �xz

d��x − x�,y − y�� + �xz
d��x − xp,y − yp�

+
�bs

2�

ŷ�x̄2 + ȳ2� − ȳR0
2

P4 , �A4�

�yz
d = �yz

d��x − x�,y − y�� + �yz
d��x − xp,y − yp�

−
�bs

2�

x̂�x̄2 + ȳ2� − x̄R0
2

P4 , �A5�

where x̂=x−xp, ŷ=y−yp, x̄=x�−xp, ȳ=y�−yp, and P4= �x̄2

+ ȳ2��x̂2+ ŷ2�−2R0
2�x̄x̂+ ȳŷ�+R0

4. The first terms in formulas
�A4� and �A5� denote the infinite-medium stress field of the
virtual dislocation shifted from the origin of the coordinate
system, the second terms identify the stress components of
the image dislocation lying at the MP axis, while the third
terms, written explicitly, stand for the stress components of
the image dislocation situated at the line �x=xim, y=yim�.

To obtain the stress field of the inclusion, we substitute
expressions �A4� and �A5� to formula �A1� for the inclusion
stress field �ij

i . Then, after integration, the total infinite-
medium stress fields of all the virtual dislocations will yield
the infinite-medium �ij

i� field of the inclusion, the terms as-
sociated with the image dislocations at the MP axis will pro-
vide zero, and the terms describing the stresses of the image
dislocations at the points �x=xim, y=yim� will give the inclu-
sion image stress field �ij

� . Thus, insertion of Eqs. �A4� and
�A5� to Eq. �A1� gives �ij

i =�ij
i�+�ij

� , where �ij
� = �̃ij

� �x̄=x̃1

x̃2 �ȳ=ỹ1

ỹ2 .
Here, x̃1=x1−xp, x̃2=x2−xp, ỹ1=y1−yp, and ỹ2=y2−yp, as
above, and the only two nonvanishing components of the
tensor �̃ij

� are given by

�̃xz
� �x1,x2� =

�R0
2

2��x̂2 + ŷ2�2�− �xz
i*	x̂ŷ ln P4 + �ŷ2

− x̂2�arctan
Q1

Q2

 + �yz

i*� ŷ2 − x̂2

2
ln P4

+ 2x̂ŷ arctan
Q2

Q1
� , �A6�

�̃yz
� �x,y� = −

�R0
2

2��x̂2 + ŷ2�2�− �xz
i*� x̂2 − ŷ2

2
ln P4

+ 2x̂ŷ arctan
Q1

Q2
� + �yz

i*	x̂ŷ ln P4 + �x̂2

− ŷ2�arctan
Q2

Q1

 , �A7�

where Q1= x̄�x̂2+ ŷ2�− x̂R0
2 and Q2= ȳ�x̂2+ ŷ2�− ŷR0

2.
Now, we can find the force Fk

p �k=x ,y� exerted by the
inclusion on the dislocated MP. For this purpose, first, we
write down the expression for the total strain energy W of a
crystal with the inclusion and the dislocated MP. The energy
W may be presented as

W = Wd + Wd-i + Wi, �A8�

where Wd is the self-energy of the screw dislocation within
the MP �which does not depend on the MP axis coordinates
xp and yp�, Wd-i is the energy of the interaction between the
inclusion and the dislocation stress field �ij

p , and Wi is the
self-energy of the inclusion in the presence of the cylindrical
cavity. �The stress field �ij

p of a screw dislocation with the
Burgers vector bpez, located within a cylindrical cavity with
the axis �x=xp, y=yp�, coincides with the stress field, which
such a dislocation lying at the line �x=xp, y=yp� would cre-
ate in an infinite medium: �ij

p �x ,y�=�ij
d��x̂ , ŷ ,bp�.� The en-

ergy Wi �per unit inclusion length in the z direction� may be
written as30

Wi = −
1

2
�

Si

�ij
i � ji

i*dS , �A9�

where Si is the region �x1�x�x2, y1�y�y2� of the inclu-
sion cross section and S is the integration parameter. Using
the relation �ij

i =�ij
i�+�ij

� , we rewrite formula �A9� in the
form Wi=Wi

�+Wi�, where

Wi
� = −

1

2
�

Si

�ij
i�� ji

i*dS �A10�

is the proper energy of the inclusion in an infinite medium
�which does not depend on the coordinates xp and yp� and

Wi� = −
1

2
�

Si

−

�ij
� � ji

i*dS �A11�

is the contribution of the cavity to the inclusion self-energy.
Comparison of formula �A11� with the general formula30

FIG. 9. Screw dislocation near a cylindrical cavity. Two image
dislocations within the cavity provide the meeting of the free-
traction conditions at the cavity surface.
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Wi-���ij
e � = − �

Si

�ij
e � ji

i*dS �A12�

for the energy Wi-� �per unit inclusion length in the z direc-
tion� of the inclusion interaction with an arbitrary external
stress field �ij

e shows that Wi�=Wi-���ij
� /2�. Thus, Wi� is equal

to the energy of the interaction between the inclusion and the
virtual external stress field �ij

� /2. Besides, since the quantity
Wd-i describes the energy of the interaction between the in-
clusion and the dislocation stress field �ij

p , the quantity Wd-i
+Wi� is equal to the energy of the inclusion interaction with
the effective applied stress �̃ij

e =�ij
p +�ij

� /2.
The above considerations allow one to calculate the force

Fk
p �k=x ,y� exerted by the inclusion on the dislocated MP

without a preliminary derivation of explicit expressions for
the system energy. Indeed, from formula �A8� and the rela-
tion Wi=Wi

�+Wi�, it follows that the energy W may be pre-
sented as W=Wd+Wi

�+Wd-i+Wi�. The first two terms in the
latter expression do not depend on the MP axis coordinates
xp and yp. As a result, we have Fx

p=−�W /�xp=−��Wd-i

+Wi�� /�xp, Fy
p=−�W /�yp=−��Wd-i+Wi�� /�yp. Because the

sum Wd−i+Wi� may be interpreted as the energy of the inclu-
sion interaction with the effective external stress �̃ij

e , the
force Fk

p is equal to the force which inclusion would exert on
a source of the stress field �̃ij

e . In turn, the force −Fk
p exerted

by the dislocated MP on the inclusion is equal to the force
exerted on the inclusion by the effective stress field �̃ij

e . Mod-
eling the inclusion by virtual screw dislocations continuously
distributed over the inclusion interface with linear densities
	1 and 	2 �Fig. 8�, we present the force −Fk

p as

− Fk
p = −�	1�

x1

x2

Fk
d�x,y�dx�

y=y1

y2

+ �	2�
y1

y2

Fk
d�x,y�dy�

x=x1

x2

,

�A13�

where Fk
d is the force with which the effective stress field �̃ij

e

acts on a virtual dislocation with the Burgers vector bsez,
lying at the line �x ,y�. Insertion of the Peach-Koehler
formulas29

Fx
d = bs�̃yz

e , Fy
d = − bs�̃xz

e �A14�

and the equalities 	1=�xz
i* /bs and 	2=�yz

i* /bs to formula
�A13� yields the following expressions for the forces Fx

p and
Fy

p:

Fx
p = −��	− �xz

i* � �̃yz
e �x,y�dx̂ + �yz

i* � �̃yz
e �x,y�dŷ
�

x̂=x̃1

x̃2 �
ŷ=ỹ1

ỹ2

,

�A15�

Fy
p =��	− �xz

i* � �̃xz
e �x,y�dx̂ + �yz

i* � �̃xz
e �x,y�dŷ
�

x̂=x̃1

x̃2 �
ŷ=ỹ1

ỹ2

.

�A16�

Substituting the relations �̃ij
e =�ij

p +�ij
� /2 and �ij

p �x ,y�
=�ij

d��x̂ , ŷ ,bz� and formulas �A2�, �A6�, and �A7� for �ij
d� and

�ij
� to formulas �A15� and �A16�, and performing integration,

after lengthy calculations, one obtains explicit analytical ex-
pressions for the forces Fx

p and Fy
p. Because these expressions

are very cumbersome, we do not give them here.
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