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In this invited contribution at the 29th International Conference on the Physics of semiconductors
(ICPS 2008), we review two examples of solid-catalytic nanowire (NW) growth in parallel
comparisons to the NW growth from the eutectic liquid catalyst. First, we demonstrated the
Cu-catalyzed Ge NW growth using GeH, vapor precursor at 200 °C, which is far below the Cu—Ge
eutectic temperature of 644 °C, with a relatively uniform diameter distribution directly templated
from that of the catalysts. We provide evidence that the formation of solid Cu;Ge catalysts and Ge
diffusion across the catalysts are responsible for such low-temperature growth of Ge NWs in a
size-deterministic manner. Second, we show the spontaneous silicidation of NiSi, NWs on
continuous Ni bulks using SiH, vapor precursor at 400 °C. This growth is particularly marked in
that NiSi, NWs are formed in a self-organized manner without employing the nanocluster catalysts.
We discuss this spontaneous growth of NiSi, NWs within the frame of the nucleation kinetics in the
low supersaturation limit in analogous with the earlier examples of the vapor-condensation at the

low vapor pressures. © 2009 American Institute of Physics. [DOI: 10.1063/1.3117233]

I. INTRODUCTION

Single-crystalline nanowire (NW) growth in the vapor
phases typically requires metal catalysts of nanometer sizes
for the catalytic decomposition of the vapor precursors, the
dimensionally confined nucleation, and the subsequent one-
dimensional growth. One of the prominent examples for the
growth of semiconductor NWs is the metal-catalytic
chemical-vapor growth of Si and Ge NWs,' where these
metal nanoclusters conventionally serve for the catalytic
crystallization as eutectic liquids. Thereby the thermody-
namic limit of such metal-catalytic NW growth is largely set
by the lowest eutectic temperature of the binary systems of
metals and semiconductors; for example the (Au, Si) and
(Au, Ge) binary systems find them to be around 360—370 °C
in the bulk limit. Recently it has been reported that the spe-
cific phase of the catalysts is not necessarily the simple eu-
tectic liquids during the growth reactions, but can be also the
solid phases.“f10 In this invited contribution, we describe two
representative examples of such wunconventional NW syn-
thetic routes, where Cu and Ni catalysts involve in the NW
growth reactions as the solid-phases. Specifically we illus-
trate Ge NW growth from Cu nanoparticleslo and the NiSi,
NW growth from continuous Ni bulks,""'? in direct compari-
sons to the growth from the eutectic liquid catalyst of Au.
First, we demonstrate the Cu-catalyzed Ge NW growth using
GeH, chemical vapors at 200 °C in the (Cu, Ge) binary
system, whose eutectic temperature is at 644 °C. It was
found that the formation of Cu;Ge catalysts in solid-phase
and Ge diffusion across the catalysts are responsible for such
low-temperature growth of Ge NWs in a size-deterministic
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manner between catalysts and NWs. Second, from the (Si,
Ni) binary system, whose eutectic temperature is above
960 °C, we show the spontaneous growth of NiSi, NWs on
continuous Ni bulks using SiH, chemical vapors at 400 °C
by silicidations. We discuss this spontaneous one-
dimensional silicidation without employing the nanocluster
catalysts within the framework of the nucleation kinetics and
the subsequent one-dimensional diffusion. Therein we at-
tempt to draw analogy with the earlier examples of the
vapor-condensation into metal whiskers in the low supersatu-
ration limit.

Il. CU-CATALYZED GE NW GROWTH

Figure 1 shows the schematics and the sequential snap
shots in the early growth stages of two different types of Ge
NWs grown by Au and Cu catalysts at 330 and 275 °C in
parallel comparison. Nanoclusters of Au and Cu catalysts
were prepared by deposition of discontinuous films of the
nominal thickness of 0.5 nm on SiO,/Si (100) and were
subsequently loaded into a hot-walled quartz-tube furnace,
where we carry out chemical vapor deposition (CVD) of
GeH,. Figure 1(b) is the equilibrium Ge-Cu binary phase
diagram,13 where the marked region is relevant to our growth
conditions. Notably the Ge-Cu eutectic temperature of
644 °C is too high to grow Ge NWs by the eutectic liquid
because above 300 °C the thermal decomposition of GeH,
becomes homogeneously active over the catalytic
decomposition.m’15 Whereas the Au-catalyzed Ge NW
growth can be available by the presence of the Au—Ge eutec-
tic liquid at the growth conditions, as in Fig. 1(g). High
resolution transmission electron microscope (TEM) study on
Cu-catalyzed Ge NWs demonstrate that both the catalytic tip

© 2009 American Institute of Physics
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FIG. 1. (Color online) (a) The schematics of Cu catalytic growth of Ge
NWs. (b) A part of the equilibrium Cu-Ge binary alloy phase diagram,
where the marked region is relevant to our growth conditions. (c) Thermally
evaporated 0.5 nm thick Cu films before the GeH, CVD. (d) The initial
stage of the GeH, CVD for 5 s on 0.5 nm thick Cu films. (¢) The 2 min of
the GeH, CVD on 0.5 nm thick Cu films. The inset shows TEM image of an
individual Ge NW grown by Cu catalyst at the tip region. (f) The schematics
Au catalytic of growth of Ge NWs. (g) A part of the equilibrium Au-Ge
binary alloy phase diagram, where the marked region is relevant to our
growth conditions. (h) Thermally evaporated 0.5 nm thick Au films before
the GeH, CVD. (i) The initial stage of the GeH, CVD for 5 s on 0.5 nm
thick Au films. (j) The 30 s GeH, CVD on 0.5 nm thick Au films. The inset
shows TEM image of an individual Ge NW grown by Au catalyst at the tip
region. The scale bar is 100 nm for all figures, unless specified otherwise.
[(c)-(e)] and [(h)-(j)] are adapted from Ref. 10.
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and the stem are single-crystalline, as in the inset of Fig.
1(e), and are respectively indexed to orthorhombic Cu;Ge
and cubic Ge. This observation strongly suggests that Ge
NWs precipitate out of CusyGe catalytic tips and is consistent
with the phase diagram, as in Fig. 1(b). Often the shapes of
the Cu;Ge tips are not always hemispheric, as typically ob-
served from Au-catalytically grown Ge NWs, with rather ir-
regular interfaces with Ge NWs. It was reported that during
the NW growth the solid catalysts (Pd,Si)-NW (Si) interfaces
advances via the lateral propagation of ledges and results in
faceted interfaces of several atomic step heights,5 and indeed
a similar behavior has been observed in the growth of Cu-
catalyzed Ge NWs.'® The observations that Ge NW growth is
possible even at 200 °C and that the crystal structures of the
catalyst tip are reproducibly identified as Cu;Ge strongly
suggest that the Ge crystals precipitates out from solid
Cu;Ge catalysts, as further follows. According to Fig. 1(b)
between 200 and 330 °C, the Ge—Cu systems involve an
intermediate phase of solid-solution &; (Cu;Ge) where the
Cu content varies around the mean content of 75% by
(=)0.1-(+)1.9%. One can then speculate that the Ge precipi-
tates out from the supersaturated Cu;Ge with Cu by up to
1.9% to form Ge NWs, provided that an efficient diffusion
across the catalysts is established during the reactions. Under
the assumption of the diffusion limited crystallization of Ge
NWs, we estimate the lower limit of the Ge diffusivity (Dge),
in order to uphold the NW growth, from the relation, k,,,(
=D/r) = v, where k,, is the Ge mass transfer rate, v is the
axial growth rate of Ge NWs (¥=130 nm/s in this study),
and r is the NW diameter. Then the lower limit of Dg, is
found to be 1.08 X 10713 c¢m?/s for the thinnest NW of 5 nm.
We find that the bulk diffusivity of Ge in Cu at 275 °C
(8.2%x 107! cm?/s) is much greater than its estimated lower
limit, thus we suggest that Ge diffusion be possibly available
across the Cu;Ge catalysts for the NW growth. A qualita-
tively similar growth of Si NWs was reported using Al cata-
lysts at the temperature as low as 430 °C, where the Si solu-
bility in Al is approximately less than 1%.° Therein the
solubility of Si in Al is negligible below 400 °C, and this
limited solubility presumably imposes the lower limit of the
growth temperature. In the Ge—Cu system, however, the Ge
solubility in CusGe is persistently present down to 200 °C
from the eutectic temperature, and thus Ge NW growth from
the solid Cu;Ge catalysts can be achievable at such low tem-
peratures. This finding raises an interesting point that upon
the existence of thermodynamically available solid-catalysts
the appropriate solubility of semiconductors in such solid-
catalysts can be an important indicator to determine the
lower limit of the attainable growth temperatures. The paral-
lel comparison of Fig. 1 clearly illustrates and contrasts how
the Ge NW growth evolves from two different types of cata-
lysts. The Au catalysts were initially scattered as individual
nanosized grains, as in Fig. 1(h), and then coalesced into
larger grains with embryonic NWs in the very early stage of
5 s growth shown in Fig. 1(i), which suggest that the cata-
lysts are in liquid phases. In the later stage of 30 s growth, as
in Fig. 1(j), the diameters of the constituent NWs diverge in
their distribution. Meanwhile the Cu catalysts remain as in-
dividual grains with the mean diameter of 7.1 nm without
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FIG. 2. (Color online) (a) The schematics of the spontaneous NiSi, NW growth on continuous Ni bulks. (b) A part of the equilibrium Ni-Si binary alloy phase
diagram. (c) NiSi, NWs grown on patterned Ni films. The scale bar is 5 um. The inset shows TEM image of an individual NiSi, NW at the tip region. (d)
A plan-view SEM image of NiSi, NWs grown at the vapor pressure of 50 Torr of SiH,. The inset is the reaction products grown at 200 Torr of SiH,. The scale
bar is 1 um. (e) The schematics of Si NW growth using SiH, vapor precursor at 400 °C with discretely distributed Au nanoclusters. (f) A part of the
equilibrium Au-Si binary alloy phase diagram. (g) Si NWs grown by the catalytic Au nanoclusters. The scale bar is 10 wm. The inset shows TEM image of
an individual Si NW at the tip region. (h) A plan-view SEM image of NiSi, NWs grown on the oxidized Ni films (NiO~20 nm) at the vapor pressure of 50
Torr of SiH,. The inset is the reaction products grown on bare Ni surfaces under the same conditions of the main panel. The scale bar is 1 um. (c), (d) and
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any obvious grain growth at the growth temperature, and
lead to the growth with the uniform diameters, as consecu-
tively seen in Figs. 1(c)-1(e). That is, we find the diameters
of Ge NWs are directly templated from those of Cu catalysts
with the one-to-one deterministic manner in their diameters.
Whereas in the case of Au-catalytic Ge NWs, the diameter of
Ge NWs is ranged in a rather wider distribution, displaying
the mean NW diameter of 20 nm from the mean catalyst
diameter of 6.5 nm. The uniform diameter distribution of Ge
NWs directly templated from that of Cu-catalysts can be an-
other signature that the Cu;Ge catalysts are in solid-phases
and possibly the detrimental coalescence of catalysts17 that is
often observed with liquid-catalysts, can be suppressed dur-
ing the growth reactions.

lll. SPONTANEOUS GROWTH OF NISI NWS FROM
BULK NI SEEDS

Figure 2 illustrates the parallel comparison of the sche-
matics and the representative images of the NW products
from SiH, CVD using Ni and Au catalysts at 400 °C. Fig-
ures 2(e)-2(g) represent a typical Au-catalytic Si NW
growth, as similarly discussed in the preceding section as a
eutectic system. Meanwhile Ni catalysts were prepared by 80
nm thick Ni films on SiO,/Si substrates, i.e., the Ni catalysts
are in continuous bulk films rather than in nanoclusters, as
schematically described in Fig. 2(a). Then the prepared Ni
films are subsequently loaded into a quartz-tube furnace,
where we carry out CVD of SiH, at 400 °C. This synthetic
approach exploits Ni-catalyzed decomposition of SiH4,18
which can occur well below the thermal decomposition tem-
perature of SiH, at above 600 °C and usually leads to NiSi,
thin films by silicidations between SiH, (g) and Ni(s)—see
also Fig. 2(b). Interestingly, however, under the optimum
growth conditions, the reaction reproducibly finds the spon-
taneous growth of NiSi, NWs in high density on the NiSi,
planar sheets, as seen in Fig. 2(c). Extensive TEM investiga-
tions demonstrate that the NWs are single-crystalline NiSi,
with the absence of the catalytic tips, as shown in the inset of
Fig. 2(c). Instead we found that the acute-angled tips at the
end of the NWs without the presence of any catalyst tip that
is the typical characteristics of the Au-catalytic NW
syntheses—see also the inset of Fig. 2(g) for comparison.
The average diameters of the synthesized NWs are typically
ranged from 10 to 15 nm in diameter with a relatively narrow
distribution. The spontaneous growth of NiSi, NWs on con-
tinuous Ni bulks without employing nanocluster catalysts
can be understood around the roles of Ni seeds as the “self-
regulating” one-dimensional nucleation and the subsequent
diffusion into NW products. A similar spontaneous NW
growth behavior has been documented for vapor-phase syn-
theses of various silicide NWs, where the metal and/or Si
precursors were supplied in vapor-phase.lg_25 Generally, in
vapor-phase syntheses, the relative low supersaturation de-
gree in the vapor-phase favors one-dimensional morpholo-
gies due to the limited nucleation, whereas the relatively
higher supersaturation leads to the bulk morphology due to
the homogeneous nucleation.® In fact the archetypical ex-
amples of such one-dimensional growth in as early as 1953
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has been understood within the frame of the nucleation ki-
netics, where the metal whiskers of various kinds were spon-
taneously grown by condensation of metal vapors at the low
vapor pressures.26 In our example of silicidations between
SiH, (g) and Ni (s), the spontaneous NiSi, NW formation, as
opposed to the NiSi, film formation, is determined by the
limited supply of not only SiH, (g) but also Ni (s) to the
reaction surfaces, where Si is supplied by the catalyzed de-
composition of SiH, (g) and Ni is supplied by the solid-
phase diffusion from underlying Ni films. For example, in
the Fig. 2(d), the NW formation is facilitated under the rela-
tively low vapor pressure at 50 Torr of SiH, (g). At the
higher vapor pressure at 200 Torr, the reaction only produces
planar NiSi, sheets, as seen in the inset of Fig. 2(d). The
similar trends are observed when Ni surfaces are slightly
oxidized to suppress the Ni diffusion flux to the surface re-
action with SiH, (g), the NiSi, NWs are spontaneously
grown, as in Fig. 2(h). On the bare Ni surfaces, thus at the
higher Ni diffusion flux, the reaction products were planar
NiSi, sheets, as seen in the inset of Fig. 2(h). It appears that
the limited nucleation kinetics for the spontaneous one-
dimensional growth in the vapor-solid reactions is closely
related to the degree of supersaturation of both solid and
vapor phases. Nevertheless the microscopic origins of this
self-organized NW growth at the individual NW level is still
far from full understanding and requires further investigation
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