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Abstract—Distributional semantic models are strongly depen-
dent on the size and the quality of the reference corpora,
which embeds the commonsense knowledge necessary to build
comprehensive models. While high-quality texts containing large-
scale commonsense information are present in English, such as
Wikipedia, other languages may lack sufficient textual support
to build distributional models. This paper proposes using the
combination of a lightweight (sloppy) machine translation model
and an English Distributional Semantic Model (DSM) to provide
higher quality word vectors for languages other than English. Re-
sults show that the lightweight MT model introduces significant
improvements when compared to language-specific distributional
models. Additionally, the lightweight MT outperforms more
complex MT methods for the task of word-pair translation.

I. INTRODUCTION

Distributional Semantic Models (DSM) are consolidating
themselves as fundamental components for supporting auto-
matic semantic interpretation in different application scenarios
in natural language processing. From question answering
systems, to semantic search and text entailment, distributional
semantic models support a scalable approach for representing
the meaning of words, which can automatically capture com-
prehensive associative commonsense information by analysing
word-context patterns in large-scale corpora in an unsuper-
vised or semi-supervised fashion [1], [2], [3].

However, such DSMs are strongly dependent on the size
and the quality of the reference corpora, which embeds the
commonsense knowledge necessary to build comprehensive
models. While high-quality texts containing large-scale com-
monsense and domain-specific information are present in
English, other languages may lack sufficient textual support
to build comprehensive distributional models.

This paper proposes the combination of a lightweight
machine translation (MT) model and an English DSM as
a mechanism to provide knowledge-rich word vectors for
languages other than English. While the problem of delivering
high-quality sentence MT requires large parallel corpora and
resource-intensive ML models, we claim that the MT for
accessing distributional word vectors can be achieved with a
lightweight model. In the context of this work, a lightweight
MT model is a model which accesses the unigram-level
source-target probabilities which can be directly computed
from the parallel corpora.

This paper aims at addressing the following research ques-

tions:

e Can a lightweight MT model over an English DSM
provide higher quality word vectors compared to native
word vectors?

o How does a lightweight MT model compares with more
complex MT models?

o How parallel corpora size influences the quality of the
distributional vector?

o Are there DSMs which are more/less robust to the quality
of the MT?

Figure 1 depicts a summary of the experimental model
aimed by this paper, where the lightweight MT is compared
against state-of-the-art MT services for different word similar-
ity/relatedness datasets.
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Fig. 1. Depiction of the experimental setup of the experiment.

This paper is organised as follows: Section II describes the
related work, Section IV describes the experimental setting,
a lightweight machine translation is proposed at section III;
while Section V analyses the results and provides the compar-
ative analysis from different models and languages. Finally,
Section VI provides the conclusion and future work.

II. RELATED WORK

The majority of related work has concentrated on leveraging
joint multi-lingual information to improve the performance of



semantic similarity/relatedness models.

Faruqui & Dyer[4] use the distributional invariance across
languages and propose a technique based on canonical cor-
relation analysis (CCA) for merging multi-lingual evidence
into vectors generated in monolingual fashion. The authors
evaluate the resulting word representations on semantic sim-
ilarity/relatedness evaluation tasks, showing the improvement
of multi-lingual over the monolingual scenario.

Utt & Pado[5], develop methods that take advantage of
the availability of annotated corpora in English using a
translation-based approach to transport the word-link-word co-
occurrences to support the creation of syntax-based DSMs.
Navigli & Ponzetto[6] propose an approach to compute se-
mantic relatedness exploiting the joint contribution of different
languages mediated by lexical and semantic knowledge bases.
The proposed model uses a graph-based approach of joint
multi-lingual disambiguated senses which outperforms the
monolingual scenario and achieves competitive results for both
resource-rich and resource-poor languages.

Zou et al.[7] describe an unsupervised semantic embedding
(bilingual embedding) for words across two languages that
represent semantic information of monolingual words, but
also semantic relationships across different languages. The
motivation of their work was on the difficulty of identifying
semantic similarities across languages, especially when word
co-occurrences are rare in the training parallel text. Al-Rfou et
al.[8] produced multi-lingual word embeddings for about 100
languages using Wikipedia as the reference corpora.

Freitas et al.[9] investigate how different distributional se-
mantic models built from corpora in different languages and
with different sizes perform in computing semantic similarity
and relatedness tasks. Additionally, they analysed the role of
heavyweight Google and Bing machine translation approaches
to support the construction of better distributional vectors and
for computing semantic similarity and relatedness measures
for other languages. This is the most similar work to our
model. Comparatively, this work aims at providing an analysis
of the impact of a lightweight machine translation over an
English DSM and answering the question on what is the un-
derlying MT quality necessary to deliver word vector models
with quality comparable to English.

III. LIGHTWEIGHT MACHINE TRANSLATION

The lightweight MT model is built by processing the set
of source—target word alignments within the parallel corpora
and by computing the w(s|t) word translation table. Given this
alignment, it is quite straight-forward to estimate a maximum
likelihood lexical translation table.

Given a word pair wj,ws in a language L other than English,
the semantic similarity sim(ws,ws) will be calculated by first
collecting all English translations of w; and wy into the sets
T1, T. For a set which is defined by the cross product of 77,
7—2,4the word vectors for each element Tf, 7‘5 are produced
(71', 757). The final similarity score is given by getting the
top-most similarity score sim(73", 7).

sim(wy,wz) = arg max sim(7', 7%7)

i J
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Algorithm 1 describes the lightweight MT model.

Algorithm 1 The algorithm for computing the semantic sim-
ilarity between two words with the translation

W P : word pair (wy,ws2) in a language other than English
71 < Collecting all English translations of w1 from the
Lexical translation table.
To < Collecting all English translations of ws from the
Lexical translation table.
C'P : Cross product of 11 and T
for all pairs € CP do: o

Scores < Calculate sim (71", 757).
end for
Return top-most similarity score in Scores

In many cases, users of distributional semantic models need
to use the word vectors directly instead of the similarity
function (typically the case when using distributional word
vectors as features for a machine learning model). An analo-
gous procedure could be used as a disambiguation mechanism
when looking up single word vectors. In this case, collocated
words in the sentence can serve as a supporting mechanism
for disambiguation.

Algorithm 2 shows the variation of the model for looking
up distributional vectors for a single word.

Algorithm 2 The algorithm for looking up distributional
vectors for a single word as a disambiguation mechanism

SENT : Sentence in a language other than English
for all W € SENT do:
MW« Meaningful words in SENT related to W .
Tw < Collecting all English translations of W from
the Lexical translation table.
for all M € MW do:
Tm < Collecting all English translations of M
from the Lexical translation table.
end for
CP : Cross product of T, and T,
for all pairs € CP do: ‘ A
Scores < Calculate sim(7y,", Tm” ).
end for
Tw < Based on the top-most similarity score in Scores
end for

IV. EXPERIMENTAL SETUP

The experimental setup consists of the instantiation of four
distributional semantic models (Explicit Semantic Analysis
(ESA) [10], Latent Semantic Analysis (LSA) [11], Word2Vec
(W2V) [12] and Global Vectors (GloVe) [13]) in 11 different
languages - English, German, French, Italian, Spanish, Por-
tuguese, Dutch, Russian, Swedish, Arabic and Farsi.



The DSMs were generated from Wikipedia dumps (January
2015), which were preprocessed by lowercasing, stemming
and removing stopwords. For LSA and ESA, the models were
generated using the SSpace Package [14], while W2V and
GloVe were generated using the code shared by the respective
authors. For the experiment, the vector dimensions for LSA,
W2V and GloVe were set to 300 while ESA was defined with
1500 dimensions. The difference of size occurs because ESA is
composed of sparse vectors. All models used in the generation
process the default parameters defined in each implementation.

Each distributional model was evaluated for the task of
computing semantic similarity and relatedness measures using
four human-annotated gold standard datasets: Miller & Charles
(MC) [15], Rubenstein & Goodenough (RG) [16], WordSim-
ilarity 353 (WS-353) [17] and Simlex-999 [18]. As the four
word-pair gold-standards were originally in English, except
for some languages available in previous works [19], [20],
[18], the word pairs were translated and reviewed with the
help of paid professional translators!, skilled in language data
localisation tasks. In the word-pair translation task, in case of
word sense ambiguity, the translators were instructed to select
the senses which are most related to the other word. In order
to support reproducibility and comparability, the datasets are
available on the web?.

As baselines for the lightweight machine translation ap-
proach, we used the Google Translate Service and the Mi-
crosoft Bing Translation Service. The lightweight MT was
generated using three parallel corpora: Europarl, DGT and
OpenSubtitle2016 [21]. Table I shows details of the parallel
corpora size.

The lightweight MT over DSMs was implemented over the
Indra service [22].

V. EVALUATION & RESULTS

A. Lightweight Machine Translation vs. Language-Specific
Models

In the first part of the experiment we evaluate how the
semantic similarity supported by the lightweight MT model
performs in comparison to DSMs built over native language
corpora. The Spearman Correlation (p) between human as-
sessments was calculated for all native-language DSMs and
English lookups supported by lightweight MT [9].

The impact of the MT model can be better interpreted by
examining the difference between the lightweight machine
translation and the language-specific models (depicted in Table
IIT). GLOVE accounts for the largest average percent improve-
ment (78.07%) using the lightweight MT model, while LSA
accounts for the lowest value (12.96%). The remaining models
accounted for substantial improvements (ESA = 13.84%, W2V
= 13.91%).

In terms of improvement per language, Italian achieved the
highest percent gains (98.27%), while German accounts for

!Global Services for Machine Intelligence, Seehttps://www.lionbridge.com/
en-us/global-services-for-machine-intelligence
Zhttps://rebrand.ly/multilingual-wordpairs

TABLE I
DETAILS OF PARALLEL CORPORA SIZE (SCALE OF 106 ).

Parallel Corpora Parameters Europarl DGT  OpenSubtitle2016 All
Source=German Sentence Alignments 2 32 13.9 19.1
T — . Source Tokens 454 48.4 84.7 178.5
arget=English
Target Tokens 53.1 53.1 88.3 1945
Source=French Sentence Alignments 2 3 33.8 38.8
Target:_English Source Tokens 536 577 2146 3259
Target Tokens 51.3 52.8 221.7 3258
e ShANS Sentence Alignments 2 3.2 49.9 55.1
i‘?‘:“f_épf?lf;‘ Source Tokens 27 604 2974 4105
arget=Englls Target Tokens 502 529 320 4231
_ oS Sentence Alignments 2 32 24.9 30.1
SOT“,m‘tl_)‘ér“ff‘fE” Source Tokens 51565 477 2552
ABCEENENS Target Tokens 503 526 160 2629
Source=lItalian Sentence Alignments 1.9 32 26.3 31.4
R Source Tokens 49 54.6 161.1  264.7
Target=English Target Tokens 507 53 1722 2759
Source=Swedish Sentence Alignments 1.9 32 11.9 17
Target=English Source Tokens 422 47.1 69.4 1587
) Target Tokens 46.7 53 812 1809
Source=Dutch Sentence Alignments 2 32 28.8 34
Target=English Source Tokens 51.2 534 1828 2874
) Target Tokens 506 528 1974 300.8

lower results (10.41%). The average improvement for the MT
over the language specific model for each word-pair dataset is
consistently significant: MC = 23.53%, RG = 16.66%, WS353
= 7.44% and SIMLEX-999 = 71.15%. The results shows in
overall the results of lightweight MT outperforms the results
of the language-specific models.

Another aspect that we can observe is with regard to which
language benefited more from the application of the MT
model. The comparative analysis between the models (Table
I) indicates that Spanish is the best-performing language
(0.59), followed by Swedish (0.57). The lowest Spearman
correlation was observed in Dutch (0.50). From the tested
DSMs, W2V is consistently the best-performing DSM (0.61).

In terms of impact of the lightweight model for computing
the Spearman correlation for different gold-standards: MC,
RG and Simlex-999 showed higher percentage improvements
when compared to WS-353. The explanation can be found
in the fact that the three former datasets focus on similarity
computations (thus requiring more sensitive and informative
semantic models) while WS-353 targets semantic relatedness.

B. Google and Bing vs. Lightweight Machine Translation
based Semantic Relatedness

This section provides a comparative analysis of the
lightweight MT model and the Google and Bing Services MT
baselines. The Spearman correlation for the lightweight MT
approach and their difference in relation to Google & Bing
are shown in Table II, IV and V respectively.

In the analysis, word pairs were sent to the baseline machine
translation services which translated them to English. The
translated words were then used to compute the semantic
relatedness using the native English DSMs and their Spearman
correlations with the translated pairs were computed.



TABLE I
SPEARMAN CORRELATION FOR THE LIGHTWEIGHT MACHINE TRANSLATION MODELS OVER THE ENGLISH CORPUS.

GS Model de fr it nl pt sV es Model AVG. GS AVG.
ESA 080 072 070 063 080 072 080 0.74

’e TSA 072 071 067 065 067 080 078 072 076
W2V 080 086 075 072 082 089 087 082 :
GLOVE 079 078 070 061 080 078 082 075
ESA 071 077 068 068 079 073 08l 0.74

RG TSA 060 060 063 062 066 075 072 0.66 o
W2V 075 078 070 075 078 078 086 0.77 :
GLOVE 069 075 070 063 078 076 080 0.73
ESA 046 041 039 044 044 042 041 0.42
TSA 052 043 045 047 045 047 045 0.46

WS35 v 066 050 058 060 059 059 0.60 0.60 0.47
GLOVE 045 039 037 041 042 041 042 04T
ESA 021 016 022 019 023 023 024 021
TSA 020 0.6 020 0.8 021 023 023 0.20

SIMLEX . —g75 021 020 023 022 024 027 027 0.4 0.22
GLOVE 025 020 026 0235 027 027 029 0.5
Tang AVG. 055 053 051 050 0356 057 059 054

TABLE III

DIFFERENCE (%) BETWEEN THE LIGHTWEIGHT MACHINE TRANSLATION MODEL AND THE LANGUAGE-SPECIFIC.

GS Model de fr it nl pt sV es Model AVG. GS AVG.
ESA 1035 3300 2918 798 334 3404 2345 3148

MC LSA 378 2821 327 1003 3376 1504 049 372 26.90
W2V 1570 5927 1492 1732 7878 5552 10.72 36.03 :
GLOVE 3327 2141 8290 5773 1572 3798 1553 3636
ESA 501 3175 879 635 2571 1562 17.52 15.82

RG LSA 777 2671 305 693 5164 1614 4081 19.65 1673
W2V 379 1815 048 1091 4295 1370 17.46 14.13 :
GLOVE 107 2174 2124 1524 2602 2370 1239 17.34
ESA 806 1265 -178 -1920 080 -11.18  7.06 -051
TSA 782 624 1773 502 1440 661 2127 9.87

WS353 - <y 1596 1005 1070 232 1007 2019 11.34 152 6.58
GLOVE 37T 261 686 447 968 653 2694 545
ESA 3030 -1449 4377 2528 1870 1778  8.57 18.56
TSA 3508 2837 4790 655 497 2153 5.14 862

SIMLEX ' —gr5y 007 2635 058 482 084 744 786 5.03 10.26
GLOVE 813 1500 3704 3012 2110 3299 385 19.88
Tang AVG. 1041 1172 1901 945 2230 1960 1334 512

The lightweight MT on average performs equivalently or
better than Google and Bing MT (with the exception of WS353
for Google): Google (MC = 6.08%, RG = 0.62%, WS353 =
-1.53% and SIMLEX-999 = 2.93%), Bing(MC = 27.75%, RG
= 13.38%, WS353 = 545% and SIMLEX-999 = 2.65% ).
A possible explanation for this observed behaviour is that the
baselines are MT models supported by language models which
target the translation of sentences instead of word pairs.

On average the results show that using lightweight MT is
equivalent or slightly better to more sophisticated services.
However, there were significant individual variations across

languages and the baseline MT services. Portuguese and Ger-
man achieved the highest percent gains (12.88% and 9.65%,
respectively), Google MT outperformed the lightweight MT
for French, Dutch and Italian (—8.87%, —7.66% and —2.93%,
respectively). But compared with the Bing MT, Italian and
German achieved the highest percentage gains (31.72%
and 29.04%, respectively), while Bing MT outperforms the
lightweight MT for French and Dutch (—6.78% and —4.70%,
respectively).



DIFFERENCE (%) BETWEEN THE LIGHTWEIGHT MACHINE TRANSLATION MODEL AND THE GOOGLE MACHINE TRANSLATION SERVICE.

TABLE IV

GS Model de fr it nl pt sV es Model AVG. GS AVG.
ESA 3085 443 145 764 4310 706 231 201

MC TSA 570 .08 726 598 655 838 278 148 6.0
W2V 1058 501 783 160 LI 804 <060 750 :
GLOVE 3970 057 491 656 3349 2025 201 122
ESA 1687 205 806 -1124 1612 917 754 463

RG TSA 083 685 1451 1108 -121 1141 1121 2.99 062
W2V 395 481 -I3.08 251 069 299 1480 0.0 :
GLOVE 678 460 1156 1735 1242 1177 780 075
ESA 255 -1569 -1200  -4.63 4120 -520 -348 0.39
TSA 370 <1690 872 <I0.11 1604 706 172 3.06

WS353 - <y 306 539 342 707 612 390 380 083 -1.53
GLOVE 350 1842 <1670 1077 2965 576 0.0 261
ESA 1038 2115 3573 -500 534 330 2574 7.76
TSA 856 2000 1254 0.07 496 051 2030 257

SIMLEX g7 350 1682 336 740 031 502 1602 0.72 2.93
GLOVE 245 C1997 1106 771 472 290 1752 0.74
Tang AVG. 965 887 293 766 1288 395 717 7,03

TABLE V

DIFFERENCE (%) BETWEEN THE LIGHTWEIGHT MACHINE TRANSLATION MODEL AND THE BING MACHINE TRANSLATION SERVICE.

GS Model de fr it nl pt SV es Model AVG. GS AVG.
ESA 7362 691 8299 1292 6840 349 2583 3547

M TSA 3000 339 10406 1221 445 1089 2203 31.93 2275
W2V 3504 1366 6367 642 1684 1261 1527 24779 :
GLOVE 6557 581 5500 895 5801 084 1537 7879
ESA 3329 361 2967 -556 3502 1810 17.07 18.74

G TSA 627 158 3133 583 1102 1931 669 10.05 1338
W2V 2005 114 2507 763 938 1120 871 11,57 ‘
GLOVE 7390 204 2084 858 3083 1957 7147 13.14
ESA 2322 838 609 009 1999 157 -1.28 5.90
TSA 2640 892 1383 5.05 1480 194 560 6.96

WS353 —av 431 567 589 <137 488 155 838 3.58 245
GLOVE 2045 635 327 379 1425 017 084 536
ESA 1474 3142 3073 -1237 234 383 1825 2.63
TSA 7253 3207 593 367 090 546 15.10 045

SIMLEX . g7 7555 2004 806 331 040 406 2074 379 2.65
GLOVE 1084 2734 20.14 577 576 413 17.66 374
Tang AVG. 2904 678 3172 470 1853 5358 1275 23T

C. Word-pair Machine Translation Quality

In order to verify the hypothesis that the translation accuracy
of the lightweight model is equivalent or superior to the
baseline MT models, the quality of the MT was evaluated in
isolation. Tables VI, VII and VIII show the accuracy of all MT
approaches using the translated gold-standard. The accuracy of
the translation of the lightweight MT significantly outperforms
the Bing and Google MT, except for 3 languages, especially
for German (—7.89%).

D. Parallel Corpora Size & MT Quality

Our last analysis focuses on the correlation between the size
of the supporting parallel corpora used to built the lightweight
MT model and the Spearman correlation for each gold stan-
dard, averaged for all models (Figure 2). As the lightweight
MT model works over a word-based lexical table, the model is
more dependent on a parallel corpora with a representative set
of unigram translations instead of a language model which
is able to model phrasal (above bigram) translations. This
shows that the lightweight MT can be potentially transported
to languages with smaller parallel corpora.



TRANSLATION ACCURACY FOR THE LIGHTWEIGHT MT.

TABLE VI

dataset/lang de fr it nl pt SV es GS AVG.

MC 054 0.60 0.61 068 054 0.66 0.65 0.61

RG 048 0.61 056 061 047 0.68 0.64 0.58

WS353 0.83 0.82 075 086 082 0.83 0.80 0.82

SIMLEX 074 071 075 078 0.75 0.74 0.76 0.75

Lang AVG 0.65 0.68 0.67 073 065 073 0.71 0.69
TABLE VII

DIFFERENCE (%) IN TRANSLATION ACCURACY BETWEEN LIGHTWEIGHT MT AND GOOGLE MT.

dataset/lang de fr it nl pt sV es GS AVG.

MC -10.77 210  6.12  -12.20 7.69 3.14 1.91 -0.88

RG -12.35 7.59 3.5 633 1265 370 330 3.57

WS353 -094 358  7.50 090 -7.72 443 -2.13 0.80

SIMLEX <750 487 -045 -145  -6.06 9.01 -4.93 -0.93

Lang AVG -7.839 349 423 -1.60 1.64 507 -0.46 0.64
TABLE VIII

DIFFERENCE (%) IN TRANSLATION ACCURACY BETWEEN LIGHTWEIGHT MT AND BING MT.

dataset/lang de fr it nl pt sV es GS AVG.
MC 12.07 27.68 47.00 17.14 -9.72 1042 9.03 16.23
RG 8.19 -7.06 3821 1.28 -7.20 9.69 8.12 7.32
WS353 3.08 457 274 0.58  0.09 0.17 0.18 -0.46
SIMLEX 287 798 -0.15 -033 -430 -294 4.89 -1.13
Lang AVG 6.55 2.02 2058 4.67 -5.28 433 555 5.49

Simlex-999, WS353, RG and MC Datasets

1.00 @ Simlex-999
m WS353
ES
089 B RG
* MC

Spearman Correlation

17 19.1 30.1 314 32 38.8 55.1

Sentence Alignment

Fig. 2. Correlation between the Spearman correlation values evaluated by
lightweight MT over English-DSM and size of parallel corpora that the sloppy
MT is learned over them.

VI. CONCLUSION

This paper proposed the use of a lightweight Machine
Translation (MT) model over an English Distributional Se-
mantic Model (DSM) as an intermediate layer for the creation
of high-quality multi-lingual distributional word vectors. The
results show that the proposed model consistently outperforms
native language DSMs for word pair similarity evaluation
settings: MC (39.12%) , RG (39.59%), WS-353 (14.22%) and
SIMLEX-999 (113.41%). Additionally, the paper shows that
the lightweight MT model is in the worst case equivalent and
in some cases outperforms state-of-the-art MT systems for the
translation of word pairs.

Future work will concentrate on the analysis of the

suitability of lightweight MT approaches for computing
compositional-distributional over phrasal elements.
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