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DYNAMIC ONTOLOGY FOR SERVICE ROBOTS 

SARANYA KANJARUEK 

ABSTRACT 

Automatic ontology creation, aiming to develop ontology without or with minimal 

human intervention, is needed for robots that work in dynamic environments. This 

is particularly required for service (or domestic) robots that work in unstructured 

and dynamic domestic environments, as robots and their human users share the 

same space. Most current works adopt learning to build the ontology in terms of 

defining concepts and relations of concepts, from various data and information 

resources. Given the partial or incomplete information often observed by robots in 

domestic environments, identifying useful data and information and extracting 

concepts and relations is challenging. In addition, more types of relations which 

do not appear in current approaches for service robots such as “HasA” and 

“MadeOf”, as well as semantic knowledge, are needed for domestic robots to cope 

with uncertainties during human–robot interaction. This research has developed a 

framework, called Data-Information Retrieval based Automated Ontology 

Framework (DIRAOF), that is able to identify the useful data and information, to 

define concepts according to the data and information collected, to define the “is-

a” relation, “HasA” relation and “MadeOf” relation, which are not seen in other 

works, to evaluate the concepts and relations. The framework is also able to 

develop semantic knowledge in terms of location and time for robots, and a 

recency and frequency based algorithm that uses the semantic knowledge to locate 

objects in domestic environments. Experimental results show that the robots are 

able to create ontology components with correctness of 86.5% from 200 random 

object names and to associate semantic knowledge of physical objects by 

presenting tracking instances. The DIRAOF framework is able to build up an 

ontology for domestic robots without human intervention. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background and Motivations 

According to the International Federation of Robotics (IFR), a service robot 

operates semi or fully autonomously to perform services useful to the well-being 

of humans and equipment, excluding manufacturing operations (IFR, 2015). 

Service robots are being used in households, hospital, nursing homes, workplaces, 

etc. For example, household robots can take over household chores, personal 

assistant robots can help elderly care or handicapped and surgical robots can 

improve the accuracy in surgical procedures.  

Household robots require knowledge about household objects and their properties 

to implement tasks given in the commands. There are techniques available for 

developing knowledge of objects that exist in a static manner in household 

environments, such as KNOWROB (Tenorth and Beetz, 2009) and ORO 

(Lemaignan et al., 2010). However, household environments where the robots 

work can be dynamic. This is because robots and their human users share the 

same space and humans can introduce or remove objects into or from the space 

without informing the working robots. This means that the robots need to 

continuously develop their knowledge about objects and the properties of the 

objects. 

Ontology is one of the five basic assumptions for knowledge representation 

(Davis et al., 1993). Ontology specifies knowledge- representation structure in a 

knowledge base and enables knowledge sharing. For household robots, the 

ontology specifies what individual household objects should be represented and 

how the objects are related with one another, and it enables knowledge sharing 

between different sub-domains, such as sharing common understanding of the 

context information between users, devices and services in smart home 

environment (Gu et al., 2004), agents and services in pervasive computing 
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environment (Wang et al., 2004), and between the robots and humans (Haidegger 

et al., 2013).  

Ontology development is an iterative and dynamic process (Gargouri, 2010). 

Ontologies are widely used in robotic applications (Paull et al., 2012). For 

example, the RoboEarth European project (Waibel et al., 2011), the Proteus 

project (Martinet and Patin, 2008), and the A3ME ontology (Herzog et al., 2011). 

Ontology presents the domain knowledge to be transferred and shared between 

different groups of humans, robots and other devices. Ontologies have been 

benefiting robotics to describe and to define concepts, properties and relations 

between concepts. They share the concepts between robots or between humans 

and robots.  

The knowledge base development techniques use ontologies which are created by 

domain experts (Tenorth, 2011, Lemaignan et al., 2010, Suh et al., 2007). These 

ontologies, known as manual ontologies, are manually encoded before robot 

deployment. Within the household dynamic environments, the manual ontology 

can lead to situations where the robots are not able to recognise objects that do not 

exist in the predefined and static ontology and, hence, are not able to understand 

human user commands that are related to these objects. To support the robots to 

continuously develop their knowledge, it is necessary to develop techniques that 

enable the robots to automatically generate ontology, known as dynamic 

ontology.  

In general, a dynamic ontology faces three challenges. The first is to understand 

objects that are unseen before. The second is to create an ontology with limited 

human involvement. The third challenge refers to associating semantic knowledge 

in order to represent descriptions of instances of concepts, properties and values. 

The common practice (Noy and McGuinness, 2001) for enabling robots to 

understand objects that are unseen before is to facilitate the robots to learn about 

the objects from all available information resources (Tenorth et al., 2012). This 

involves the identification of the most relevant information and knowledge from 

various sources, the collection of the information, the definition of new concepts 



 

3 

 

and the relations between the new and the existing concepts and keeping the 

ontology manageable.  

Methods for creating ontology components can generally be classified into 

statistics-based, linguistics-based and logic-based. Statistics-based methods for 

creating concepts focus on the identification of lexicons and on the measurement 

of the co-occurrence between lexicon units, with information obtained through an 

information retrieval process. Statistics-based methods for creating relations rely 

on clustering concepts into groups to construct a hierarchy.  

Linguistics-based methods for creating concept focus on semantic lexicons. 

Concepts and relations between concepts are retrieved from the collections of 

predefined concepts and relations. Linguistics methods for creating relations point 

to syntactic structure analysis.  

Logic-based methods for creating ontology focus on inductive logic programming 

and logical inference. They have connections with advances in knowledge 

representation, relation creation and axiom creation. Rules in inductive logic 

programming are derived from existing collections of concepts and relations. 

Relations in logical inference are derived from existing collections using rules.  

In this research, a combination method of linguistics-based and statistics-based 

methods is created for concept creation. First, a linguistics-based method is used 

to create concepts. If a concept cannot be found by the linguistics-based method, 

then a statistics-based method is applied to create concepts. For creating relations, 

this research relies on information retrieval due to the availability of a large 

number of predefined relations between concepts. 

In existing works, relation creation focuses on the “is-a” relation. This research, in 

addition to the “is-a” relation, also creates “HasA” and “MadeOf” relations. The 

“HasA” and “MadeOf” relations are useful for service robots. The “HasA” and 

“MadeOf” relations indicate the meaning between two concepts. The “HasA” 

relation gives the “has” meaning between two concepts and the “MadeOf” relation 

gives the “made of” meaning between two concepts. They can be used to create a 
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relation between two concepts. Similar objects can be found by searching the 

“HasA” relation and “MadeOf” relation between concepts. 

In existing works, semantic knowledge about instances is not considered. This 

research also associates semantic knowledge, such as location and time, with 

instances in the robot ontology. Robots need knowledge about instances to 

perform tasks and to share between human users and robots in the dynamic 

environment. 

1.2 Aim and Objectives 

The aim of this research is to develop a systematic architecture and algorithm for 

domestic robots to automatically create the ontology components and to associate 

the semantic knowledge of physical objects in dynamic environments. The 

objectives are: 

 To identify the most suitable keywords in finding out category names 

 To create more kinds of relation such as “HasA”, “MadeOf” 

 To include semantic knowledge into robot ontology 

 To integrate concept component creation and semantic knowledge into a robot 

ontology framework. 

1.3 Research Methodology 

In order to understand the state of the art of dynamic ontology for service robots, a 

literature review is conducted. Research papers are selected from the following 

areas: methods of ontology development for service robots, ontology learning 

from text, semantic knowledge and evaluation of ontology learning.  

This research applied the ontology learning from text technique in order to 

automatically build the ontology for service robots in a dynamic environment. The 

bottom-up strategy is implemented to identify the most specific concepts and to 

generalise them into more abstract concepts in order to create a concept hierarchy 
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and the relations between concepts by using WordNet (Miller, 1995), ConceptNet 

5 (2015) and Web Documents (Embley et al., 1999).  

The data and information retrieval method is implemented in order to retrieve the 

category name for the unknown physical object name and to categorise it into the 

concept hierarchy by using Web Documents and WordNet. The category name of 

the unknown object name becomes a concept in WordNet for building the concept 

hierarchy into the robot ontology. 

The method for associating semantic knowledge represents the surrogates for 

things in the real world. The properties and their property values represent 

semantic knowledge of the physical objects for sharing semantic knowledge 

between human users and robots in the environment. 

The evaluation method used to query and evaluate the ontology is presented in 

order to assess the structure of ontology before applying it to robot applications.  

1.3.1 Assumptions 

This thesis assumes that all physical object names and their property values 

acquired from the robot recognition are stored in text format. The methods for 

handling the dynamic ontology consist of the ontology learning from text by using 

WordNet, ConceptNet and Web Documents for creating the ontology 

components. WordNet provides a lexical database for the English language. It is 

suitable for this work because it provides synonyms to create taxonomic relations 

for constructing the concept hierarchy. The “HasA” and “MadeOf” relations are 

created between a newly created concept and an existing concept in order to 

afford the semantic meaning by using ConceptNet. Furthermore, Web Documents 

provides data to solve the problem of the unknown object names which do not 

appear in WordNet. In order to learn the unknown physical object names, the 

category name is retrieved. The semantic knowledge associates with instances of 

concept. The correction of the robot ontology is assessed by using query and 

ontology evaluation in order to evaluate the concept hierarchy in the robot 

ontology.  
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1.3.2 Proposed Experiments for Assumption Testing 

In order to test the hypothesis, a series of experiments are designed in this 

research. The experiment on creating ontology components presents the concept 

hierarchy of concepts, relations between concepts, instances of concepts, 

properties and values. The experiment is to associate semantic knowledge of 

instances. Before using ontologies in a robot application, the ontology is evaluated 

to guarantee the quality of its contents.  

1.3.3 Scope of the Research 

The research focuses on creating algorithms for constructing a dynamic ontology 

for service robots. This research assumes that all physical object names and 

property values are retrieved in text format. Text should become a valuable source 

for creating ontology components and associating semantic knowledge for service 

robots. The research considers the physical object names in a household 

environment. The research focuses on handling the process of learning and 

building an ontology from text for service robots. 

This framework focuses on noun, proper noun and adjective parts of speech from 

text labels of physical objects. The framework cannot solve the problem of the 

physical object with mismatched labels or which are unlabelled. The ontology 

learning from text identifies terms, concepts, taxonomic relations and non-

taxonomic relations from textual information. Terms are object names and 

property values are text from input process. Concepts are physical entities in 

WordNet.  

Taxonomic relations are to construct a concept hierarchy (“is-a” relation) in 

WordNet. Non-taxonomic relations are the interactions between concepts 

(“HasA” relation and “MadeOf” relation) in ConceptNet. The concept hierarchy 

and concepts are created and taxonomic relations, “is-a” relation, are retrieved 

hypernyms from WordNet in order to create taxonomic relations between 

concepts. The semantic relation is obtained from ConceptNet in order to create 

non-taxonomic relations.  



 

7 

 

The category name is retrieved from Web Documents. This category name must 

only be a physical entity concept in WordNet. The semantic knowledge associates 

after the concept hierarchy and concepts are built in an ontology. It represents the 

real- world objects as instances of the concept.  

Similar physical objects are recognised in different scenes. This framework 

cannot tackle the uniqueness of that particular object. For example, there are two 

water bottles (bottle1, bottle2) in the same scene but they occur in different 

locations. In the next recognition process, there is one bottle in the environment. 

This framework cannot guarantee that it is the same bottle: bottle1 or bottle2. It 

assumes that this is a new instance of bottle in the environment at that time. 

1.4 Thesis Organisation 

Chapter 1 explains the rationale for the current study, the research setting and the 

thesis structure. The rest of this thesis is organised into six chapters. 

Chapter 2 is a literature review on the state of the art of related works and 

describes the research methods which are chosen for this study, and explains the 

reason behind this choice.  

Chapter 3 presents the Data-Information Retrieval based Automated Ontology 

Framework. It consists of seven main modules. There are two phases: the 

automated ontology and the use of the automated ontology. The automated 

ontology involves four modules: Data Input, Automatic Ontology, Data and 

Information Retrieval and Semantic Knowledge Acquisition. The use of the 

automated ontology consists of three modules: Query, Robot Ontology and Result 

Evaluation. This chapter also explains the framework design which is applied to 

this study. 

Chapter 4 presents the Automatic Ontology Process. Automatic Ontology consists 

of five modules: Concept Creation, Relation Creation, OWL Creation, Instance 

Creation and Property Creation. 
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Chapter 5 describes the Semantic Knowledge Acquisition Process. The instances 

of concepts, properties and values are represented in the dynamic environment in 

order to provide and to share semantic knowledge between service robots and 

humans. 

Chapter 6 presents the Query processes, Result Evaluation processes and system 

validation. These are used to query and evaluate the ontology in order to assess 

the content of the ontology. Moreover, system validation provides the validation 

of the framework via the experiments. 

Chapter 7 presents the final conclusions and contributions. Further work is also 

proposed in this chapter, with respect to discussions on the limitations.  
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CHAPTER 2 LITERATURE REVIEW 

 

This chapter provides a literature review, the method of development of an 

ontology for a service robot, including the manual construction methods (Section 

2.1.1), the existing ontology methods (Section 2.1.2) and the ontology learning 

methods (Section 2.1.3). The next section is ontology learning from text which 

consists of three techniques: statistics-based (Section 2.2.1), linguistics-based 

(Section 2.2.2) and inductive logic programming (Section 2.2.3). The semantic 

knowledge (Section 2.3) presents the previous work and the results. Finally, the 

evaluation of ontology (Section 2.4) indicates the practical definition of the 

existing evaluation approaches. 

2.1 Methods of Ontology Development 

In this section, the methods for development of ontologies are discussed and 

compared. The methods of ontology construction can be classified into three 

methods: manual construction methods, existing ontology reusing methods and 

ontology learning methods (Yu and Shen, 2013). 

2.1.1 Manual Construction Methods 

In this section, the manual methods for the development of an ontology are 

discussed and compared. The first sub-section gives the general purpose practical 

manual method. The latter sub-section provides the detail of the specific method 

for a robot. 

The definition of ontology is taken from Information Science. Gruber’s definition 

of ontology as a formal explicit specification of a shared conceptualization 

(Gruber, 1993) has been utilised by many researchers. Shared conceptualization is 

commonly accepted understanding for an abstraction of the real world. A formal 

specification means the machine readability of computational semantics. Explicit 

definitions of concepts, relations and constraints are distinctly given. Ontology is 
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a study of existence. An ontological commitment is the category of things as 

determined by the designer or knowledge engineer (Sowa, 2000).  

In general, the classical methodologies which built ontologies from scratch are 

called manual construction. Noy and McGuinness (2001) point out that there are 

seven processes of iterative design of the ontology lifecycle. To start with, the 

domain and scope of ontology are determined. The second process considers the 

reusing of existing ontologies. The next is defining the important terms in 

ontology. The classes and the class hierarchy are defined in the next step. After 

that, the properties of classes are defined. The sixth process defines the facets of 

slots. The final process creates the instances.  

The Cyc (Lenat et al., 1990) method performed manual coding of articles and 

pieces of knowledge by hand. There are two tasks in the Cyc method: (1) the 

development of a knowledge representation and top-level ontology containing the 

abstract concepts; (2) the representation of the knowledge of different domains for 

building the Cyc KB (knowledge base). Cyc presents the consensus knowledge 

about the world. It is too large and lacks domain-specific knowledge.  

Uschold and King’s (1995) method accomplished four tasks. Identifying the 

purpose of ontology is the first task. After that, building the ontology, evaluating 

the ontology and writing the document of that ontology. For the purpose of 

identifying the concepts in an ontology, Uschold (1996) proposed three methods 

to identify the concepts: bottom-up method, top-down method and middle-out 

method. The bottom-up method identifies the most specific concepts and then 

generalises to the general concepts. The most general concepts are identified and 

the specific concepts are specified in the top-down method. The middle-out 

strategy identifies the core basic term, then specifying and generalising the 

concepts as necessary. The bottom-up strategy has been chosen as the method for 

building the concept hierarchy in the Automatic Ontology process. 

This sub-section provides the detail of specific methods for a robot: KNOWROB 

(Tenorth and Beetz, 2009), ORO (Lemaignan et al., 2010) and the ontology-based 

unified robot knowledge framework (Suh et al., 2007).  



 

11 

 

The basic KNOWROB ontology is the manual construction mode with 

encyclopaedic knowledge about the household domain for a robot. It was adopted 

from OpenCyc (Lenat, 1995) which is extended Cyc. Therefore, it was manual 

coding by humans that is not suitable for a dynamic environment.  

It can be noted that the Open Robots Ontology (ORO) is designed as a domain-

specific common-sense ontology for a service robot. The knowledge storage 

service can be represented by Resource Description Framework (RDF) and Web 

Ontology Language (OWL). A new agent is identified by the ORO server and the 

ORO server automatically creates a new, separate, in-memory OWL model. There 

are no methods for large-scale knowledge acquisition presented for creating 

knowledge in ORO.  

The knowledge is encoded manually by humans. It is not addressed in a learning 

system. Ontology-based unified robot knowledge framework is a Prolog-based 

knowledge representation modelling objects and perceptual concepts as well as 

actions and situations. It consists of two parts: the knowledge description and the 

knowledge association. The knowledge description assigns Spaces, Contexts, 

Objects and Actions, and features knowledge classes for robot data and 

environments. The knowledge association constructs the relationships between 

knowledge descriptions. It uses logical inference, Bayesian inference and 

heuristics method. The knowledge manager handles all requests about the 

ontology including ontology creation, retrieval, and manipulation. After model 

knowledge description and knowledge association, a robot ontology was designed 

using OWL with the Protégé ontology editor (Lim et al., 2011).  

A major problem of this framework as shown in the above is the manual creation 

process. It can be seen that, manually constructed ontology is a time-consuming 

task and usually requires a domain expert to declare all domain concepts, concept 

hierarchy and the relations between concepts.  
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2.1.2 Existing Ontology Reuse Methods 

In this section, the existing ontology reuse methods known as ontology re-

engineering methods are discussed. Ontology re-engineering is the process of 

retrieving and mapping a conceptual model of an implemented ontology to a more 

suitable conceptual model which is re-implemented. There are three activities of 

re-engineering: reverse engineering, engineering restructuring and forward 

engineering.  

The objective of reverse engineering is to derive the ontology conceptual model 

from its implementation code. The set of intermediate representations proposed by 

the extension of METHONTOLOGY method (López et al., 1999) is used to build 

a conceptual model. The restructuring aims to reorganise the initial concept model 

into a new concept model. It consists of two phases: analysis and syntactic. The 

general purpose of the analysis phase is to evaluate the ontology from a technical 

point of view. The synthesis phase tries to correct the ontology after the analysis 

phase. This phase also relates to configuration management, which keeps a record 

of the ontology evaluation and strict change control. Finally, forward engineering 

aims to output a new ontology implementation on the basis of the new conceptual 

model. 

There have been efforts to reuse existing ontologies. This needs ontology mapping 

and other methods to match the different standards of ontologies. The 

METHONTOLOGY method is an example of existing ontology reuse. It executes 

the candidate ontologies to be reused by emphasizing the ontology components: 

concepts, properties, relations, constants, formal axioms, rules and instances. 

Tasks of the conceptualization activity of METHONTOLOGY involve eleven 

tasks: creating the glossary of terms, creating the concept taxonomies, creating ad 

hoc binary relation diagrams, creating concept dictionary, describing ad hoc 

binary relation, describing instance attributes, describing class attributes, 

describing constants, describing formal axioms, describing rules and describing 

instances. However, this method retains the problem of a manually constructed 
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ontology. Moreover, the different standards of ontologies need a process of 

mapping and merging that makes this task complex and time-consuming. 

2.1.3 Ontology Learning Methods 

The major problems of a manually constructed ontology are it being time-

consuming and requiring a domain expert to declare all domain features. Ontology 

learning is considered an important step in an ontology development cycle. It 

presents an automated or a semi-automated process of ontology development. The 

following discussion shows the systems that have been implemented by automatic 

and semi-automatic process of ontology development. The ontological elements 

are extracted automatically from different data sources (Buitelaar and Cimiano, 

2008). Ontology learning methods can be divided into four approaches: ontology 

learning from texts, ontology learning from instances, ontology learning from 

schemata and ontology learning for interoperability (Maedche and Staab, 2000). 

Ontology learning from texts is applied in this research, as described in section 

2.2. 

The robot knowledge processing framework, known as KNOWROB includes 

robot control programs and reasoning methods which connect to the robot’s 

perception and action systems. The knowledge acquisition from the Web in the 

KNOWROB ontology is a semi-automatic process that created the information 

about objects from the www.germandeli.com website. It provided an ontology of 

more than 7,000 object classes and information about objects such as weight, 

price, country of origin, perishable(ity) and heat sensitive(ity) (Tenorth, 2011).  

The purpose is to solve the main problems of the abstract concepts. The abstract 

concepts are not linked to the robot’s perception and actuation systems. Moreover, 

the observations are combined with encyclopaedic and common-sense knowledge 

that are based on state-of-the-art semantic web technology in order to reuse 

existing sources of knowledge. The knowledge processing system presents classes 

and properties. They are represented in the OWL using Prolog predicates. The 

class level of modelling in description logics contains abstract terminological 

knowledge, organised in a taxonomic structure. The instance level of modelling 
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represents concrete and physical objects. The encyclopaedic knowledge models 

classes of things in the environment and provides the general categories the robot. 

The structure and some of the concepts are inspired by the Cyc ontology (Tenorth 

and Beetz, 2013).  

The DYNAMO-MAS tool modifies the existing ontology from text in order to 

reduce the need for human intervention (Sellami et al., 2013). It was developed 

from the DYNAMic Ontology for information retrieval (DYNAMO) project. 

There are three corpora from different domains: archaeology techniques, 

automotive diagnosis and software bug reporting. The process consists of four 

steps: retrieving the new document from a corpus, DYNAMO Corpus Analyser, 

DYNAMO Multi-Agent System, and human-evaluated ontology. The Corpus 

Analyser implemented the term extractor, a lexical relation generator and a lexical 

relation selector from the YaTeA system (Aubin and Hamon, 2006). The output 

shows < Ti, Rel, Tj > triplets where Ti and Tj are candidate terms and Rel presents 

a lexical relation label. A confidence score (Q, I) is computed for each triplet. Q 

shows the quality of the relation and I present the number of occurrences of the 

relation. The relation extractor generated four types of lexical relation: 

Hypernyms, Meronymy, Synonymy and Transverse relations. The DYNAMO-

MAS has two evaluation methods: quality evaluation and performance evaluation. 

The quality evaluation compared a manual ontology development with an 

automatic ontology development. The time performance and scalability when new 

documents are added to the corpus was measured. The results showed the 

percentage of term proposal appearing in the Artal case-study, the Arkeotek 

dataset and the Actia dataset as 67%, 68.75% and 16.98%, respectively. The 

results showed the percentage of concept proposal appearing in the Artal case-

study, the Arkeotek dataset and the Actia dataset as 56%, 59.26% and 22.22%, 

respectively. According to the reported experimental results, Knowledge of 

DYNAMO-MAS is limited and other knowledge sources should be applied to 

DYNAMO-MAS to improve the results. 
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2.2 Ontology Learning from Texts 

Ontology learning from texts is based on the use of text corpora. A corpus is a set 

of texts representative of a domain. It is prepared to be processed by a computer 

and is accepted by the domain expert (McEnery and Wilson, 2001). Figure 2.1 

was proposed by Buitelaar et al. (2005) in order to classify an ontology learning 

approach according to the task. These tasks consist of term extraction, synonym 

discovery, concept formation, concept hierarchies, relations and rules. 

 

Figure 2.1 Ontology Learning Layer Cake (Buitelaar et al., 2005) 

The first task of ontology learning is term extraction, which determines the 

relevant phrases and terms for specific domain. A term layer is a prerequisite and 

the first step of ontology learning from text. Term extraction applies the linguistic 

processing. It uses a part-of-speech (POS) tagger to identify the internal semantic 

structure over the domain. The second, synonym layer focuses on how to 

appropriately discover synonyms of terms. Ambiguous terms can appear in a 

particular domain. The layer integrates WordNet for retrieving the English 

synonyms and EuroWordNet for getting multilingual synonyms. The next layer, 

the concept formation task, consists of three parts: concept intension, concept 

extension and lexical realization. Concept intension presents a description of the 

concept from a dictionary. Concept extensions show a set of instances of the 

concept. The lexical realization is the term defining the concept from the corpus.  

Buitelaar defined a concept as (ℑ, Σ) ⊕ 𝐿  where ℑ  is the intension of the 

concepts. An intensional definition provides the meaning of a term by specifying 
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all the properties (Keizer et al., 2000). The necessary and sufficient properties are 

grouped for the set of definition. Σ is a set of instances of a concept. L presents its 

linguistic realization. The concept learning consists of the derivative of formal and 

informal definitions. The formal definition might be a textual description, whereas 

the informal definition obtains the extraction of relations between a particular 

concept and other concepts. Buitelaar also presented three paradigms for 

taxonomies from text: the lexico-syntactic pattern application, the Harris 

distributional hypothesis and the information retrieval community. The lexico-

syntactic pattern is used for getting hyponymy relations. It has reasonable 

precision results but the recall result was very low. The Harris distributional 

hypothesis presented the context of synonym extraction and term clustering. The 

information retrieval paradigm focused on a document-based notion of term 

subsumption (Sanderson and Croft, 1999). The fifth layer is the relations layer. 

Ontology involves a hierarchy backbone (is-a relation) and non-hierarchical 

relations. Finally, rules are axiomatic definitions of concepts. 

Lin and Pantel (2001) proposed the Extended Distributional Hypothesis. If the 

paths in dependency trees have similar meaning, they are liable to connect similar 

sets of words. The algorithm generates inference rules by finding similar paths. 

The learning and construction of complex axioms approach presented three 

modules for symbolically obtaining axioms from text (Ribeiro et al., 2014). The 

syntactic parsing module applied Probabilistic Context-free Grammar for 

analysing the sentences. The semantic parsing module consists of four activities: 

term extraction, concatenation, phrase breaking and relations extraction in order to 

detect the terms and relations between them. The hardest part of the ontology 

creation process is the OWL DL Axioms module. The first step is construction of 

taxonomic relations: the pattern <NPs> <VP> <NPs> is applied where <VP> is a 

verb (is a/an, is or are). Next, construction of non-hierarchical relations 

implemented <NPs> <VP> <NPs> pattern where <VP> is a verb other than (is 

a/an, is or are). The verification of conjunctions (and) and disjunctions (or) is 

required in order to verify and analyse the pattern. The last step is detection of 

negations. The two hierarchical axioms, one union between concepts (unionOf) 

and one negation of properties (complementOf) are produced as axioms. The 
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result shows that need of automatic creation of expressive axioms is adequate to 

create ontologies with Attributive Concept Language with Complements (ALC) 

expressivity. 

Al-Arfaj and Al-Salman (2015) classified ontology learning approaches according 

to several main dimensions: type of knowledge resources, level of automation, 

learning targets, purpose and learning techniques. There are three types of 

knowledge resource from which to learn an ontology: structured, semi-structured 

and unstructured data. Structured data is defined knowledge models including 

existing ontologies and database schema. Semi-structured data is related to the 

mixed structured data with free text such as Web pages, Wikipedia, dictionaries 

and XML documents. Finally, textual content is called unstructured data. There 

are two levels of automation: semi-automation with user intervention and full 

automation without user intervention. The learning targets describe the concepts 

and axioms which identify the criteria of concepts and relations. The purpose of 

ontology learning can be created from scratch or by updating an existing 

ontology.  

There are several approaches for the partial automation process such as natural 

language analysis and machine learning technique. Maedche and Staab (2000) 

classify the ontology approaches as: ontology learning from texts, ontology 

learning from instances, ontology learning from schemata and ontology learning 

for interoperability. This research focuses on handling the process of ontology 

learning from text. 

Ontology learning from text (Wong et al., 2012) is an automatic or a semi-

automatic process of ontology construction and maintenance, identifying terms, 

concepts, relations, and axioms from textual information. There are five types of 

output in ontology learning: terms, concepts, taxonomic relations, non-taxonomic 

relations and axioms. Terms are defined as lexical realization which are single 

word or multi-word and relevant to a domain. Concepts are created by grouping 

similar terms. A taxonomic relation organises concepts into a hierarchy. Non-
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taxonomic relations are the interactions between the concepts. Axioms are 

sentences that examine and define the correctness of the ontology.  

An automatic or semi-automatic tool for ontology construction has not yet 

reached the goal of fully automating the ontology development process over the 

past years (Barforush and Rahnama, 2012). Barforush and Rahnama pointed out 

three types of input used by a learning process: ontology learning from structured 

data, semi-structured data and unstructured data. An ontology learning process 

extracts the structured information from sources such as database schemas, 

existing ontologies and knowledge bases. The semi-structured data provides the 

semantic information, such as WorldNet (Miller, 1995), HTML and XML 

documents. Most of the available knowledge is in the form of unstructured data 

for learning input. Examples of unstructured data are natural language texts, word 

documents and text documents. An ontology creation method consists of concept 

learning and taxonomy construction, and identifying non-taxonomic relation.  

The first objective of concept learning and taxonomy construction is to retrieve 

terms and create a hierarchy. There are three learning process approaches: 

document-based, synonym extraction and pattern-based. The document-based 

approach focuses on concept formation (Sanderson and Croft, 1999). Synonym 

extraction presents terms which share similar syntactic contexts (Bisson et al., 

2000; Caraballo et al., 1999). The pattern-based approach is a heuristic method 

using regular expressions to find taxonomic relations expressed in texts, for 

example, Hearst patterns (Hearst, 1992; Auger and Barrière, 2008).  

The second objective of concept learning and taxonomy construction is to 

construct a taxonomy of concepts using is-a relations, for example, clustering 

(Bisson et al., 2000), WordNet-based, lexico-syntactic pattern (Maynard et al., 

2009) and statistical analysis (Suchanek et al., 2006). Identifying non-taxonomic 

relations is the task to detect related concepts and consider how these concepts are 

related. Examples of learning relationship from text depend on the degree of 

generality of the relation extraction. Berland and Charniak (1999) purposed the 

subtype-supertype relations (part-of) learning approach.  
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The RelExt is an automatic approach identifying a pair of concepts connected by a 

relation from an existing ontology (Schutz and Buitelaar, 2005). This work has 

not been applied to axiom and rule learning. Examples of axiom and rule learning 

are: Völker proposed the method for automatically building complex class 

descriptions (Völker et al., 2007) and taxonomy refinement (Völker and Rudolph, 

2008). Automatic approaches for axiom creation on WordNet have been presented 

by Navigli and Velardi (2006), Navigli and Velardi (2008) and Moldovan et al. 

(2007).  

Barforush and Ali (2012) classified the new ontology creation methods into five 

methods: an iterative view, a multilingual view, a web- based knowledge 

acquisition view, a process engineering view and a design pattern view. An 

iterative view involves three resources: a corpus of texts, a set of lexico-syntactic 

and a set of RDF triples (Brewster et al., 2007). Hjelm (2009) proposed a 

multilingual view method in order to improve the robustness and predictability of 

evaluation measurement. This method merged information across different 

languages and presented an automatic evaluation of a learning ontology.  

Sánchez (2009) presented a web-based knowledge acquisition approach from the 

web which consists of automatic, unsupervised and domain-independent 

techniques. The main processes of the method are the extraction and selection of 

related terms, the taxonomic organisation, the non-taxonomical relationship 

labelling and the named entities, class features detection. A process engineering 

view (Tempich et al., 2008) presented the ontology learning process in terms of 

activities, actor, inputs, outputs and support tools. The method consists of eight 

processes: feasibility study, requirements specification, selection of information 

source and ontology learning, learning preparation, learning execution, ontology 

evaluation and ontology integration (Gangemi, 2005).  

Small ontologies connect between problem types and design solutions (Presutti 

and Gangemi, 2008). Barforush and Rahnama (2012) also proposed the extended 

framework dimension, sub-dimensions and values. This framework consists of six 

sub-dimensions: element learning, starting point, learning method, pre-processing, 
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the result and evaluation. Element learning is classified into three elements: 

concept, relation and axiom. Instances are sub-classes of concept and relation has 

two types: taxonomic and non-taxonomic. The second dimension is starting point: 

prior knowledge and input. Prior knowledge consists of ontology and lexicon.  

The input type is divided into structured data, semi-structured data and 

unstructured data. The learning method dimension consists of category, task and 

degree of automation. The learning method category has supervised/unsupervised 

and online/offline. The learning method approach is classified into statistic 

approach, logical approach, linguistic-based, pattern/template matching and 

combined approach. The learning method task consists of classification, 

clustering, rule learning, concept formation and ontology population. Degree of 

automation can be automatic and semi-automatic or cooperative, as shown in 

Figure 2.2. 

 

Figure 2.2 Framework dimension (Barforush and Ali, 2012) 

Gacitua (2008) proposed OntoLance, which is a framework for an ontology 

learning technique. This framework can be classified as an automatic method of 

ontology learning from unstructured text and the output structure is an ontology. 



 

21 

 

Wong et al. (2012) classified ontology learning techniques into statistics-based 

(Section 2.2.1), linguistics-based (Section 2.2.2) and logic-based (Section 2.2.3) 

based on the tasks to be accomplished, as given in Table 2.1 which compares 

methods of ontology learning from texts.  

2.2.1 Statistics-based Techniques 

The statistics-based techniques are derived from information retrieval, machine 

learning and data mining. Syntagmatic similarity is the association between terms. 

There are two types of syntagmatic similarity, namely, semantic similarity and 

semantic relatedness. The concept of semantic similarity is more specific than 

semantic relatedness and measures the degree to which two concepts are similar. 

Two concepts are connected through hierarchical is-a relations (Wong et al., 

2012). 

The techniques of machine learning and statistical natural language processing 

were applied to construct the domain ontology semi-automatically and extract 

domain concepts from a corpus. The acquisition of domain concepts includes 

extracting terminology from texts, synonym recognition and domain concept 

selection using an n-gram approach and matching method to retrieve synonyms 

from professional dictionaries. The improved algorithm of hierarchy clustering 

constructed the hierarchy relationships and the criterion of high cohesiveness and 

low coupling is applied in the measure of clustering results. The natural language 

processing is utilised to extract subject, predicate and object of sentences from a 

Chinese corpus. Finally, the system is implemented by Jena API interface (an 

open source Semantic Web framework for Java language). The results showed 

that the revised hierarchy construction algorithm decreases the depth of clustering 

and increases the leaves of nodes. However, the class caption cannot be 

automatically named in the hierarchy relation reorganisation and cannot extract 

logical relations from a corpus (He and Hou, 2008). 

The framework of a semi-automatic domain ontology system (Dan et al., 2010) 

consists of three parts: the extraction module of domain concepts and the 

extraction module of taxonomy and non-taxonomy relations among domain 
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concepts. The domain concept extraction applied a statistical analysis method in 

order to extract compound words from the Chinese Lexical Analysis System 

developed by the Institute of Computing Technology, Chinese Academy of 

Sciences. Moreover, there are three parameters which validate the compound 

words consisting of mutual information, context dependency analysis and domain 

relativity analysis. The extraction of relations is implemented by generalised 

suffix tree and clustering. The algorithm based on association rules mining is 

applied to extract related concept pairs. The results showed compound and 

common words from the extraction process. However, this data source was 

chosen manually and the extracted compound words were not use characteristics 

of the language. 

2.2.2 Linguistics-based Techniques 

The linguistics-based techniques depend on natural language processing. Some of 

the techniques include semantic lexicons, lexico-syntactic and part-of-speech 

tagging. The semantic lexicons implement a large collection of predefined 

concepts and relations, such as WordNet (Wong et al., 2012). 

This semantic robot service (Ukai et al., 2009) integrates multiple ontologies, user 

request, robot service, robot function, robot structure, object, insertion task and 

recovery task ontologies. The description language of the ontology used OWL to 

describe the four purposes of ontology: Ontology for User Objectives, Ontology 

for User Methods, Ontology for Tools and Ontology for Instances of Tools. The 

Ontology for User Objectives describes the relation between objects and user 

actions. The Ontology for User Methods is used for explaining the relation 

between user actions and user primitive actions. The Ontology for Tools shows 

the relation between user primitive actions and concept tools. The Ontology for 

Instances of Tools depicts the relation between concept tools and instance tools in 

the actual rooms.  
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Table 2.1 Comparison of methods of ontology learning from texts 

Method Research Method to create concepts and relations Disadvantage 

Statistics-

based 

He and Hou, 2008 

The domain concept selection uses an n-gram 

approach and matching method to retrieve 

synonyms from professional dictionaries. The 

construction of hierarchy relations uses the 

relevancy algorithm to calculate the possibility of 

the occurrence for building the hierarchy system 

of related concepts. 

The class caption cannot be 

automatically named in the hierarchy 

relation reorganisation. System cannot 

extract logical relations from a corpus. 

Dan et al., 2010 

Statistical analysis method creates a suffix tree. 

Clustering and association rule mining are 

adopted in domain concept extraction and relation 

extraction in order to extract compound words. 

This data source was chosen manually 

and the extracted compound words are 

not use characteristics of the language.  

 Sun et al., 2014 

A set of appearance attributes and name classifiers 

are learned and arranged as a tree hierarchy by the 

vector space. The system knows all object 

categories and identifies objects into a tree 

hierarchy. 

Ontology is not created in this work. It 

does not add new categories. The new 

name needs to associate with the 

existing name. 
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Linguistics-

based 

Ukai et al., 2009 and 

Ngo et al., 2010 

This approach used search engines to build a 

corpus for RT ontology by lightweight NLP 

techniques. The learning algorithm was divided 

into three steps: term extraction, task candidate 

selection and RT ontology creation. The RT 

ontology extracts knowledge by using the 

grammatical relation between verb (relation) and 

noun (concept) in sentences from English books, 

ConceptNet and Google 1T 5-gram.  

Data source is limited. The system 

cannot create new concepts that do not 

exist in the specific data sources. 

Zhou et al. ,2006 

A core ontology built by a human expert and 

ontology extension by WordNet. The event-based 

learning method obtains an event (c1, v, c2) with 

two ontology concepts (c1, c2) and one relation 

(v). 

Human builds the core ontology. 

Logic-based  
D’Este and Sammut, 

2008 

A method to learn semantic knowledge via 

dialogues by using inductive logic programming 

in order to build an ontology. The learning system 

utilised a Horn clause for creating a concept. The 

relationships between objects must be specified 

by a walking technique. 

The robot satisfies the conditions in the 

concept description and requests 

feedback from the user. 
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The robot technology (RT) ontology learning from text (Ngo et al., 2010) consists 

of a corpus builder and information extraction. The environment description file is 

an XML structure which consists of Object ID attribute and Object name attribute 

as the symbolic representation of the object in the local data server. This approach 

used search engines to build a corpus for RT ontology. The learning algorithm 

was divided into three steps: term extraction by lightweight (taxonomic hierarchy 

and properties between concepts) techniques, task candidate selection and RT 

ontology creation. The term extraction by lightweight NLP techniques considers 

four sentence structures which show the relationship between two nouns and 

extract verb phrases using part-of-speech tagging technique. The object-task map 

between objects and tasks was created in the task candidate selection. A Jena 

framework was implemented to explain the object-task map to the RT ontology. 

The RT ontology is the automatic approach based on basic-level knowledge (Ngo 

et al., 2011). It consists of a Where layer, a What layer and a How layer based on 

4W1H (Where, When, What, Who and How) and three classes of semantic 

concepts. It extracts objects and human activities from education books and MIT’s 

ConceptNet. The automatic knowledge retrieval consists of: object extraction 

process, activity extraction process and connection extraction process. The RT 

ontology extracts knowledge by using the grammatical relation between verb and 

noun in sentence. The “Bring something” robot service (Lam et al., 2012) 

represented common- sense knowledge to build an RT ontology in order to learn 

new knowledge and generate robot services. For Place-Object, Place-Activity and 

Object-Activity connections, weighting vector (W) is defined as equation 2.1. 

𝑊 = (𝑊𝑏, 𝑊𝑐, 𝑊𝑔, 𝑊𝑢) (2.1) 

For Object-Object connection, weighting vector (Woo) is defined with one more 

parameter as equation 2.2. 

𝑊𝑜𝑜 = (𝑊𝑏, 𝑊𝑐, 𝑊𝑔, 𝑊𝑛, 𝑊𝑢) (2.2) 

Wb is frequency from books, Wc is reliability score from ConceptNet, Wg is 

frequency from Google 1T 5-gram, Wn is similarity score of two objects based on 
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WordNet and Wu is user evaluation score. The connection (n1, n2) between two 

concepts n1 and n2, Wb is defined as per the following. Wb = f (n1, n2), the number 

of times that the connection (n1, n2) is extracted from books. Wc = score (n1, n2), 

the reliability score of the assertion between n1 and n2 from ConceptNet. Wg = 

fgram (n1, n2), the frequency of the n-grams that contain n1 and n2 from the Google 

Web 1T 5-gram (Brants and Franz, 2006).  

An n-gram corpus was generated from a source of approximately one trillion 

words collected by Google. The web service interface of Web1T5-Easy (Evert, 

2010) calculated the fgram. Wu is the user evaluation score. This parameter is left 

for future development of the RT ontology. Wn =dWordNet (n1, n2), the distance 

between two nouns n1 and n2. It is calculated from WordNet hypernyms. 

The RT ontology quality is evaluated by manually judging two main connections: 

Place-Object and Object-Activity. The Place-Object connection considered the 

object usually appears in the corresponding place in normal condition as the 

common objects. The results showed the percentage of common objects appearing 

in kitchen, living room and bedroom by 86%, 93% and 64 %, respectively. The 

Object-Activity connection considered the activity can be conducted with the 

object in real life as the relevant activities. The results showed the percentage of 

relevant activities appearing in kitchen, living room and bedroom by 60%, 57% 

and 39%, respectively. It can be seen that the manual evaluation was performed 

based on human common sense. Educational books are appropriate to provide 

basic-level knowledge, but the number of data is limited.  

For the purpose of the automatic ontology creation, the concept hierarchy creation 

is the principal process that should be accomplished. The concept hierarchy 

creation in the Automatic Taxonomy Construction from Text framework (ATCT) 

(Meijer et al., 2014) proposed the method to construct the broader-narrower 

relations between concepts by calculating the co-occurrence of different concepts 

(Sanderson and Croft, 1999). 

𝑃(𝑥|𝑦) ≥ 𝑡, 𝑃(𝑦|𝑥) < 𝑡  (2.3) 
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In equation 2.3, t is a co-occurrence threshold value. If concept x shows in at least 

the proportion t of all documents in which concept y shows and if concept y 

shows in less than the proportion t of all documents in which concept x shows, 

then concept x is a parent concept of concept y. A subclass of the subsuming 

concept is a concept subsumed by another concept. The subsumption relation 

creates a hierarchy of classes. The subsumption relation is the inheritance of 

properties from the parent concept (subsuming) to the child concept (subsumed). 

For parent selection, this work proposed equation 2.4: 

𝑠𝑐𝑜𝑟𝑒(𝑝, 𝑥) = 𝑃(𝑝|𝑥) +  ∑ 𝑃(𝑎|𝑥)𝑎∈𝐴𝑝
  (2.4) 

Where p is a parent concept of concept x, Ap is a list of ancestors of p and w (a, x) 

is a weight value with which the conditional probability P (a | x) of ancestor a 

given x is multiplied. The weight value is as equation 2.5. 

𝑤(𝑎, 𝑥) =
1

𝑑(𝑎,𝑥)
 (2.5) 

d (a, x) is the distance between node x and ancestor node a. The processing speed 

integrates with the ability for providing a good concept broader-narrower relation. 

As a result, this method uses a short time to categorise concepts in a concept 

hierarchy.  

This framework compared the constructed taxonomy with a reference taxonomy 

using golden standard evaluation approach. It presents the semantic precision (SP) 

and semantic recall (SR), as equation 2.6. 

𝑆𝑃(𝑇𝐶 , 𝑇𝑅) =
|𝐶𝐶∩𝐶𝑅|

|𝐶𝐶|
  

𝑆𝑅(𝑇𝐶 , 𝑇𝑅) =
|𝐶𝐶∩𝐶𝑅|

|𝐶𝑅|
 (2.6) 

Where TC is the core (built) taxonomy and TR is reference taxonomy, CC is the 

concepts of the core taxonomy, and CR is the collection of concepts of the 

reference taxonomy.  
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The common semantic cotopy (csc) is the collection of a concept and its parent 

concepts and child concepts. This collection is shared by a core taxonomy and 

reference taxonomy in order to calculate the quality of the relations in the built 

taxonomy (Dellschaft and Staab, 2006). 

csc(𝑐, 𝑇𝐶 , 𝑇𝑅) = {𝑐𝑖|𝑐𝑖 ∈ 𝐶𝐶 ∩ 𝐶𝑅⋀(𝑐𝑖 ≤ 𝐶𝐶  𝑐 ⋁ 𝑐 ≤ 𝐶𝐶  𝑐𝑖)} (2.7) 

In equation 2.7, c is a concept and CC is the order of the broader-narrower 

relations in the TC taxonomy. The global taxonomic precision (TP) and global 

taxonomic recall (TR) employ the csc to compare the relations of the core 

taxonomy concepts and reference taxonomy concepts. The local taxonomic 

precision (tp) and local taxonomic recall (tr) are defined in order to define the TP 

and TR. The definitions of tp and tr are as equation 2.8. 

𝑡𝑝𝑐𝑠𝑐(𝑐, 𝑇𝐶 , 𝑇𝑅) =
|csc (c,TC,𝑇𝑅)∩csc (𝑐,𝑇𝑅,𝑇𝐶)|

|csc (𝑐,𝑇𝐶,𝑇𝑅)|
  

𝑡𝑟𝑐𝑠𝑐(𝑐, 𝑇𝐶 , 𝑇𝑅) =
|csc (c,TC,𝑇𝑅)∩csc (𝑐,𝑇𝑅,𝑇𝐶)|

|csc (𝑐,𝑇𝑅,𝑇𝐶)|
 (2.8) 

Both tp and tr show the quality of the relations of a single concept. The measure 

takes the intersection of the csc viewed from the core taxonomy’s perspective and 

from the perspective of the reference taxonomy, respectively. The TP and TR are 

defined as equation 2.9. 

𝑇𝑃𝑐𝑠𝑐(𝑇𝐶 , 𝑇𝑅) =
1

|𝐶𝐶∩𝐶𝑅|
 ∑ 𝑡𝑝𝑐𝑠𝑐(𝑐, 𝑇𝐶 , 𝑇𝑅)𝑐∈𝐶𝐶∩𝐶𝑅

  

𝑇𝑅𝑐𝑠𝑐(𝑇𝐶 , 𝑇𝑅) =
1

|𝐶𝐶∩𝐶𝑅|
 ∑ 𝑡𝑟𝑐𝑠𝑐(𝑐, 𝑇𝐶 , 𝑇𝑅)𝑐∈𝐶𝐶∩𝐶𝑅

  (2.9) 

The taxonomic F-measure (TF) describes the quality of the concept broader-

narrower relations. The TF is defined as equation 2.10. 

𝑇𝐹(𝑇𝐶 , 𝑇𝑅) =
2∙𝑇𝑃𝑐𝑠𝑐(𝑇𝐶,𝑇𝑅)∙𝑇𝑅𝑐𝑠𝑐(𝑇𝐶,𝑇𝑅)

𝑇𝑃𝑐𝑠𝑐(𝑇𝐶,𝑇𝑅)+𝑇𝑐𝑠𝑐(𝑇𝐶,𝑇𝑅)
  (2.10) 

This approach built a taxonomy for the domain of economics and management. 

According to the reported experimental results, semantic precision was 11.63%, 

semantic recall was 5.57% and the taxonomic F-measure was 68.16%. 
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Zhou et al. (2006) proposed a semi-automatic ontology learning based on 

WordNet and event-based natural language processing, a core ontology built by a 

human expert and ontology extension by WordNet. Next, it applied an event-

based learning method to obtain new knowledge from a domain corpus. As a 

result, the new concepts and relations were added into the ontology. Experimental 

results reported that there were 539 of four types of concepts: synonymy, 

hypernym/hyponym, holonym/meronym and domain terms. The new concepts 

and relations were learned from WordNet and were acquired from event 

extraction. However, this approach used a human expert to create the core 

ontology. 

The training stage in an identification system for RGB-D scenes (Sun et al., 2014) 

learned a set of appearance attributes and name classifiers. There are three types 

of appearance attributes: colour, shape and material. A multinomial logistic 

regression model is modelled for each attribute type as equation 2.11.  

𝑃(𝑎𝑡
𝑘|𝑜) =

exp (𝐹𝑡
𝑘𝐼𝑜)

∑ exp (𝐹𝑡
𝑘𝐼𝑜)𝑇

𝑡=1
  (2.11) 

T gives the number of attribute values for the k-th attribute type. The parameter 

vector of the linear discriminative function is presented in Fk
t . Io is the RGB-D 

feature vector of an “o” object. It is extracted using hierarchical matching pursuit. 

After learning a set of attribute classifiers and name classifiers, the object name is 

arranged as a tree hierarchy H. In the case where the “w” object name is already 

contained in a node nw
l of the tree H, then the probability P (w | o) for an “o” 

object is computed as equation 2.12. 

𝑃(𝑤|𝑜) = ∏ 𝑃𝑛𝑙
𝑤(𝑛𝑙+1

𝑤 |𝑜)𝐿−1
𝑙=1   (2.12) 

Each 𝑃𝑛𝑙
𝑤(𝑛𝑙+1

𝑤 |𝑜)  is a probability of node 𝑛𝑙+1
𝑤  given the RGB-D feature of 

object o evaluated via the classifier trained for node 𝑛𝑙
𝑤 . It assumes that the 

system knows all object categories; it does not add new categories. The new name 

needs to associate with the existing name and find a path. Given a new name w, if 

there is a synonym of the new name then the word is added to the node of its 
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synonym. In the case where a hyponym of a leaf node is the new word, then the 

new word is added as a child of that leaf node.  

A new name word w is a d-dimensional vector vw ∈ Rd using vector space model. 

vw is given by the co-occurrence with other words within a large document corpus 

(Socher et al., 2012). The decision function ( 𝜓 ∶ (𝑤, ℋ, 𝑝) → ℝ) measures the 

match score between a path p and word w given the hierarchy H as equation 2.13. 

𝑝𝑤 = arg max
p

𝜓(𝑤, ℋ, 𝑝)  (2.13) 

pw is the correct path. A word replaced with vector representation vw. The decision 

score of the path as the sum of scores of all nodes in it for a path p with L words 

as equation 2.14. 

𝜓(𝑤, ℋ, 𝑝) = ∑
∅(𝑣,𝑣𝑙)

𝐿

𝐿
𝑙=1   (2.14) 

Where ∅(𝑣, 𝑣𝑙) calculates the match score between words v and v1. The negative 

distance between v and v1 is ∅(𝑣, 𝑣𝑙) = −(𝑣 − 𝑣𝑙)𝑇(𝑣 − 𝑣𝑙).  The vector space 

does not provide the semantic information structure. The decision score function 

is not increased by the correct path. Experimental results reported that the system 

achieved 74% identification accuracy for scenes containing six objects, with half 

of the objects being unknown on average. The learned names have some errors 

when people use higher level names of an object that appears in the real- world 

scenes. This work does not build ontology and semantic knowledge of physical 

objects. 

2.2.3 Inductive Logic Programming 

There are two logic-based techniques, inductive logic programming and logical 

inference. The inductive logic programming rules are obtained from existing 

collections of concepts and relations. There are two types of rule, positive and 

negative examples. Logical inference is descended from existing ones using rules 

and the conclusion always follows the stated premises (Wong et al., 2012).  
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D’Este and Sammut (2008) presented a method to learn semantic knowledge via 

dialogues by using inductive logic programming in order to build an ontology. 

The learning system utilised a Horn clause for creating a concept description. The 

conditions on the right hand side were retrieved from sensor readings. The 

predicate on the left hand side was derived from human speech. Concept learning 

is the process of collection of the feature names and values in order to describe the 

objects. There are six steps required to build up the hypothesis for concepts, such 

as: obtaining the name of concept, identifying the known colour in the scene, 

creating a blob of colour, processing the blob and finding the suitable feature 

values for each of the known features, categorising the feature values and building 

a clause from the categorised features names. Concept learning consists of the 

relationships between objects and the generalising from examples. In the 

relationships between objects process, D’Este and Sammut applied the ability to 

gain information from a robot for creating relationships between objects. 

According to the algorithm for creating multiple object concepts, the first step is 

retrieving the concept name and the colour of the object. Next, constructing a blob 

of colour is implemented. Third, processing the blob and the suitable feature 

values for each of the known features is defined. Th next step is executing the 

blob and searching the suitable feature values for each blob of other known 

colours, and then calculating the relative positions to the other blobs for each 

blob. Lastly, a clause is built from the categorised feature names of each blob. The 

generalising from examples process, when the robot found the unrecognised 

object, is when D’Este and Sammut match the new object with the current concept 

and generalises the most suitable concept. The robot satisfies the conditions in the 

concept description and requests feedback from the user. The experiment results 

showed the learning performance of D’Este and Sammut’s system, the robot spent 

the most of time walking around the object for visioning. The three names to be 

learned consisted of obstruction, inference and plane. The correct results were 

87.5%, 75% and 100%, respectively. 
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2.3 Semantic Knowledge 

Semantic knowledge is modelled with expressions. It focuses on the specific 

aspect of language communication. Linguistic knowledge is expressed by lexical 

entries. It can be understood and used by humans (Velardi et al., 1991). A robot 

needs semantic knowledge for the purpose of natural language processing. The 

conceptual meaning type for the lexicon is the cognitive content of words. It is 

expressed by features or by primitives. It presents phenomena that are embedded 

in language. The collocative meaning type for the lexicon describes the 

incomprehensible words that appear together in everyday language. It does not 

present the real sense of a word. It clarifies the word associations in terms of 

meaning relation between a lexical item and other items or classes. The 

collocative meaning relies on solid evidence represented by word associations and 

considers the interpretation of an association. The valid associations are a marked 

phenomenon. Both conceptual meaning and collocative meaning are represented 

in the natural language processing literature using some subjective, human-

produced set of primitives (conceptual dependencies, semantic relations, 

conceptual categories) (Velardi and Pazienza, 1989). 

Recent efforts in human–robot interaction present the semantic knowledge in the 

robotics area. There are two important aspects: the need for an explicit 

representation of knowledge and the need for grounding the symbols used in this 

representation (Hertzberg and Saffiotti, 2008).  

The first aspect is explicit representation. The semantic knowledge presents the 

descriptions of the concepts and relations of the domain. These descriptions are 

represented explicitly inside the system. Semantic knowledge is used and is 

presented by a robot. The recognition process aims to attach labels to the sensor 

data. These labels have to be embedded in a domain. It allows the robot to reason. 

When the labels are purely syntactic, the robot can utilise the semantic 

knowledge.  

The second aspect is symbol grounding. The robot grounded all elements in the 

knowledge representation with the robot’s sensor and motor signals. Hertzberg 
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also considers three aspects co-exist in a knowledge-based robot. The sensor data 

consists of 2D or 3D laser data, camera image, or both, which provides the 

semantic knowledge. The ability to use semantic knowledge aims to improve 

planning and control aspects. The final aspect is the usage of semantic knowledge. 

It focuses on methods and concepts in robotics. 

The research by Holzapfel et al. presented the learning of new words from speech 

recognition. The dialogue model is used for acquiring semantic knowledge 

(Holzapfel et al., 2008). The representational knowledge bases and interaction 

knowledge are components of knowledge bases. The representational knowledge 

bases define the aspects of extended knowledge. It acquires new information. The 

interaction knowledge presents the method to obtain the knowledge via a 

communication process. This ontology consists of functional concepts, classes 

and properties. The functional concepts describe how an object class can be used. 

The classes are arranged in object class hierarchy. In the dialogue system, the 

classes apply typed feature structures (TFS) to represent semantics (Carpenter, 

1992). The deficient information occurs when user input cannot be understood 

(speech recognition and understanding) and the specific object cannot be found 

(visual processing of objects).  

The Head-Tail model (Schaaf, 2001) was applied for detecting the unknown word 

and the out-of-vocabulary (OOV) recognised the unknown words. The result 

shows that, the unknown words occurred at specific positions in the grammar. The 

research aims to learn object properties and learn an object’s category. The 

learning of object properties detects the unknown property values by using OOV 

detection. It is added to the dictionary of the speech recogniser and to the speech 

recognition. The learning of an object’s category links a manual category by user 

input and a prompted mode which creates browsing the ontology. The 

experiments utilised 52 dialogues from six naïve users. The user did not know the 

objects were known and unknown to the robot. The system categorised and 

learned new words, properties and types of object in dialogue with the user. 

According to the overall results of the experiment and recognition rates of visual 

object recognition, for all experiments, there were 52 dialogues, 40 unknown 
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objects and 12 known objects. The correct results were 49, 39 and 10, respectively 

(Bouguerra et al., 2008). 

2.4 Evaluation of Ontology Learning  

Ontologies specify the knowledge in a standard way between human and robot. 

Ontologies are engineering artefacts that need to be evaluated before they are 

deployed in applications. The evaluation of ontologies concerns the assessment of 

the resulting ontology. The resultant ontology is produced by an ontology learning 

method. Ontology evaluation aims to ensure that the resulting ontology represents 

accurately the domain. In general, ontologies are not an end product and are 

gained for other tasks. Therefore, an ontology evaluation approach is needed in 

order to decide which produced ontology is suitable for the requirement. 

Typically, ontology learning evaluation methods are aimed at evaluating structural 

and functional aspects. They can be classified into two main evaluating methods: 

the quality assurance during ontology engineering process and the comparing 

ontology learning (Dellschaft and Staab, 2008). The first method can be classified 

into task-based, corpus-based and criteria-based evaluation approaches. The 

second method can be a manual evaluation by a domain expert or gold standard-

based evaluation. The first scenario evaluates during the ontology engineering 

process which is considered consistent, complete, concise and expandable. The 

important part of this scenario is the quality assurance process. This scenario 

consists of three approaches to a functional and structural: task-based, corpus-

based and criteria-based.  

The first approach is task-based evaluation. It evaluates the adequacy of 

ontologies in the context of a certain task. The changing constant of evaluation 

influences the results of the ontology because the evaluation is dependent on the 

specific task. Second, corpus-based checks of the ontology are adequate to 

support the given domain. The components of the ontology are compared with the 

contents of a text corpus. The content of the corpus is analysed with a natural 

language method. It is suitable for evaluating the ontologies that are created from 

an ontology learning algorithm. The final approach is criteria-based, measuring 
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ontology or taxonomy with the criteria. The qualitative criteria-based user 

evaluation consists of five measurements (Chuang et al., 2005). First, 

cohesiveness measures similarity of the clustered instances in a semantic way. 

The second measurement is isolation; it tests the level of the auto-generated 

clusters. Third, measuring the hierarchy, the hierarchy is traversed from broader 

concepts to narrower concepts. The navigation balance makes a decision on the 

fan-out at each level of the hierarchy. Finally, readability considers how easy it is 

to recognise the concepts of clusters at all levels. The cost in terms of time 

consumption and labour is the main problem of the approach.  

The second scenario is manual evaluation by a domain expert and gold standard-

based evaluation. On one hand, the manual evaluation by a domain expert 

approach uses the human expert to judge the correctness of system. There are 

several disadvantages of this approach. The extracted information is compared 

with the knowledge of the human expert. The knowledge of a human expert is not 

the method for measuring the precision of a learning algorithm. Moreover, the 

factors of the evaluation depend on the expert. It is not suitable for all situations. 

On the other hand, comparing the previously created gold standard with the 

learned ontology is the main purposed of the gold standard-based approach. The 

gold standard is the idealized solution of the learning algorithm. In the case where 

the learned ontology has a high similarity with the gold standard, this learning 

algorithm has good results.  

Dellschaft and Staab (2008) defined the structure O: = (C, root, c ≤ C) as a core 

ontology. C is a set of concept identifiers. Root is a root concept for the partial 

order on a set of concept identifiers. Concept hierarchy or taxonomy is partial 

order. The equation ∀c ∈ C: c ≤ C root carries for the concept hierarchy. 

Precision and Recall are used for comparing a reference retrieval (Ref) with a 

computed retrieval (Comp). They are defined as equations 2.15 and 2.16. 

𝑃(𝑅𝑒𝑓, 𝐶𝑜𝑚𝑝) =
|𝐶𝑜𝑚𝑝∩𝑅𝑒𝑓|

|𝐶𝑜𝑚𝑝|
  (2.15) 

𝑅(𝑅𝑒𝑓, 𝐶𝑜𝑚𝑝) =
|𝐶𝑜𝑚𝑝∩𝑅𝑒𝑓|

|𝑅𝑒𝑓|
  (2.16) 
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The F1-measure is used for balancing the precision and recall values as equation 

2.17. 

𝐹1(𝑅𝑒𝑓, 𝐶𝑜𝑚𝑝) =
2∙𝑃(𝑅𝑒𝑓,𝐶𝑜𝑚𝑝)∙𝑅(𝑅𝑒𝑓,𝐶𝑜𝑚𝑝)

𝑃(𝑅𝑒𝑓,𝐶𝑜𝑚𝑝)+𝑅(𝑅𝑒𝑓,𝐶𝑜𝑚𝑝)
  (2.17) 

A core ontology (OC), a reference ontology (OR), lexical precision (LP) and recall 

precision (RL) are defined as equation 2.18. They aim to evaluate the learned 

terms. The learned terms should cover the target domain.  

𝐿𝑃(𝑂𝐶 , 𝑂𝑅) =
| 𝐶𝐶∩𝐶𝑅|

|𝐶𝐶|
      𝐿𝑅(𝑂𝐶 , 𝑂𝑅) =

| 𝐶𝐶∩𝐶𝑅|

|𝐶𝑅|
  (2.18) 

For evaluating the concept hierarchy, the taxonomic precision and recall are 

defined for comparing concepts, comparing concept hierarchies and retaining 

concrete measures. First, comparing concepts compared the concepts and concept 

hierarchies. It allocates them into the local and global measures. The positions of 

two concepts are compared by the local measure comparison. On the other hand, 

the global measure compared two whole concept hierarchies. 

𝑡𝑝𝑐𝑒(𝑐1, 𝑐2, 𝑂𝐶 , 𝑂𝑅) ∶=
|𝑐𝑒(𝑐1,𝑂𝐶)∩𝑐𝑒(𝑐2,𝑂𝑅)|

|𝑐𝑒(𝑐1,𝑂𝐶)|
  (2.19) 

Where ce is a characteristic extract and tpce is the local taxonomic precision of 

two concepts c1 ∈ OC and c2 ∈ OR as equation 2.19. 

The semantic cotopy (sc) of a node is defined as the set of all its parent concepts 

and child concepts excluding the root and including that node’s semantic cotopy. 

The semantic cotopy defines the local taxonomic precision. It is defined as 

equation 2.20. 

𝑠𝑐(𝑐, 𝑂) ≔  {𝑐𝑖|𝑐𝑖 ∈ 𝐶⋀ (𝑐𝑖 ≤ 𝑐 ⋁ 𝑐 ≤ 𝑐𝑖)}  (2.20) 

The taxonomic measure based on the semantic cotopy is not suitable for 

measuring the lexical precision and the lexical recall together. It can be applied to 

the common semantic cotopy (csc) for measuring the concepts and concepts 

hierarchies. The common semantic cotopy is as equation 2.21. 
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𝑐𝑠𝑐(𝑐, 𝑂1, 𝑂2) ≔  {𝑐𝑖|𝑐𝑖 ∈ 𝐶1 ∩ 𝐶2⋀ (𝑐𝑖 < 1 𝑐 ⋁ 𝑐 < 1 𝑐𝑖)}  (2.21) 

Second, comparing concept hierarchies is used for building a global taxonomic 

precision measure. The taxonomic precision values are presented, which is the 

first building block as equation 2.22. If using the set of concepts CC from the 

learned ontology, the global taxonomic precision depends on the lexical precision. 

The next building block, the local taxonomic precision compares the position of a 

concept in the learned hierarchy and the reference hierarchy. The last building 

block, an estimation of a local taxonomic precision value is only used if the 

current concept does not exist in both ontologies. 

𝑇𝑃(𝑂𝐶 , 𝑂𝑅) ≔  
1

|𝐶𝐶|
∑ {

𝑡𝑝(𝑐, 𝑐, 𝑂𝐶 , 𝑂𝑅)                   𝑖𝑓 𝑐 ∈ 𝐶𝑅

  𝑚𝑎𝑥𝑐′∉𝐶𝑅
𝑡𝑝(𝑐, 𝑐′, 𝑂𝐶 , 𝑂𝑅)  𝑖𝑓 𝑐 ∉ 𝐶𝑅

𝑐∈𝐶𝐶
  (2.22) 

Finally, creating the concrete measurement is used for completing the criteria for 

good evaluation measures. TPsc and TRsc are based on the semantic cotopy and are 

influenced by the lexical layer. The local taxonomic precision is computed by 

estimating the local taxonomic precision for all learned concepts. In the case 

where the result is zero, the current concept does not exist in the reference 

ontology. The evaluation of the lexical layer and the concept hierarchy cannot be 

separate. The taxonomic precision values and the common semantic cotopy are 

computed for the common concepts of both ontologies. TPsc, TRsc, TPcsc and TRcsc 

are defined in equation 2.23, equation 2.24, equation 2.25 and equation 2.26, 

respectively. 

𝑇𝑃(𝑂𝐶 , 𝑂𝑅) ≔  
1

|𝐶𝐶|
∑ {

𝑡𝑝𝑠𝑐(𝑐, 𝑐, 𝑂𝐶 , 𝑂𝑅)           𝑖𝑓 𝑐 ∈ 𝐶𝑅

0                                       𝑖𝑓 𝑐 ∉ 𝐶𝑅
𝑐∈𝐶𝐶

  (2.23) 

𝑇𝑅𝑠𝑐(𝑂𝐶 , 𝑂𝑅) ≔ 𝑇𝑃𝑠𝑐(𝑂𝑅, 𝑂𝐶)   (2.24) 

𝑇𝑃𝑐𝑠𝑐(𝑂𝐶 , 𝑂𝑅) ≔
1

|𝐶𝐶∩𝐶𝑅|
∑ 𝑡𝑝𝑐𝑠𝑐(𝑐, 𝑐, 𝑂𝐶 , 𝑂𝑅)𝑐∈𝐶𝐶∩𝐶𝑅

   (2.25) 

𝑇𝑅𝑐𝑠𝑐(𝑂𝐶 , 𝑂𝑅) ≔ 𝑇𝑃𝑐𝑠𝑐(𝑂𝑅 , 𝑂𝐶)   (2.26) 
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In the Indiana Philosophy Ontology dynamic ontology (Murdock et al., 2013), the 

taxonomic structures are generated by machine reasoning. The expert feedbacks 

automatically extracted the statistical relationship from the Stanford Encyclopedia 

of Philosophy. The dynamic ontology gains the benefit of many data sources to 

iteratively derive the most useful domain representation. The domain experts and 

text corpora are the main source of data. The combination of automatic and semi-

automatic methods creates a dynamic ontology.  

The volatility score measures the amount of change between two or more different 

versions of a populated ontology. Populating an ontology means adding new 

instances to object assertions. The score measures the relative proportion of time 

instance_of (P, Q). The formula for assessing terms P and Q by calculating the 

overall volatility score is as defined in equation 2.27. 

𝑣(𝑃, 𝑄) = 1 −
|𝑥−

𝑛

2
|

𝑛

2

  (2.27) 

Where x is the number of times that the instance_of (P, Q) is asserted. The 

weighting score is defined in equation 2.28. 

𝑣′(𝑃, 𝑄) = 1 −
|𝑥−

𝑚

2
|

𝑛

2

  (2.28) 

Where m is the number of input sets to assert instance_of (P, Q). Thus the 

volatility measure is defined in equation 2.29. 

𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦(𝑧) =
1

𝑐𝑜𝑢𝑛𝑡(𝑃,𝑄)
∑ 𝑣′(𝑃, 𝑄)∀𝑃,𝑄   (2.29) 

On the other hand, the violation score measures how well an ontology captures the 

semantic similarity and relationships by examining statistical measures on the 

corpus. For terms S and G, S is more specific than G in equation 2.30. 

𝐻(𝐺|𝑆) > 𝐻(𝑆|𝐺)  (2.30) 
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The generality violation (g-violation) is measured in equation 2.31. 

𝑔𝑣(𝑆, 𝐺) = 𝐻(𝑆|𝐺) − 𝐻(𝐺|𝑆)  (2.31) 

The overall g-violation is defined in equation 2.32. 

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑔(𝑂) =
1

𝑐𝑜𝑢𝑛𝑡(𝑆,𝐺)
∑ 𝑔𝑣(𝑆, 𝐺)∀𝑆,𝐺   (2.32) 

A similarity violation (s-violation) is defined in equation 2.33. 

𝑠𝑖𝑚(𝑥1, 𝑥2) =
2 ×𝑙𝑜𝑔 𝑃(𝐶)

𝑙𝑜𝑔 𝑃(𝑥1)+𝑙𝑜𝑔 𝑃(𝑥2)
 (2.33) 

Where x1 and x2 are entities in the taxonomy, C is the most specific class which 

subsumes x1 and x2. In order to compare an instance S to its parent G, the semantic 

similarity score is calculated by equation 2.34. 

𝑠𝑖𝑚(𝑆, 𝐺) =
2 ×𝑙𝑜𝑔 𝑃(𝐺)

𝑙𝑜𝑔 𝑃(𝑆)+𝑙𝑜𝑔 𝑃(𝐺)
 (2.34) 

The degree of s-violation is defined in equation 2.35. 

𝑠𝑣(𝑆, 𝐺) =
𝑠𝑖𝑚(𝑆,𝐺)−𝜇

𝜎
 (2.35) 

Where u is the mean value of semantic distance. The semantic distance is the 

distance to the parent of all sibling nodes and 𝜎 is the standard deviation of this 

population. The final s-violation is defined in equation 2.36. 

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑂) =
1

𝑐𝑜𝑢𝑛𝑡(𝑆,𝐺)
∑ 𝑠𝑣(𝑆, 𝐺)∀𝑆,𝐺   (2.36) 

Experimental results were reported that the average pairwise volatility was 0.45 at 

the InPhO project. The decrease in s-violation means the development of denser 

semantic clusters subsumed under each class. The decrease in g-violation means 

the movement towards greater classification in the hierarchy.  
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CHAPTER 3 DATA-INFORMATION RETRIEVAL BASED 

AUTOMATED ONTOLOGY FRAMEWORK 

FOR SERVICE ROBOTS 

 

Dynamic ontology is becoming more and more important in the sense of 

providing knowledge to support service robots. To facilitate automatic ontology to 

enable service robots to make decisions in dynamic environments, this research 

developed a Data-Information Retrieval based Automated Ontology Framework 

(DIRAOF). This chapter gives the overall structure of the framework.  

Section 3.1 gives the background knowledge on ontology, data retrieval and 

information retrieval. Section 3.2 describes the overall structure of the framework. 

Section 3.3 introduces the components of the framework and gives an overview of 

each component. Section 3.4 provides the summary of Data-Information Retrieval 

based Automated Ontology Framework. 

3.1. Background Knowledge 

In information systems, ontology consists of the conceptualization of objects, 

instances of concepts and relations between concepts. A specific ontology 

represents concepts, instances and relations in a specific domain. The role of 

ontologies is, in humans and robot interactions, to enable the robots to understand 

commands from their human users and thereby to make their decisions in terms of 

undertaking tasks as specified by the commands (Jasper and Uschold, 1999). The 

components of ontology are concepts, also known as classes, collections, sets or 

types, instances, called objects, individuals or entities, properties, i.e. attributes, 

features of concepts or objects, property values, and relations between concepts 

and/or instances (Gómez-Pérez and Corcho, 2002; Khoo and Na, 2006). A 

taxonomy is a hierarchical structure of concepts in a domain with the “is-a” kind 

of relation between concepts. 
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A concept is defined as an entity of consciousness and a directly conceived or an 

intuited object of thought. Concepts can be physical stuff, issues, ideas, persons, 

processes, places, etc. and connect with the process of human cognition but they 

must be relevant to each other (Jakus et al., 2013). Gómez-Pérez and Corcho 

(2002) described a concept as any physical object existing and human beings’ way 

of thinking in human. Concepts are shared through human language and their 

actions or behaviours. The explicit concept definitions can be classified into three 

categories (Jakus et al., 2013):  

 Concepts in philosophy 

 Concepts in other scientific domains and  

 Concepts in knowledge representation.  

Aristotle defines a concept by using genus (a kind, sort or family) and differentia 

(a distinguishing characteristic) (Granger, 1984). John Sowa defines concepts as a 

“mediator that relates symbol to its object” (Sowa, 2000). Ogden and Richards 

(1923) introduced the triangle that consists of object, concept and symbol. 

Concept explains a mediator between the symbol and its object. A concept in 

linguistics is a unit of meaning or conceptual meaning (Jakus et al., 2013). A 

concept is a model of entities from reality in the engineering field (Smith, 2004). 

Novak and Canas defined concepts in knowledge representation as a “perceived 

regularity in events or objects, or records of events or objects, designed by a 

label” (Novak and Canas, 2008). Normally, the label of concept is a word or a 

symbol. In description language, concepts (classes), roles (relations) and 

individuals (objects) are components of logic-based knowledge. 

An ontology consists of a set of individual instances of concepts. An instance or 

object is a specific realization of a concept. The creation of an instance is called 

instantiation. Instances are collected in a knowledge base. Creating an ontology, 

that is creating individual instances of concepts in a specified hierarchy involves 

defining individual instances of concepts such as choosing a concept, creating an 

individual instance of that concept and filling in the property’s value, and 
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identifying and assigning relations between objects (Noy and Deborah, 2001). 

Creating an ontology can even involve creating concepts.  

Gómez-Pérez and Corcho (2002) defined attributes as the properties of concepts. 

They classified attributes into four groups:  

 Class attribute – attribute values attached to concepts; they are the same for all 

instances of a concept 

 Instance attribute – different values assigned for each instance of the concept 

 Same-name attributes or local attributes – attributes that share the same name 

but are attached to different concepts 

 Global attributes – applicable to all concepts. 

The Class attributes and Instance attributes are normally used in concept 

descriptions. 

A concept cannot appear in isolation. Thus the relations between concepts are 

semantic relations that are meaningful associations between two or more concepts 

(Khoo and Na, 2006). There are two types of semantic relation between concepts 

and concepts (Cimiano et al., 2005). A hierarchy relation (taxonomic relations) is 

a relation for constructing and organising concepts into a hierarchy. It requires the 

discovery of the “is-a” relations. Non-hierarchy relations are the interactions 

between concepts which discover meronymy, attributes etc. (Wong et al., 2012). 

The relation between instances of concepts and concepts (an individual-to-concept 

relation of instantiation) is “instance-of” relations (Gangemi et al., 2001). First, 

the concept is selected. Next, an instance of the concept is generated by instance-

of relation between instance and concept. 

There are two types of OWL property (Dean et al., 2004): object properties and 

data type properties. Object properties usually describe the relation between two 

instances of a concept. For example, the “HasA” object property is the 

relationship between the “sponge_1” instance and the “dish_1” instance that 

inherited from the “sponge” concept and “dish” concept, respectively. Data type 

properties, however, describe relations between instance and data value. For 
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example, the “hasProperty” data property is the relationship between the 

“sponge_1” instance and “green” data value. 

Gómez-Pérez et al. (2004) classified ontologies into two types according to the 

level of detail of specifications between terms, namely lightweight ontology and 

heavyweight ontology. Lightweight ontologies are domain models that include 

taxonomic hierarchy and properties between concepts. Heavyweight ontologies 

attach more detail to lightweight ontologies by adding axioms and constraints to 

explicate terms (Gómez-Pérez et al., 2004). Ontology type can also be classified 

into four types based on the level of generality: top-level ontologies, domain 

ontologies, task ontologies and application ontologies (Auhood, 2010). Top-level 

ontology is a specification of a conceptualization based on linguistics independent 

of domain-specific concepts. Domain ontology provides a domain-specific model 

describing domain concepts and relations. Task ontology presents specific 

concepts for a task. Application ontology unites domain and task-specific 

ontologies  

There are three types of resource for extracting knowledge when constructing 

ontology: structured data, semi-structured data and unstructured data (Al-Arfaj 

and Al-Salman, 2015). The structured data are defined as knowledge models, for 

example, the existing ontologies and database schema. A database is a collection 

of information which is managed by a database management system (Ullman and 

Widom, 2013). The semi-structured data are defined as mixed structured data with 

free text. It does not have a regular structure. Examples include Web pages, 

Wikipedia, and XML documents. Unstructured data are defined as textual content. 

They do not have a predefined data model and can appear in e-mails, notes, files, 

news, reports, letters, surveys, research and Web page data. 

Data retrieval (DR) refers to querying and receiving data from a database. 

WordNet is a commonly used structured data source. It consists of English nouns, 

verbs, adjectives and adverbs. ConceptNet (Speer and Havasi, 2012) is another 

source data/knowledge resource that supports general human knowledge. It 

provides contextual reasoning of facts and common- sense knowledge of the real 



 

44 

 

world. It is important for robots to understand the informal relations between 

concepts in order to perform tasks with semantic meaning. Information retrieval 

(IR) is applied in order to discover the semi-structured data and the unstructured 

data. IR is used to find material from large collections of unstructured text and 

semi-structured data that satisfy an information need. IR is concerned with the 

representation, storage, organisation and access to documents, so that it can 

support users in browsing or filtering document collections. Thus, the 

effectiveness in terms of the quality of its search results is crucial. Precision and 

recall are two key statistics to measure the results for a query. Precision is the 

fraction of the returned results that are relevant to information need. Recall is the 

fraction of the relevant documents in the collection that were returned by the 

system (Manning et al., 2008).  

WordNet is selected as the first resource as concepts in WordNet are constructed 

by “is-a” relationships that are suitable for classifying object names from labels of 

physical objects. It is straightforward to create concepts and to arrange them into a 

concept hierarchy. WordNet also provides a semantic network with a core 

concept, which is called a synset. A synset is a set of one or more synonyms. 

Semantic relations link synsets to other synsets. However, WordNet itself is not 

suitable for being used whole as an ontology. This is because WordNet contains 

extra information apart from nouns, such as verbs, adjectives and adverbs and 

WordNet does not include domain-specific terminologies that are used in a robot 

ontology. Many object names in the household environment do not exist in 

WordNet. Web Documents is suitable for finding the categories of object names 

that are not in WordNet, as Web Documents has a huge collection of text. Web 

Documents is the largest electronic text source currently available to the public 

and a well-balanced knowledge source. The information in Web Documents is 

normally updated regularly. 

Service robots provide services that are useful to the well-being of humans. They 

operate closely with humans to increase comfort or to assist the elderly or to 

entertain their humans. For example, Care-O-bot mobile robot (Care-O-bot, 2016) 

delivers food and drinks, PR2 mobile robot (PR2, 2016) navigates human 
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environments and grasps and manipulates objects. Service robots perform tasks 

that are related to instances in a dynamic environment. Service robots need an 

ontology to support task execution and also need semantic knowledge to describe 

knowledge about instances in a dynamic environment where humans and robots 

share the same environment. 

3.2 Structure of the Data-Information Retrieval based Automated Ontology 

Framework  

The framework integrates data retrieval, information retrieval, object learning, 

concept creation, and relationship creation for automatically object learning 

ontology for service robots. It creates concepts, the concept hierarchy, 

relationships between these concepts and between instances of concepts. It 

includes an evaluation process to justify the ontology generated.  

The framework subsequently consists of seven processes as shown in Figure 3.1, 

namely Data Input process, Automatic Ontology process, Data and Information 

Retrieval process, Semantic Knowledge Acquisition process, Robot Ontology 

process, Query process and Result Evaluation process.  

 

Figure 3.1 Data-Information Retrieval based Automated Ontology framework 

The seven processes consist of two phases. The first phase is the automated 

ontology phase. It was designed as an automatic ontology creation process. All 
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objects and properties are recognised in the Data Input process as text and are sent 

to the Automatic Ontology process. The Data and Information Retrieval process 

used WordNet for identifying object names. Object names found in WordNet are 

called known object names. Those that cannot be found WordNet are called 

unknown object names. The unknown object names are transferred to the Data 

and Information Retrieval process. This process returns a concept name as text to 

the Automatic Ontology process. The concepts and properties are created as an 

ontology hierarchy into the Robot Ontology using WordNet and ConceptNet. The 

Semantic Knowledge Acquisition represents the knowledge of objects in the form 

of an instance of the concept in the dynamic environment.  

The second phase is the use of the automated ontology from the user point of 

view. It consists of three processes: Robot Ontology, Query and Result Evaluation 

process. First, The Query process queries the Robot Ontology, presents the query 

results as text to the user and sends the query results to the Result Evaluation. The 

Result Evaluation process retrieves the result from the Query process in order to 

assess the result. The following paragraphs present a broad review of Query and 

Result Evaluation processes. These two processes are described in full detail in 

Chapter 6. 

The framework is a step forward to face the challenges mentioned in Chapter 1. 

First, the framework is able to understand and to learn objects, through the Data 

and Information Retrieval process without involving humans. Second, it is able to 

create an ontology using an innovative automatic ontology algorithm which is the 

core of the Automatic Ontology process. Third, it can build up semantic relations 

through the Semantic Knowledge Acquisition.  

The framework has the following features that make it distinct from the systems 

reported by other researchers: 

 retrieving the meaning of the random objects from Web Documents by 

returning a concept name, 

 generating automatically ontology components by using WordNet and 

ConceptNet, and 
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 associating the semantic knowledge with instances and assigning the property 

values to the “HasA” and “MadeOf” property names. 

The architecture and knowledge-representation framework for service robots 

(Rockel et al., 2013) presented how to learn from experiences and are developed 

in the European Union’s RACE project by applying the constraint processing 

technique. The main part of this architecture is the Blackboard which contains the 

information as ABox in description logics. The experiment-based learning 

consists of: a learning scenario, learning about robot activities, learning about 

objects and scenes and learning about environment activities. The learning about 

objects and scenes provides physical objects and vocabulary classification for 

robots. The memory-based learning method stores known instances in memory 

and recognises the new instances. The shape models and bag-of-feature models 

represent the objects. The object category knowledge is the input of the hybrid 

knowledge- representation and reasoning framework. Improving the robustness of 

the robot’s behaviour based on experience is the main focus of the RACE project. 

However, it is similar to the proposed framework where the Robot Ontology is 

represented using OWL. The RACE project does not tackle the problem of 

learning the unknown objects from text. It does not have the understanding 

feature, the creating ontology feature and the representing semantic knowledge 

feature. 

The RoboEarth system (Tenorth et al., 2012) provides a platform for sharing 

knowledge about actions, objects and environment between robots. RoboEarth 

aims to obtain a sharable representation of the environment. It combines the 

experiences of many robots. It uses the semantic robot description language to 

describe components and the capabilities. The extension of the KNOWROB 

knowledge base is a representation language which is described in description 

logic using OWL. A KNOWROB ontology acquires knowledge from internet. It 

semi-automatically created the information about objects from the 

germandeli.com website. Thus, the RoboEarth system does not have the creating 

ontology feature and the representing semantic knowledge feature. 



 

48 

 

The OpenRobots Ontology Framework (ORO) (Lemaignan, 2012) comprises a 

common-sense ontology. The ORO common-sense ontology is designed from the 

OpenCyc ontology for robots. The advantage of the OpenCyc ontology is that it 

ensures that the knowledge can be shared or extended with well-defined 

semantics. As mentioned in Chapter 2, the KNOWROB ontology and ORO 

common-sense ontology are derived from the OpenCyc ontology and this is a 

predefined ontology. It can lead to situations where the robots are not able to 

recognise objects that do not exist in the predefined and static ontology. The ORO 

ontology does not have the understanding feature and the creating ontology 

feature. 

3.3 Processes in the Data-Information Retrieval based Automated Ontology 

Framework  

The following sub-sections discuss the seven processes, namely Data Input 

process, Automatic Ontology process, Data and Information Retrieval process, 

Semantic Knowledge Acquisition process, Robot Ontology process, Query 

process and Result Evaluation process. 

3.3.1 Data Input Process 

Generating an ontology using information from text requires object names and 

property values of physical objects. However, when robots approach objects, they 

often see the labels of objects. In some cases, the labels contain object names 

and/or property values together with much more information, and in many cases 

they do not give object name and/or property value. Figure 3.2 (a) shows a label 

that has the object name and property values. Figure 3.2 (b) shows a label that has 

object names but without any property value. Figure 3.2 (c) shows a label that has 

property values but without an object name. Figure 3.2 (d) shows a label that does 

not have an object name and property value. Therefore, there is a need for the 

robots to discover object names and property values from labels. The inputs of 

this process are labels and the outputs are an object name and property values.  
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Labels can also contain other information in addition to object names and/or 

property values if they are not on the labels. To understand a given object, robots 

need to extract only the information that is related to object name and property 

values from its label. In this study, an assumption of noun relating to object name 

and adjectives relating to properties is made. 

When entering a room, a household robot normally makes a scan to recognise 

objects and furniture in the room (Ji et al., 2012). The scan returns the labels and 

the locations of all objects in the room. The robot then stores all label and location 

information collected in a text file. The file contains three pieces of information, 

namely, the date and time of the scan process, and the location and label text. 

Figure 3.3 shows an example text file. The first line “20150819113959” is the 

date and time information, meaning that the scan process took place on 2015, 

August 19 at 11:39:59”. Then, each line of text represents the location and the 

label text of a physical object. For example, on the second line, “1, 0, 1” 

represents the location of a physical object, and “Cute Press EVORY BB powder 

SPF 25” is the label text of the object. The last line of Figure 3.3 shows that no 

label text was found for a particular object in the scan.  
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(a) Cute Press EVORY BB powder SPF 25 

 

 

 

(b) Tucher Helles Hefe 

Weizen 

 
(c) Directions: Take one tablet daily, preferably 

with a meal. Do not exceed stated dose. 

Ingredients: L-Carnitine L-Tartrate, Bulking 

Agents (Dicalcium Phosphate, Microcrystalline 

Cellulose), Anti-caking Agents (Silicon 

Dioxide, Stearic Acid, Magnesium Stearate), 

Firming Agent (Povidone), Glazing Agent 

(Hydroxypropl Methylcelluolose, Glycerine), 

Colour (Titanium Dioxide). 

 

 

(d) no label 

Figure 3.2 Example of labels of physical object 



 

51 

 

20150819113959 

1, 0, 1 Cute Press EVORY BB powder SPF 25. 

1, 1, -1 Tucher Helles Hefe Weizen. 

1, 1, 1 Directions: Take one tablet daily, preferably with a meal. Do not exceed 

stated dose. Ingredients: L-Carnitine L-Tartrate, Bulking Agents (Dicalcium 

Phosphate, Microcrystalline Cellulose), Anti-caking Agents (Silicon Dioxide, 

Stearic Acid, Magnesium Stearate), Firming Agent (Povidone), Glazing Agent 

(Hydroxypropl Methylcelluolose, Glycerine), Colour (Titanium Dioxide). 

1, 1, 0 None. 

Figure 3.3 Example of text file  

The Data Input process consists of two following sub-processes. In the first sub-

process, POS tagging (Han, 2009) is applied to selected cardinal numbers, 

adjectives and nouns for each line of the text file. This work focuses on cardinal 

numbers (CD), adjectives (JJ), singular or mass nouns (NN), plural nouns (NNS), 

singular proper nouns (NNP), plural and proper nouns (NNPS) based on Brown 

and Penn Treebank tags (Taylor, 2003). 

There are two types of cardinal number that are used to point out properties of an 

object: time of scan process and location of object. Though the time information 

will not be used to recognise object names and properties, it will be used to add 

semantic relation between objects. It can be detected from the first line of the text 

file. The cardinal number of time is going to be a data value of the “hasTime” 

property of an object. The location information, on the other hand, is going to be a 

data value of the “hasLocation” property of an object. It can be detected from the 

beginning of each line, which gives the value of the x, y, z coordinates of an 

object in a global reference system defined for the work space of a robot 

(Martinez and Fernandez, 2013). 

Adjectives give properties of physical objects. All property names are sent to the 

Automatic Ontology process where the property names are classified and assigned 

as data values to five predefined data type properties: “hasTime”, “hasLocation”, 

“hasColour”, “hasShape” and “hasProperty”. Datatype properties are selected 

following the rule-based approach. These data type properties relate to the 

Semantic Knowledge Acquisition. Due to the property names are value of data 
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type property that is selected from the predefined data type properties in the 

Property Creation. 

Noun indicates a physical object name. In the simple case where one noun is 

found in a line, the noun is considered as an object name. In the case where more 

than one noun is found, the group nouns are sent to Data and Information 

Retrieval process for further investigation in order to find a category name.  

Figure 3.4 presents the result after applying the POS tagging to the instance that is 

given in Figure 3.3. As mentioned earlier, the first line is date and time and the 

beginning of each line is location of physical object. The underlined texts are 

adjectives and the bold texts are nouns. Figure 3.4 shows verb (VB), adverb (RB), 

preposition (IN), determiner (DT), interjection (UH) and conjunction (CC) based 

on Brown and Penn Treebank tags (Taylor, 2003). 

20150819113959/CD  

1/CD, /, 0/CD, /, 1/CD Cute/JJ Press/NNP EVORY/NNP BB/NNP powder/NN 

SPF/, 25/CD 

1/CD, /, 1/CD, /, -1/CD Tucher/NN Helles/NNS Hefe/NN Weizen/NN 

1/CD, /, 1/CD, /, 1/CD         Directions/NNS: /: Take/VB one/CD tablet/NN 

daily/RB, /, preferably/RB with/IN a/DT meal/NN. /. Do/VB not/RB exceed/VB 

stated/VB dose/NN./. Ingredients/NNS:/: L-Carnitine/ L-Tartrate/., /, 

Bulking/UH Agents/NNS (/ (Dicalcium/NN Phosphate/NNP, /, 

Microcrystalline/NNP Cellulose/NN)/), /, Anti-caking/CC Agents/NNPS (/ 

(Silicon/NNP Dioxide/NN, /, Stearic/JJ Acid/NN, /, Magnesium/NN 

Stearate/IN)/), /, Firming/VB Agent/NNP (/ (Povidone/NNP)/), /, Glazing/VB 

Agent/NNP (/ (Hydroxypropl/NNP Methylcelluolose/NNP, /, Glycerine/NN)/), 

/, Colour/JJ (/ (Titanium/NNP Dioxide/NN)/)./. 

1/CD, /, 1/CD, /, 0.25/CD  

Figure 3.4 Results using Brown and Penn Treebank tags 

The segmentation and repetition is the second sub-process. It aims to select the 

date and time, location, and property values, object name and to delete the 

duplicated words and the lines that do not have nouns and adjectives. The 
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resultant lines, as shown in Figure 3.5, are then sent to the Automatic Ontology 

process. 

20150819113959 

1, 0, 1 cute Press EVORY BB powder 

1, 1, -1 Tucher Helles Hefe Weizen 

1,1,1 Directions tablet meal dose Ingredients Agents Dicalcium Phosphate 

Microcrystalline Cellulose Silicon Dioxide Stearic Acid Magnesium Agent 

Povidone Agent Hydroxypropl Methylcelluolose Glycerine Colour Titanium 

Dioxide 

Figure 3.5 Text file sends to the Automatic Ontology process  

3.3.2 Automatic Ontology Process  

The components of an ontology normally include concepts, relations between 

concepts, instances, properties and property values. The Automatic Ontology aims 

at automatically constructing the components of an ontology from the object 

names and property values given by the Data Input process. In the framework 

developed in this research, this process is implemented in the following five 

modules: (1) Concept Creation module, (2) Relation Creation module, (3) OWL 

Creation module, (4) Instance Creation module and (5) Property Creation module. 

Information exchanges between the modules and between the Automatic 

Ontology process and other processes are shown in Figure 3.6. 

To create concepts and the relationships between concepts, it is necessary to 

understand the meanings of object names. This involves Data and Information 

Retrieval because an object name often does not indicate object types. Concept 

Creation sends the object name to the Data and Information Retrieval process to 

seek more information relevant to the meaning of the object names. The latter 

process searches for the relevant information and works out a concept name that 

indicates the types of the objects. It also identifies the “is-a” relation between 

concepts. The process returns concepts to the Concept Creation module and “is-a” 

relation to the Relation Creation module.  
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The Concept Creation module and Relation Creation module then work together 

to construct the concept hierarchy based on the concepts and the “is-a” relations. 

Relation Creation creates “HasA” relation and “MadeOf” relation between the 

concept and the relevant concept from ConceptNet. If the relevant concept can be 

found in the Robot Ontology, the “HasA” relation and/or “MadeOf” relation is 

created between the concept and the relevant concept. 

The OWL Creation module represents concepts, relations obtained from the 

Relation Creation module with OWL tags. The latter can then be sent and stored 

as part of the Robot Ontology.  

The Instance Creation module receives the concept name either from Concept 

Creation if the concept is a new one or from the Robot Ontology process in the 

case where it is an existing one. It names the object for which a concept is created 

as the instance of that concept. For example, given an object of mouse, the 

concept of “mouse” is created and that particular mouse, instance of the “mouse” 

concept, is named “mouse_1”.  

Property values from Data Input are handled in the Property Creation module 

which identifies a property name for the instances. Property values are classified 

into three predefined property names. Property Creation assigns property values to 

property names and concepts to OWL tags. OWL tags are sent to Semantic 

Knowledge Acquisition process. 

The following is an example showing the operation of the Automatic Ontology 

process. After the Automatic Ontology process receives the text file from the Data 

Input process, as shown in Figure 3.5, the object name, “Tucher Helles Hefe 

Weizen” is sent to Data and Information Retrieval in order to obtain the meaning 

of the object name. The Data and Information Retrieval process returns the “beer” 

concept to the Concept Creation process. Before creating the concept, Concept 

Creation sends the “beer” concept to check its existence in the Robot Ontology. If 

the “beer” concept is a new concept, it cannot be found in the Robot Ontology, 

and then the “beer” concept is created. The Instance Creation module receives the 

“beer” concept from the Concept Creation process in the case that it is an existing 
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one. It names the object for which the “beer” concept is created as the instance of 

that concept. Thus, the concept of beer is created and that particular beer is named 

“beer_1” and instance name is sent to Property Creation.  

 

Figure 3.6 The Automatic Ontology process 

The “beer” concept is sent to Relation Creation in order to create relations 

between the “beer” concept and other concepts. The Data and Information 

Retrieval supports the Relation Creation for creating the hierarchy and non-

hierarchy relations. 
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For the hierarchy construction, the Data and Information Retrieval returns the 

“alcohol”, “drug” and “fluid” concepts and the “is-a” relations between “beer” 

and “alcohol”, “drug” and “fluid” concepts. Relation Creation sends all concepts 

to the Robot Ontology. If the concept cannot be found in the Robot Ontology, 

then Concept Creation creates a new concept and creates an “is-a” relation. 

Otherwise, Relation Creation creates an “is-a” relation between the newly created 

concept and the existing concept. 

Data and Information Retrieval returns the “HasA” relation with the “water” and 

“alcohol” concepts for the non-hierarchy construction. Relation Creation sends the 

“water” and “alcohol” concepts to the Robot Ontology. The “alcohol” concept 

exists in the Robot Ontology, and then Relation Creation creates “HasA” relation 

between the “beer” and “alcohol” concepts. Concept Creation does not create the 

relation between concepts, if the “water” concept does not exist in the Robot 

Ontology. 

The OWL Creation module receives all concepts and relations from Concept 

Creation and Relation Creation and converts concepts and relations between 

concepts into OWL tags. These tags are sent and stored as part of the robot 

ontology. 

Property Creation receives the property values from Data Input. The Property 

Creation module identifies “20150819113959”, “1, 0, 1” and “Cute” as property 

values of the “hasTime”, “hasLocation” and “hasProperty” property names, 

respectively. The property name and property value are added into the “beer_1” 

instance and the semantic knowledge is updated in the Semantic Knowledge 

Acquisition process. 

3.3.3 Data and Information Retrieval Process 

As mentioned in Section 3.3.2, given an object name, the Data and Information 

Retrieval process looks for extra information, and recognises concepts, and 

hierarchy and non-hierarchy relations. It returns the concepts and the relations 

back to Automatic Ontology to generate the ontology components. 
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Data and Information Retrieval acquires data or information from the structured, 

semi-structured and unstructured data sources. WordNet, ConceptNet and Web 

Documents are used as the data and information sources in this framework. 

WordNet and ConceptNet contain structured data, while Web Documents are 

regarded as either semi-structured or unstructured data.  

Figure 3.7 shows the Data and Information Retrieval process. It starts with the 

Web Documents search to obtain a category name in order to assign it to a 

concept name. It then employs WordNet for finding out concept names and 

hierarchy relations and ConceptNet for non-hierarchy relations.  

With the obtained Web Documents, the Data and Information Retrieval process 

first searches with the keyphrase: object name “is”. The key noun after “is” in the 

obtained documents is selected as a candidate category name. Then the frequency 

of occurrence of each candidate category name is counted. The one with the 

highest frequency is selected as the category name. 

Category names which are obtained from Web Documents are sent into WordNet 

in order to find the parent of category name for a particular physical object. In the 

case where the parent of the category name can be found in WordNet, Concept 

Creation assigns the category name as the concept name. There are five 

commonly used semantic relations for nouns: synonym, hyponym, hypernym, 

holonym and meronym. A synonym is a word or phrase that means exactly or 

nearly the same as another word or phrase. A hypernym is a word with a broad 

meaning. A hyponym is a word of more specific meaning than a hypernym. A 

holonym is used for naming the whole of which a given word is a part. A 

meronym is used for naming a part of a larger whole (Miller, 1995). A hypernym 

provides the broad meaning of a concept. Thus concepts and taxonomic relations 

in WordNet are retrieved by using hypernyms for constructing new concepts and 

relations between the new concepts into a concept hierarchy. 

After that, the concept name is searched in WordNet again to retrieve the 

hypernyms. The retrieved hypernyms, concept names, are physical entities with 
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“is-a” relations. Then the concept names and “is-a” relations are sent to Relation 

Creation in Automatic Ontology in order to create the concept hierarchy. 

ConceptNet (Speer et al., 2012) is the large-scale common- sense knowledge 

bases that support general human knowledge. It provides contextual reasoning of 

facts and common- sense knowledge of the real world. It is important for a robot 

to understand the informal relations between concepts in order to perform tasks 

with semantic meaning. The free-text relation in ConceptNet is defined into 21 

relations. Each node in ConceptNet uses an English fragment which consists of 

four syntactic constructions: noun phrases, verbs, prepositional phrases and 

adjectival phrases. The idea of using ConceptNet is to create the semantic 

meaning between two physical objects with the selected relations. 

For non-hierarchy relation purposes, a concept name is searched for with “HasA” 

and “MadeOf” relations in ConceptNet to retrieve the relevant concept names. 

After that, the relevant concept names are searched for in Robot Ontology. The 

relevant concept names that can be found in Robot Ontology are created with 

“HasA” or/and “MadeOf” relations in Relation Creation in Automatic Ontology. 

Information exchange between the modules and between the Data and 

Information Retrieval processes and the Automatic Ontology process are shown in 

Figure 3.7. 
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Figure 3.7 The Data and Information Retrieval process 

For example, giving “Tucher Helles Hefe Weizen” to the Web Document search 

within Data and Information Retrieval returns the category name of “beer” as the 

concept name and sends this concept name to WordNet. WordNet provides 

“alcohol”, “drug” and “fluid” as parent concepts. Therefore, the “beer” category 

name can be assigned as the concept name. The “beer” concept will be created as 

a concept. Next, ConceptNet produces the non-hierarchy relations between the 

concept of “beer” and the existing concepts in the Robot Ontology with “HasA” 

relation and “MadeOf” relation. Suppose the “water” and “malt” concepts are two 

relevant concept names. ConceptNet has “beer “HasA” water” and “beer 

“MadeOf” malt”. The non-hierarchy relations “beer “HasA” water” and “beer 

“MadeOf” malt” can be confirmed and sent back to Automatic Ontology. 

3.3.4 Semantic Knowledge Acquisition Process 

Semantic knowledge represents the properties of physical objects in the 

surrounding environment. Obtaining the semantic knowledge of physical objects 
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requires concept names, property names and property values, as the inputs to 

Semantic Knowledge Acquisition. The output of this process is a set of OWL tags 

that represent the instances of concepts for each physical object with property 

names and property values in the scene, such as   

“<ClassAssertion> 

        <Class IRI="#powder"/> 

        <NamedIndividual IRI="#powder_1"/> 

</ClassAssertion> 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#powder_1"/> 

        <Literal datatypeIRI="&rdf; PlainLiteral">20150819113959</Literal> 

</DataPropertyAssertion>” tags. 

The Semantic Knowledge Acquisition consists of four modules as shown in 

Figure 3.8. Firstly, the Ontology Updating module receives semantic knowledge 

from Automatic Ontology and associates semantic knowledge with Robot 

Ontology. Semantic Representation receives the concept name from Query and 

receives tags from Robot Ontology. The NFile module compares the instances of 

concepts from time to time. Finally, the Object Prediction module predicts the 

current location of the instance of the concept. 

For example, the “powder” concept is generated by Automatic Ontology. Instance 

Creation sends the “powder_1” instance to Semantic Knowledge Acquisition. 

Property Creation sends the “hasTime”, “hasLocation” and “hasProperty” 

properties with “20150819113959”, “1, 0, 1” and “cute” values, respectively, to 

Semantic Knowledge Acquisition. This information will be represented in OWL 

tags and sent to Robot Ontology.  
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Figure 3.8 The Semantic Knowledge Acquisition process 

3.3.5 Robot Ontology Process 

Robot Ontology is designed with two levels, namely, the Ontology Level and the 

Semantic Knowledge Level, in order to support service robots to competently 

perform everyday tasks. The Ontology Level presents a concept hierarchy, 

concepts and relations between concepts. The contents of this level are created 

through the Automatic Ontology process. The Semantic Knowledge Level 

presents instances of concepts and their properties. The contents of this level are 

created through the Semantic Knowledge Acquisition process. Figure 3.9 shows 

an example. At the Ontology level, the “powder” concept is created with “is-a” 

relations with the “matter” concept and “drug” concepts. The “matter” concept 

has an “is-a” relation with the “physical entity” concept and the “drug” concept 

has an “is-a” relation with the “physical entity” concept. The concept hierarchy is 

organised from the “powder”, “matter”, “drug” and “physical entity” concepts 

with “is-a” relations as described earlier. At the Semantic Knowledge Level, the 

“powder_1” instance is an instance of the “powder” concept. The “powder_1” 
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instance has “hasTime” data type property with “20150819113959” data value, 

“hasLocation” data type property with “1, 0, 1” data value and “hasProperty” data 

type property with “cute” data value. 

 

Figure 3.9 The Robot Ontology structure 

The Robot Ontology process aims to store the newly created robot ontology 

contents according to the two levels. The key in this process is a management 

component that keeps the relevant information and eliminates redundancy. For the 

purpose of redundancy elimination, the ontology management receives concept 

names from Concept Creation in order to check the existence of the concept. If 

there is an existing concept name in Robot Ontology, then the concept name is not 

created in Concept Creation but an instance of the concept is created in Instance 

Creation. This component also manages queries that are raised due to the use of 

the ontology and because of evaluation of the created ontology contents. The 

ontology management obtains the queries from Query and searches for the object 

name in the Robot Ontology Level to retrieve the concept names and their 

synonyms’ concept names and the Semantic Knowledge Level to retrieve the 

instances of the concepts names, data type properties and values. First, the 

concept name is selected by key word matching with the object name. Next, the 

synonymous concept names of this concept are found by sending via Automatic 
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Ontology through Data and Information Retrieval. After that, the “instance-of” 

relation between the concept and the instance is found to retrieve the instances of 

the concept name and the instance of synonymous concept names. The 

information exchange between the management and other processes can be seen 

in Figure 3.10. Then Robot Ontology returns the results to other processes.  

For example, the ontology management obtains the “powder” concept name from 

Automatic Ontology. It has “20151130160000” and “1, -1, 1” as value data of 

“hasTime” and “hasLocation” data type properties, respectively. The “powder” 

concept already exists in Robot Ontology so the ontology management sends the 

“powder” concept to Instance Creation to create the “powder_2” instance and 

“20150819113959” and “1, 0, 1” as value data of “hasTime” and “hasLocation” 

are created in Semantic Knowledge Acquisition.  

The “powder” object name is searched for in Robot Ontology and the “powder” 

concept is returned. Next, the synonyms of the “powder” concept are found in 

Data and Information Retrieval via Automatic Ontology.  

 

Figure 3.10 The Robot Ontology process 



 

64 

 

3.3.6 Query Process 

This process serves two purposes. First, the newly created ontology contents in 

terms of concepts, instances, relations, etc. can be justified through raising 

automatic queries to this process. Second, Query can inquire in order to search for 

child concepts in the ontology. The inputs of this process are concept names from 

Robot Ontology. The output will be the set of the concept and its child concepts. 

The Query process mainly performs retrieving and searching results. Then having 

received the concept name, as shown in Figure 3.11, there are two tasks: the 

retrieving task and the searching task. 

For the retrieving task, Query retrieves the concept name from the Ontology Level 

of Robot Ontology to send the concept name to Semantic Knowledge Acquisition. 

The Ontology Level links to instances of concepts in the Semantic Knowledge 

Level. The instances of the concepts are selected in order to calculate the 

predicted location of the instance. Query also receives the predicted location of 

the instance back from Semantic Knowledge Acquisition. 

For the searching task, the concept name is passed into Robot Ontology in order 

to search for child concepts. Query sends the set of the concept and its child 

concepts to Result Evaluation (for details refer to Chapter 5). 

 

 

 

 

 

 

 

Figure 3.11 The Query process and Result Evaluation process  
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3.3.7 Result Evaluation Process 

Before the ontology becomes available to or is integrated into other applications, 

it has to be evaluated during its development lifecycle (Fahad and Qadir, 2008). 

Result Evaluation aims at evaluating structural aspects of the ontology. Dellschaft 

and Steffen (2008) classified evaluation methods into two main categories: the 

quality assurance during the ontology engineering process (task-based, corpus-

based and criteria-based) and the comparing ontology learning (domain expert or 

gold standard-based).  

Result Evaluation is the process to verify the correct creating of the content of 

Robot Ontology. In order to justify the dynamic ontology, concept names and 

their child concepts are required from the robot itself through the Query process.  

3.4 Summary 

The proposed framework of dynamic ontology is presented in order to gain a 

better understanding of objects, to create an automatic ontology and to represent 

semantic knowledge for a robot. The studies on the data and information retrieval 

show that the retrieved concept name is required in order to understand the 

physical object and to build the concept into a concept hierarchy. The semantic 

knowledge represents the instances of concepts in the environment to support the 

tasks for robots. Therefore, a new framework of Data-Information Retrieval based 

Automated Ontology for Service Robots has been proposed in this study. 

The Automatic Ontology process and the Data and Information Retrieval process 

are investigated in Chapter 4 as Concept Creation. The Semantic Knowledge 

Acquisition is described in Chapter 5. The Query and the Result Evaluation 

processes are presented in Chapter 6. 
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CHAPTER 4 CONCEPT CREATION 

 

The Automatic Ontology process and the Data and Information Retrieval process 

within the DIRAOF framework are designed to create concepts and components 

of the ontology. This chapter details the two processes and how they work 

together on concept creation. 

4.1 Background Knowledge 

WordNet (Miller, 1995) is a lexical database. There are four syntactic categories, 

namely English nouns, verbs, adjectives and adverbs. They are organised into 

synsets (sets of synonyms). A synset is a set of one or more synonyms. Semantic 

relations link synsets to other synsets. There are six semantic relations: synonymy, 

antonym, hyponymy, meronymy, troponym and entailment. Synonymy is the 

relation between words which represent the same concept. Antonym is relation 

between words which have the opposite meaning. Hyponymy and hypernym are 

super–subordinate relations which arrange the meanings of nouns into a 

hierarchical structure. Meronymy and holonym are part–whole relations. The 

meronym represents the part name and the holonym represents the whole name. 

Troponym is the relation between a verb of a more precise manner and a verb of a 

more generalised meaning, such as whisper and talk. Entailment is a relation 

between verbs, such as sleep and snore. 

The WordNet web application (http://wordnetweb.princeton.edu/perl/webwn) 

provides the meaning words and concepts via a browser. It allows querying the 

WordNet lexical database via a graphical interface. The WordNet application on 

Windows provides a user interface and can be installed on a personal computer 

for searching for the meaning of words and concepts. The WordNet database can 

be downloaded and installed in order to utilise it for developing programming for 

a specific purpose.  
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The WordNet database is an ASCII-format database. WordNet provides a C 

application program interface for accessing the WordNet database. There are 

many functions that can be used by a developer. For example, findtheinfo () 

function is the primary search algorithm for using with database interface 

applications.  

ConceptNet (Speer and Havasi, 2012) is a large-scale common- sense knowledge 

base. It provides contextual reasoning of facts and common- sense knowledge of 

the real world. The collection of simple facts about people and everyday life can 

be called common- sense knowledge. ConceptNet is collected from many sources 

of knowledge: sister projects to MIT’s Open Mind Common Sense (OMCS), 

WordNet3.0, DBPedia and Wikipedia’s free text.  

The structure of ConceptNet is a network of labelled nodes and edges. The nodes 

(concepts) represent words, word senses, and short phrases. The edges are pieces 

of common- sense knowledge. An edge connects concepts to each other with a 

relation. Example of the standard relations in ConceptNet are: “IsA”, “UsedFor”, 

“HasA”, “CapableOf”, “PartOf”, “MadeOf”. An assertion is a sentence that is 

expressed by a relation between two concepts such as the “IsA” relation presents 

“beer is a kind of beverage” where the “/r/IsA” relation connects “/c/en/beer” to 

“/c/en/beverage”. Every object in ConceptNet has a URI. It is structured like a 

path that provides a standard place to look it up. For example, “/c/en/beer” is the 

URI of the “beer” concept in English (ConceptNet 5, 2015).  

The ConceptNet web application (http://conceptnet5.media.mit.edu/) provides the 

user interface for searching for a concept in ConceptNet. ConceptNet Web API 

queries knowledge about any concept in ConceptNet. There are three methods: 

lookup, search and association – for accessing data through the ConceptNet Web 

API. The current development of ConceptNet (ConceptNet 5, 2015) is an open-

source project that is available on https://github.com/commonsense/conceptnet5. 

Search method accesses data through the ConceptNet 5 Web API. The base URL 

for searching is http://conceptnet5.media.mit.edu/data/5.4/search. The arguments 

specify what to search for. The URI argument can be “id”, “uri”, “rel”, “start”, 
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“end”, “dataset” and “license”. The “limit = n” argument is the number of results. 

The “offset=n” argument indicates the first n results that are skipped. For 

example, the “rel” argument is the relation name “IsA”. The “start” argument 

means that the “beer” concept has “IsA” relation with the concept in ConceptNet. 

The “limit” argument is set to 10 results. The ConceptNet 5 Web API URL is 

http://conceptnet5.media.mit.edu/data/5.4/search?rel=/r/IsA&start=/c/en/beer&lim

it=10.  

A Web Document is a collection of text, images, audio video, hyperlinks, etc. that 

is created from web programming languages. A website is a collection of Web 

Documents (web pages) that are interconnected by hyperlinks. The Uniform 

Resource Locator (URL) indicates the unique website. The internet is a collection 

of computers or networking devices that connect websites together. The internet 

allows people to share information through websites. Websites contains Web 

Documents that are semi-structured or unstructured data. A semi-structured data 

presents data and schema together. Examples of semi-structured data are 

WordNet, HTML and XML documents. An unstructured data is text documents 

and web page data. Information retrieval is needed in order to retrieve data from 

Web Documents. Information retrieval focuses on retrieving documents based on 

the content of their semi-structured or unstructured components. 

A search engine, such as Google, Yahoo Search, Bing, Ask etc., searches for 

websites by keywords. The search results show the relevant websites that contain 

the keywords. The contents from the websites are extracted by using a keyphrase. 

The keyphrase is a set of phrases that indicate the requisite data from the search 

results. The keyphrase extraction processes two steps: selecting candidate words 

and phrases and determining the candidate keyphrase. The first step, selecting 

candidate words and phrases, involves removing stop words and indicating the 

POS tagging process. Determining the candidate keyphrase is corrected by using 

supervised or unsupervised methods. 

The ontology is represented with OWL 2 Web Ontology Language (OWL 2) 

using Web Ontology Language and eXtensible Markup Language (XML) as 
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OWL/ XML syntax. OWL 2 is an ontology language with formally defined 

meaning that provides concepts (classes), properties, instances (individuals) and 

data values. OWL 2 associates with an ontology document. An ontology 

document contains the physical text documents. The text documents are written in 

the OWL 2 syntax (OWL 2, 2016). The elements in the ontology document can be 

assigned semantic meaning. This can be used to check concept consistency. 

Concept consistency is no contradiction among the definitions of concepts. 

OWL/XML syntax applies the structural specification of OWL 2 and an XML 

schema. An XML schema describes the structure of an XML document. The 

XML schema language is created as XML SchemaDefinition (XSD). There are 

six types of entity: Class, Datatype, ObjectProperty, DataProperty, 

AnnotationProperty and NamedIndividual as given in the XML 

SchemaDefinition: 

<xsd:group name="Entity"> 

    <xsd:choice> 

      <xsd:element ref="owl:Class"/> 

      <xsd:element ref="owl:Datatype"/> 

      <xsd:element ref="owl:ObjectProperty"/> 

      <xsd:element ref="owl:DataProperty"/> 

      <xsd:element ref="owl:AnnotationProperty"/> 

      <xsd:element ref="owl:NamedIndividual"/> 

    </xsd:choice> 

  </xsd:group>. 

An OWL tag is used to represent a concept as:  

<Declaration> 

        <Class IRI="#concept name"/> 

</Declaration>. 

The Class element is a sub-element of the Declaration element. It has an IRI 

attribute that contains concept name. Internationalized Resource Identifiers (IRI) 
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is an attribute of concept. IRI extends Uniform Resource Identifiers (URIs) by 

using the Universal Character Set. URIs use ASCII, which is limited, but IRIs use 

the Universal Character Set, which is Unicode/ISO character. IRIs is represented 

by the IRI UML class. The string value of the IRI indicates the same structure if 

two string values of IRIs are the same. 

An OWL tag is used to represent a hierarchy relation as: 

<SubClassOf> 

        <Class IRI="#child concept"/> 

        <Class IRI="#parent concept"/> 

</SubClassOf>. 

The SubClassOf element has a Class element as a subclass. The first Class 

element has an IRI attribute that contains child concept. The second Class element 

has an IRI attribute that contains parent concept. 

An OWL tag is used to represent an individual (instance) as:  

<Declaration> 

        <NamedIndividual IRI="#individual name"/> 

</Declaration> 

<ClassAssertion> 

        <Class IRI="#concept name"/> 

        <NamedIndividual IRI="#individual name"/> 

</ClassAssertion> 

The NamedIndividual element is a sub-element of the Declaration element. It has 

an IRI attribute that contains individual name. The ClassAssertion element has 

Class and NamedIndividual elements. The Class element has an IRI attribute that 

contains concept name. The NamedIndividual element has an IRI attribute that 

contains individual name. There are two types of property: object property and 

datatype property. An Object property presents the relation between two classes. 

An OWL tag is used to represent an object property as:  
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<Declaration> 

        <ObjectProperty IRI="#relation name"/> 

</Declaration> 

<EquivalentClasses> 

        <Class IRI="#concept name1"/> 

         <ObjectSomeValuesFrom> 

             <ObjectProperty IRI="#relation name"/> 

             <Class IRI="#concept name2"/> 

         </ObjectSomeValuesFrom> 

</EquivalentClasses>. 

The ObjectProperty element is a sub-element of the Declaration element. It has an 

IRI attribute that contains relation name. Concept name1 has a relation name with 

concept name2. The Class element is a sub-element of the EquivalentClasses 

element. It has an IRI attribute that contains concept name1. The 

ObjectSomeValuesFrom element is a sub-element of the Class element. It has two 

sub-elements: ObjectProperty and Class elements. The ObjectProperty element 

has an IRI attribute that contains relation name. The Class element has an IRI 

attribute that contains concept name2. Datatype property presents relation 

between data property of individual and their values. The DataPropertyAssertion 

element has three elements: DataProperty, NamedIndividual and Literal. An OWL 

tag is used to represent a data property as: 

<DataPropertyAssertion> 

        <DataProperty IRI="# relation name "/> 

        <NamedIndividual IRI="#individual name"/> 

        <Literal datatypeIRI="&rdf;PlainLiteral">property value</Literal> 

</DataPropertyAssertion>. 

The DataProperty element has an IRI attribute that contains relation name. The 

NamedIndividual element has an IRI attribute that contains individual name. The 

Literal element has a datatypeIRI attribute that contains the &rdf;PlainLiteral 

value. The Literal element has a value that contains property value. 
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4.2 Automatic Ontology Process 

Concepts and components of an ontology such as relations between concepts, 

instances and properties of instances are obtained based on information found in 

text labels of objects in the Automatic Ontology process of the framework. Text 

labels can give and, in most case, imply an object’s name and properties, which 

are closely related to concepts and components of an ontology. The Automatic 

Ontology process identifies concepts and components of the ontology by running 

data and information retrieval from WordNet, ConceptNet and Web Documents 

based on the information on text labels. Images may also imply concepts. 

However, different objects that share similar images can lead to the same concept. 

Moreover, images cannot give the invisible properties of an object. 

The Automatic Ontology aims at automatically constructing concepts, instances, 

properties, property values and relations between concepts from the object names 

and property values given by the Data Input process.  

4.2.1 Structure of the Automatic Ontology Process 

The structure of the Automatic Ontology process is given in Figure 4.1. It shows 

the five modules and presents information exchange between the modules. The 

index numbers before information and functions show the information flow with 

in Automatic Ontology. 
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Figure 4.1 The structure of the Automatic Ontology process
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4.2.2 Concept Creation Module 

The Concept Creation module creates the concepts. The main idea is to assume 

that the object name which is provided by the Data Input process is a concept in 

WordNet, and to search for the parent of the given concept name in WordNet. 

Because concepts are arranged in a hierarchy in WordNet, every concept in 

WordNet must have one or more parents. Therefore, if a parent cannot be found, 

then the assumption is false; otherwise, the assumption is true. In the case where 

the given object name’s parent is in WordNet and the object name’s antecedent is 

a “physical entity” concept, it is accepted as a concept. 

In the case where the parent cannot be found in WordNet, the Concept Creation 

module will carry on the search into Web Documents. The keyphrase search is 

employed in the Web Documents search. The keyphrase is formed in the format 

such as “object name is”. The search will return sentences in which object name is 

a noun. The noun is accepted as the candidate category name to which the object 

belongs. Then, a calculation on the frequency of the occurrence of the category 

names is undertaken. The one with the highest frequency is selected as the 

category name. Concept Creation then sends the category name as the parent of 

the given object name to WordNet again to see if the parent of the category name 

is in WordNet and the category name’s antecedent is a “physical entity” concept. 

If the parent of the category name does, then it is accepted as the concept name. If 

not, Concept Creation will have to choose another noun that has the second 

highest frequency as a new category name.  

Concept Creation will also need to check with Robot Ontology to confirm the 

concept. In the case where the concept exists in Robot Ontology, Concept 

Creation sends the concept name and the number of instances to Instance Creation 

to create instance(s) of the concept. In the case where the concept does not exist in 

Robot Ontology, the new concept name is retained and then sent to Relation 

Creation to finalise concept creation. The ConceptCreation algorithm is given in 

Figure 4.2.  
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Algorithm: ConceptCreation  

Input:  O  

C  O; 

 

Begin  

Do { 

 A  SearchParent (C); 

 If (A) Then  

  B SearchPhysicalEntity (C); 

 If (! A ||! B) Then 

  C WebSearch (O); 

} While (A==true && B==true) 

SearchRobotOntology (C); 

 

Figure 4.2 ConceptCreation algorithm  

In this algorithm, O represents object name, C stands for concept, A is the parent 

of the concept in WordNet and B is the concept that is “physical entity” concept. 

The algorithm contains two steps. The first is to search for the parent of the 

concept in WordNet. In the case where the parent of the concept does not exist in 

WordNet, the algorithm finds the concept name from Web Documents. It is 

mainly a loop with the condition of while (A==true&&B==true), meaning the 

concept hierarchy is created from the parent of the concept in WordNet and the 

concept is a physical entity. This step performs data and information retrieval 

from WordNet and Web Documents using the following three functions:  

 SearchParent () –searching for the parent of the given object name in WordNet 

 SearchPhysicalEntity () – searching for the “physical entity” concept, and 

 WebSearch () – searching for the category name. 

The second step is to determine whether the newly created concept is already in 

Robot Ontology, implemented by running SearchRobotOntology (). 

The SearchParent () function assigns each synset as a level of the hierarchy. This 

is because WordNet arranges concepts in a hierarchy and English words into 

synsets and sets of synonyms. In this function, Level 1 is the given object name, 
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Level 2 stores synonyms of the concept name, Level 3 stores the parent(s) of the 

concept name, and Level 4 stores the parent(s) of the parent(s). This is continued 

until Level n that stores the top concept of the hierarchy. The search jumps to 

Level 3 directly from Level 1. In Level 2 synonyms of the concept name are 

presented. Synonyms do not present the hypernym (a broad meaning), hyponym 

(a specific meaning), or “is-a” relation. The parents of the concept name are 

presented in Level 3. If a parent can be found at Level 3, the function returns true, 

otherwise, it returns false.  

SearchPhysicalEntity () carries on the search in the same manner as in the 

previous function, but at the end of each step of the search, it compares each 

parent concept with the “physical entity” concept. The function terminates and 

returns true when they match. Otherwise, the process carries on to Level n and 

returns false if still not a “physical entity”. Because the concept name must be a 

tangible and visible object. 

WebSearch () works in the following manner: First, “object name” keyword is 

sent to the search engine in order to search for websites that contain “object 

name” keyword. Second, Web Documents, the contents in websites, are searched 

for the key noun by using the keyphrase. The keyphrase is formed in the format of 

“key noun+ object name+ key noun+ “is” + key noun”. The key nouns are nouns 

that are obtained from sentences that match the format of the keyphrase and are 

retrieved from Web Documents. The key noun can be a noun or an empty or zero 

value. Some sentences cannot be found with a noun for each key noun. Therefore, 

an empty or zero value can fill a key noun. The key noun will be filled with nouns 

or an empty or zero value that appear in sentences with the same format retrieved 

from Web Documents. This function collects URLs of Web Documents that 

contain the keyphrase, collects the sentences in a URL that contains the keyphrase 

and counts the frequency of occurrence of the key noun. The function returns the 

category name which has the highest frequency of the key noun to be the category 

name of the object name. 
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SearchRobotOntology () loads all concepts and instances in Robot Ontology by 

checking the IRI attribute of the concept. The string value of the IRI indicates the 

same structure if two string values of IRIs are the same. The function returns the 

concept and the number of instances. In the case where the concept is not in Robot 

Ontology, the number of instances is zero. 

Example 4.1: 

Given “cocktail” as the object name, the algorithm assigns “cocktail” to 

concept_name. It calls SearchParent () to search for the parents of cocktail in 

Level 3 in the hierarchy (shown in Figure 4.3.) and finds the “course” and 

“alcohol” concepts. The algorithm continues the search for the “physical entity” 

concept in higher levels by calling the SearchPhysicalEntity () function. The 

“physical entity” concept is found at Level 8. The algorithm searches for the 

“cocktail” concept in Robot Ontology. The SearchRobotOntology () function 

returns the number of instances. In the case that the “cocktail” concept does not 

exist in Robot Ontology, the number of instances is zero.  

Level 1: cocktail 

Level 2: mixed_drink, appetizer 

Level 3: course, alcohol 

Level 4: drug_of_use, nutriment, beverage 

Level 5: food, drug, liquid 

Level 6: agent, fluid substance, 

Level 7: substance, causal_agent, matter 

Level 8: physical entity 

Figure 4.3 Hierarchy of concepts from the “cocktail” to “physical entity” concepts 

Example 4.2:  

This example shows the case where concept name cannot be found in WordNet. 

Giving O “plara”, the algorithm assigns it to concept_name. The algorithm 

searches for the parent of “plara” at Level 3. The parent of plara cannot be found 

in WordNet. Therefore, “plara” is sent to the search engine and the algorithm 

starts to search for “plara” in Web Documents by calling the WebSearch () 
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function. The keyphrase has the format of “key_noun + plara + key_noun + “is” + 

key_noun”. The algorithm retrieves sentences such as, “Plara is a must for 

northeastern-tradition dishes, especially som-tam or papaya salad.” and “Som-tam 

with plara is called som-tam lao (Laotian -style papaya salad) or simply som-tam 

plara, which is in contrast to the traditional Thai style som-tam, which has dried 

shrimp and is som-tam thai” etc. Thus, key nouns from Web Documents consist 

of “dish”, “som-tam”, “papaya”, “salad”, “lao”, “laotian” “style”, “papaya”, 

“salad”, “thai”, “shrimp” etc. The category name and frequency of occurrence are 

sorted in descending order as “som-tam” (6), “fish” (5), “papaya” (3), “shrimp” 

(2) etc. The frequency of occurrence is presented in the parentheses. The highest 

frequency category name is “som-tam”. The algorithm searches for the parent of 

“som-tam” at Level 3. The parent of “som-tam” cannot be found in WordNet. 

Then the algorithm retrieves the next category name as “fish”. The algorithm 

searches for the parent of “fish” in Level 3. The parent of “fish” can be found in 

WordNet (shown in Figure 4.4.); then the search continues for the “physical 

entity” concept at any level. The physical entity concept can be found at Level 4. 

Therefore, “fish” is accepted as the concept. The algorithm represents the “plara” 

object name as the “fish” concept. The algorithm searches for the concept in 

Robot Ontology. The SearchRobotOntology () function returns the number of 

instances as zero because the “fish” concept cannot be found in Robot Ontology. 

Level 1: fish 

Level 2: person, aquatic_vertebrate, sign_of_the_zodiac, food 

Level 3: vertebrate, region, solid, causal_agent, organism 

Level 4: matter, location, living_thing, chordate, physical entity 

Figure 4.4 Hierarchy of the “fish” to “physical entity” concepts 

4.2.3 Relation Creation Module 

The Relation Creation module constructs relations. In the case where the parent 

concept of the newly created concept exists in Robot Ontology, this module 

creates the relation between the newly created concept and the existing one in 

Robot Ontology. In the case where the parent is not an existing concept in Robot 
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Ontology, this module identifies the relevant concepts and builds up the relations 

between the newly created concept and the relevant concept until reaching a 

concept that exists in Robot Ontology. The relevant concepts are selected 

concepts that appear in the candidate concepts. This module establishes the “is-a” 

relation using WordNet and “HasA” and “MadeOf” relations using ConceptNet, 

because WordNet provides hierarchy relations and ConceptNet provides non-

hierarchy relations. The ConceptRelation algorithm is given in Figure 4.5. 

In this algorithm, C represents concept, CCT stands for concepts from the subset 

of WordNet from Level 4 (The level contains the parent of the parent of the newly 

created concept from Concept Creation, to the level which is just below the top 

level where the “physical entity” concept resides), C stands for concept, P 

represents parents of the concept, CRT stands for concept relation text, PE stands 

for physical entity and RC stands for relevant concepts. The relevant concepts will 

then be identified from the candidate concepts. 

The algorithm contains two steps. The first is to create an “is-a” relation between 

concepts and the parents of concepts or physical entity. It is a loop with the 

condition of “while (ParentConcept (P) in CCT)”, meaning the parents of the 

concept are selected from the subset of WordNet from Level 4. The second step is 

to create “HasA” and/or “MadeOf” relations between the newly created concept 

that is already in Robot Ontology and the relevant concept, implemented by 

running CheckRobotOntology (). 
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Algorithm: RelationCreation 

Input:  C  

Begin 

 CCT  CandidateConcept (C); P  ParentConcept (C);  

 If (CheckRobotOntology (P)) then 

 { 

   Add “is-a”, C, P to CRT;  

 } 

 Else if P == “PE”  

 { 

  Add “is-a”, C, PE to CRT; 

 } 

 Else 

 { 

  Do { 

   RC  P; 

   If RC == “PE” or SynonymConcept (RC) == “PE” then  

   { 

    Add “is-a”, C, RC and “is-a”, RC, PE to CRT; 

   } 

   Else  

   { 

    Add “is-a”, C, RC to CRT; C  RC; 

    If (CheckRobotOntology (ParentConcept (P))) then 

    { 

     Add “is-a”, C, P to CRT; 

    } 

   } 

  } While (ParentConcept (P) in CCT) 

 } 

 If (CheckRobotOntology (SearchHasA (C))) then 

 { 

  Add “HasA”, C, RC to CRT; 

 } 

 If (CheckRobotOntology (SearchMadeOf (C))) then 

 { 

  Add “MadeOf”, C, RC to CRT; 

 } 

Return CRT; 

Figure 4.5 RelationCreation Algorithm
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To implement the first step, assigning the “is-a” relation, the following four 

functions are used: 

 CandidateConcept () – creating a group of concepts 

 ParentConcept () – searching for parents of the concept 

 SynonymConcept () – searching for the synonyms of the concept 

 CheckRobotOntology () – checking if the parent concept or relevant concept 

is in Robot Ontology 

 

To implement the second step, the following functions are used: 

 CheckRobotOntology () – checking if the parent concept or relevant concept 

is in Robot Ontology 

 SearchHasA () – searching for the relevant concept with a “HasA” relation 

 SearchMadeOf () – searching for the relevant concept with a “MadeOf” 

relation. 

 

CandidateConcept () collects candidate concepts from the subset of WordNet 

from Level 4; the level contains the parent of the parent of the newly created 

concept from Concept Creation, to the level which is just below the top level 

where the “physical entity” concept resides. The relevant concept will then be 

identified from the candidate concepts.  

 

ParentConcept () searches for parents of the newly created concept at Level 3 and 

returns the parents.  

 

CheckRobotOntology () loads all concept nodes in Robot Ontology and checks 

the IRI attribute of the concept in question against that of the existing concepts. 

The function returns true if the IRI attribute of the concept matches that of an 

existing concept in Robot Ontology. Otherwise, it returns false. 

 

SearchHasA () searches for the relevant concept that has a “HasA” relation with 

the newly created concept in ConceptNet. The ConceptNet URL is 

“http://conceptnet5.media.mit.edu/data/5.4/search”. The “HasA&start+ concept” 

http://conceptnet5.media.mit.edu/data/5.4/search
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argument is set to specify the “HasA” relation with a start parameter. The start 

parameter means that the function retrieves the relevant concepts from “concept 

has a relevant concept” in ConceptNet. In the case where the relevant concept can 

be found in Robot Ontology, the function adds the “HasA” relation between the 

newly created concept and the relevant concept.  

 

SearchMadeOf () has the same process as the previous function, but it searches for 

the relevant concept that has a “MadeOf” relation with the newly created concept 

in ConceptNet. The start parameter means that the function retrieves the relevant 

concepts from “concept made of relevant concept” in ConceptNet. In the case 

where the relevant concept can be found in Robot Ontology, the function adds the 

“MadeOf” relation between the newly created concept and the relevant concept.  

 

This framework selects the “HasA” and “MadeOf” relations. The “HasA” relation 

presents the “noun phrase has noun phrase” sentence pattern and the “MadeOf” 

relation presents the “noun phrase is made of noun phrase” sentence pattern. 

“HasA” and “MadeOf” relations indicate the meaning between two concepts. For 

example, the “beer” concept has “HasA” relation with the “alcohol” concept. It 

means that, beer contains an alcohol. In the case there is no beer concept in the 

environment, these two relations can be used to implement finding the object that 

contains alcohol in order to provide a similar object to beer in the environment. 

 

Example 4.3: 

Given the “cocktail” concept as a newly created concept, the algorithm calls the 

CandidateConcept () function to collect the candidate concepts of “cocktail” as 

shown in Figure 4.6. First, the algorithm searches for the parent of cocktail in 

Level 3; it finds “course” and “alcohol” by using the ParentConcept () function. 

Second, the parent of the “cocktail” concept must be checked for existence in 

Robot Ontology by using the CheckRobotOntology () function. The “course” 

concept cannot be found in Robot Ontology. The algorithm checks the parent of 

the “course” concept is not the “physical entity” concept. The parents of “course” 

are “location”, “social_group”, “food”, “activity”, “ordering”, “path”, “act” and 
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“artefact” by using the ParentConcept () function. The “course” concept is not the 

“physical entity” concept and synonyms of “course” are found by calling the 

SynonymConcept () function. The “education”, “facility”, “gathering”, “series”, 

“direction”, “layer” and “action” concepts are not the “physical entity” concepts. 

In the case where the “food” concept can be found in the candidate concepts, the 

algorithm adds the “is-a” relation between “cocktail” and “course”. It assigns 

“course” as the concept and assigns “food” as the parent concept. The 

CheckRobotOntology () function returns false for the “food” concept. The 

algorithm continues to search for the parent of the “food” concept. 

The parents of “food” are “cognition” and “matter”. In the case where “matter” 

can be found in the candidate concept, the algorithm assigns “food” as the 

relevant concept. The “food” concept is not the “physical entity” concept and the 

synonyms of the “food” concept are not the “physical entity” concept. The 

algorithm adds the “is-a” relation between the “course” and “food” concepts. The 

algorithm sets “food” as the concept and sets “matter” as the parent concept. The 

CheckRobotOntology () function returns false for the “matter” concept. The 

algorithm continues to search for the parent of the “matter” concept. There is no 

parent of “matter” in the candidate concept but the synonym of matter is physical 

entity. The algorithm adds the “is-a” relation between the “food” and “matter” 

concepts and adds the “is-a” relation between the “matter” and “physical entity” 

concepts. 

 

Level 4: drug_of_use, nutriment, beverage 

Level 5: food, drug, liquid 

Level 6: agent, fluid substance 

Level 7: substance, causal_agent, matter 

Figure 4.6 The candidate concepts for the “cocktail” concept 

The algorithm also applies the same process to the parents of “alcohol” which are 

“drug”, “fluid” and “food” in order to create the hierarchy of “cocktail”. The 

SearchHasA and SearchMadeOf functions will be activated after the algorithm 

creates the hierarchy of “cocktail”. The SearchHasA () and SearchMadeOf () 
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functions search for the relevant concept name from ConceptNet. They search 

HasA&start=/c/en/+ cocktail and MadeOf&start=/c/en/+ cocktail, respectively in 

ConceptNet. In the case where the relevant concept name cannot be found in 

ConceptNet, the algorithm does not create a relation between cocktail and the 

relevant concept name, as shown in Figure 4.7. The concept relation text is sent to 

OWL Creation. 

 

CRT = “is-a”, cocktail, course, “is-a”, course, food, “is-a”, food, matter, “is-a”, 

matter, “physical entity”, “is-a”, cocktail, alcohol, “is-a”, alcohol, food, “is-a”, 

alcohol, drug, “is-a”, alcohol, fluid, “is-a”, drug, “physical entity”, “is-a”, fluid, 

“physical entity” 

Figure 4.7 The concept relation text of the “cocktail” concept 

Example 4.4: 

Given “beer” as a new concept, the parent of beer can be found in WordNet and 

beer’s antecedent is the “physical entity” concept. The candidate concepts of 

“beer” are “agent”, “matter”, “food”, “drug_of_use”, “fluid”, “beverage”, 

“substance”, “causal_agent”, “liquid” and “drug”, by using the CandidateConcept 

() function. The parent of “beer” is “alcohol” by using the ParentConcept () 

function. In the case that “alcohol” can be found in Robot Ontology, the algorithm 

assigns the “is-a” relation between “beer” and “alcohol” into CRT. The 

SearchHasA () and SearchMadeOf () functions will be activated. The “beer” 

concept has a “HasA” relation with “water” and “alcohol”. If the “alcohol” 

concept can be found in Robot Ontology, then the algorithm assigns the “HasA” 

relation between the “beer” and “alcohol” concepts to concept relation text. The 

“beer” concept has the “MadeOf” relation with “malt”, which cannot be found in 

Robot Ontology, so the algorithm does not create the relation between the 

concepts. The concept relation text of “cocktail” and “beer” is shown in Figure 

4.8. 
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CRT = “is-a”, cocktail, course, “is-a”, course, food, “is-a”, food, matter, “is-a”, 

matter, “physical entity”, “is-a”, cocktail, alcohol, “is-a”, alcohol, food, “is-a”, 

alcohol, drug, “is-a”, alcohol, fluid, “is-a”, drug, “physical entity”, “is-a”, fluid, 

“physical entity”, “is-a”, beer, alcohol, “HasA”, beer, alcohol 

Figure 4.8 The concept relation text of the “cocktail” and “beer” concepts 

4.2.4 OWL Creation Module 

OWL Creation generates OWL tags from the concept relation text that is obtained 

from Relation Creation. OWL is used to implement an ontology for sharing 

understanding between human and robots. The OWL tags are stored as part of the 

Ontology Level in Robot Ontology. Human and robots use Robot Ontology in 

order to understand objects in a dynamic environment. The OWL Creation 

process involves converting the concept relation text to OWL tags and updating 

Robot Ontology. The OWLCreation algorithm is given in Figure 4.9. 

 

Algorithm: OWLCreation 

Input:  CRT 

Begin 

 Do  

{ 

  CreateOWL (Split CRT with comma); 

  }  

While (CRT! = End Of File) 

Figure 4.9 OWLCreation Algorithm 

In this algorithm, CRT represents concept relation text. The algorithm splits 

concept relation text with commas (“,”) in order to create an OWL tag from the 

relation between the two concepts. The first phrase in the CRT is the relation 

name and the next two phrases are the child concept and the parent concept, 

respectively. The process carries on through all phrases until End Of File. End Of 

File means that algorithm cannot read text from the concept relation text. The 

main body of this algorithm CreateOWL () create OWL and updates Robot 

Ontology.  
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After splitting a phrase, the relation, the child concept and the parent concept are 

created as OWL by using CreateOWL (). In the case where the relation name is 

“is-a”, CreateOWL () creates the child concept tag and the parent concept tag and 

creates the relation tag between the child concept tag and the parent concept tag. 

The syntax is given below: 

“<Declaration> 

         <Class IRI="concept"/> 

</Declaration> 

<SubClassOf> 

         <Class IRI="child_concept"/> 

         <Class IRI="parent_concept"/> 

</SubClassOf>”. 

 

The function first creates the “Declaration” and “Class” elements. It creates an 

“IRI” attribute of the “Class” element with the concept value. It then creates the 

“SubClassOf” and “Class” elements and assigns child_concept and 

parent_concept as values to “IRI” attributes of the “Class” element.  

 

If the relation name is not “is-a”, CreateOWL () creates non-hierarchy relations 

between the concepts such as  

“<Declaration> 

        <ObjectProperty IRI="# relation_name "/> 

 </Declaration> 

<EquivalentClasses> 

        <Class IRI="child_concept"/> 

         <ObjectSomeValuesFrom> 

             <ObjectProperty IRI="relation_name"/> 

             <Class IRI="parent_concept"/> 

         </ObjectSomeValuesFrom> 

</EquivalentClasses>”. 
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The function creates the “Declaration” and “ObjectProperty” elements in order to 

create the non-hierarchy relation name. It assigns an “IRI” attribute of the 

“ObjectProperty” element with the relation_name value. The function creates the 

“EquivalentClasses” and “Class” elements. It assigns an “IRI” attribute of the 

“Class” element with the child_concept value. It appends the “Class” element as a 

child element of the “EquivalentClasses” element. The function creates the 

“ObjectSomeValuesFrom”, “ObjectProperty” and “Class” elements. It assigns an 

“IRI” attribute of the “ObjectProperty” element with the relation_name value. It 

assigns an “IRI” attribute of the “Class” element with the parent_concept value. 

The function appends the “ObjectProperty” and “Class” elements as a child 

element of the “ObjectSomeValuesFrom” element.  

 

Example 4.5: 

Given the concept relation text is “is-a, cocktail, alcohol, is-a, alcohol, fluid, is-a, 

fluid, physical entity, is-a, beer, alcohol, HasA, beer, alcohol”. The algorithm 

converts concept relation text to OWL as given in Figure 4.10. First, the algorithm 

splits concept relation text with commas and CreateOWL () creates OWL until it 

has read through to the end of the concept relation text.  

In the case where the relation name is “is-a”, CreateOWL () represents the “is-a” 

relation between the “cocktail” and “alcohol” concepts. The “cocktail” concept 

and the “alcohol” concept are declared. The “Declaration” element is the declared 

element for creating components. The “Class” element represents the concept by 

creating an “IRI” attribute as the concept name. The “Class” element is a child 

element of the “Declaration” element. The “is-a” relation between the “cocktail” 

concept and “alcohol” concept is created. The “cocktail” concept is a subclass of 

the “alcohol” concept.  

 

Otherwise, CreateOWL () declares relation name and creates the “HasA” or 

“MadeOf” relations between the two concepts. CreateOWL () represents the 

“HasA” relation between the “beer” and “alcohol” concepts. CreateOWL () 

creates the “Declaration” and the “ObjectProperty” elements. The 
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“ObjectProperty” element represents the relation by creating an “IRI” attribute as 

the relation name. The “ObjectProperty” element is a child element of the 

“Declaration” element.  

 

The “EquivalentClasses” and “Class” elements are created. The 

“EquivalentClasses” element indicates two classes which are equivalent. Two 

classes are considered equivalent if they contain exactly the same individuals. The 

“Class” element represents the concept by creating an “IRI” attribute as the “beer” 

concept. The “Class” element is a child element of the “EquivalentClasses” 

element. The “ObjectSomeValuesFrom”, “Class” and “ObjectProperty” elements 

are created. The “ObjectSomeValuesFrom” element has some values in the 

“Class” element in the “ObjectProperty” element. The “ObjectProperty” element 

is the relation between the concepts. The “ObjectProperty” element represents the 

relation by creating an “IRI” attribute as a “HasA” relation. The “Class” element 

represents the concept by creating an “IRI” attribute as the “alcohol” concept. The 

“ObjectProperty” and “Class” elements are child elements of the 

“ObjectSomeValuesFrom” element. The ObjectSomeValuesFrom” element is a 

child element of the “Class” element. The “Class” element is a child element of 

the “EquivalentClasses” element. 
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Figure 4.10 Example of the OWL syntax of concept relation text 

<Declaration> 

        <Class IRI="#cocktail"/> 

</Declaration> 

 

<Declaration> 

        <Class IRI="#alcohol"/> 

</Declaration> 

 

<Declaration> 

        <Class IRI="#fluid"/> 

</Declaration> 

 

<Declaration> 

        <Class IRI="#physical entity"/> 

</Declaration> 

 

<Declaration> 

        <Class IRI="#beer"/> 

</Declaration> 

<SubClassOf> 

        <Class IRI="#cocktail"/> 

        <Class IRI="#alcohol"/> 

</SubClassOf> 

 

<SubClassOf> 

        <Class IRI="#alcohol"/> 

        <Class IRI="#fluid"/> 

</SubClassOf> 

 

<SubClassOf> 

        <Class IRI="#fluid"/> 

        <Class IRI="#physical entity"/> 

</SubClassOf> 

 

<SubClassOf> 

        <Class IRI="#beer"/> 

        <Class IRI="#alcohol"/> 

</SubClassOf> 

<Declaration> 

        <ObjectProperty IRI="#HasA"/> 

</Declaration> 

<EquivalentClasses> 

        <Class IRI="#beer"/> 

         <ObjectSomeValuesFrom> 

             <ObjectProperty IRI="#HasA"/> 

             <Class IRI="#alcohol"/> 

         </ObjectSomeValuesFrom> 

</EquivalentClasses> 
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4.2.5 Instance Creation Module 

Instance Creation builds instances of a concept. It creates an instance of a concept 

in OWL format and sends it to Robot Ontology. The InstanceCreation algorithm, 

as given in Figure 4.11, receives the concept name. The main idea is to create the 

instance name by using the instance name pattern in OWL format. The instance 

name pattern is a string format that attaches a “#” symbol, a concept name, a “_” 

symbol and an instance number.  

 

Algorithm: InstanceCreation 

Input:  C 

Begin 

 IIncrease number of instance by 1 and convert to string; 

DeclarationInstance (I); 

CreateInstance (C, I); 

Figure 4.11 InstanceCreation Algorithm  

In this algorithm, C represents concept and I stands for instance. The algorithm 

has the following functions: 

 DeclarationInstance () – creating instance in OWL syntax as 

<Declaration> 

        <NamedIndividual IRI="instance_name"/> 

</Declaration>. 

 CreateInstance () – creating OWL syntax as 

<ClassAssertion> 

        <Class IRI="concept_name"/> 

        <NamedIndividual IRI="instance_name"/> 

</ClassAssertion>. 

DeclarationInstance () creates the “Declaration” and “NamedIndividual” 

elements. It creates an “IRI” attribute of the “NamedIndividual” element with the 

instance_name value. It appends “NamedIndividual” element to be a child 
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element of the “Declaration” element and appends the “Declaration” element to 

the instance_tag. 

CreateInstance () creates the “ClassAssertion” element and “Class” elements. It 

creates an “IRI” attribute of the “Class” element with the concept_name value. It 

creates the “NamedIndividual” element and assigns an “IRI” attribute with the 

instance_name value. It appends the “Class” and “NamedIndividual” elements to 

be child elements of the “ClassAssertion” element and appends the 

“ClassAssertion” element to the instance_tag. 

Example 4.6: 

Concept Creation sends cocktail as the concept name and zero as the number of 

instances. First, the algorithm increases the number of instances by 1 and converts 

the number of instances to a string. It forms the concept name by adding a “#” 

symbol in front of the concept name and forms the instance name by adding a “#” 

symbol in front of the instance name and adds a “_” symbol and the number of 

instances as string. The instance name is “#cocktail_1”. The algorithm calls the 

DeclarationInstance () function in order to declare the instance name. The result of 

the DeclarationInstance () function is: 

“<Declaration> 

        <NamedIndividual IRI="#cocktail_1"/> 

</Declaration>”. 

The DeclarationInstance () function creates the “Declaration” and 

“NamedIndividual” elements. It creates an “IRI” attribute of the 

“NamedIndividual” element as “#cocktail_1”. The “NamedIndividual” element is 

a child element of the “Declaration” element. 

The algorithm calls the CreateInstance () function in order to create the instance 

name. It creates the “ClassAssertion”, “Class” and “NamedIndividual” elements. 

The “Class” and “NamedIndividual” elements are child elements of the 

“ClassAssertion” element. It creates an “IRI” attribute of the “Class” element as 
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the “cocktail” concept name. It creates an “IRI” attribute of the 

“NamedIndividual” element as the “#cocktail_1” instance name. The result of the 

CreateInstance () function is: 

“<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

</ClassAssertion>”. 

The result of the instance_tag is given in Figure 4.12. 

<Declaration> 

        <NamedIndividual IRI="#cocktail_1"/> 

</Declaration> 

<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

</ClassAssertion> 

Figure 4.12 The OWL tag instance of cocktail 

4.2.6 Property Creation Module 

Property Creation constructs the property names and their values for the instance 

from Instance Creation. Property Creation receives the instance name and instance 

tag from Instance Creation and receives property values from Data Input. The 

main idea is to classify property names from property values, to assign their 

property values to each property name, to convert property names and their values 

to OWL format and to append these to the instance tag. 

The PropertyCreation algorithm as given in Figure 4.13 calls the ClassifyProperty 

() function with property value and calls the AssignProperty () function with 

instance name, property name and property value. It adds each property value to 

property tag until the last property value is reached. The algorithm appends 

instance tag and property tag to owl tag in order to send it to Semantic Knowledge 

Acquisition. 
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Algorithm: PropertyCreation 

Input:  IN, IT, PV 

Begin 

 INIncrease number of instance by 1 and convert to string; 

Do 

{ 

P []  ClassifyProperty (PV [i]); 

  PV[i] AssignProperty (IN, P[i], PV [i]); 

 }  

While (End of PV) 

Create OWL from IT and PT; 

OWL is sent to Semantic Knowledge Acquisition; 

Figure 4.13 PropertyCreation Algorithm  

In this algorithm, IN stands for instance, P stands for property of instance, IT 

stands for instance text and PV stands for property value. The main loop with the 

condition of while (End of PV) means creating a property value of instance until 

reaching the last property value of the instance. The algorithm has the following 

functions: 

 ClassifyProperty () – classifying property value to property name  

 AssignProperty () – creating OWL syntax as 

<DataPropertyAssertion> 

<DataProperty IRI="#property_name"/> 

<NamedIndividual IRI="#instance_name"/> 

<Literal datatypeIRI="&rdf;PlainLiteral">property_value</Literal> 

</DataPropertyAssertion>. 

The ClassifyProperty () function classifies property value to property name by 

using rules. Adjectives give property values of physical objects from Data Input. 

There are five predefined properties: “hasTime”, “hasLocation”, “hasColour”, 

“hasShape” and “hasProperty”. The function matches property value to the 

predefined properties by using the rules for classifying the property name. The 

three rules, respectively, are:  
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Rule1 is defined by a number that has 14 digits. The algorithm assigns “hasTime” 

to property_name.  

Rule2 is defined by text that is separated by “,” symbols. The algorithm assigns 

“hasLocation” to property_name. Otherwise, the algorithm assigns “hasProperty” 

to property_name. 

AssignProperty () creates the “DataPropertyAssertion” and “DataProperty” 

elements. It creates an “IRI” attribute of the “DataProperty” element with 

property_name as its value. The function creates the “NamedIndividual” element 

and assigns an “IRI” attribute with instance_name as its value. It assigns the 

“Literal” element, assigns a “datatypeIRI” attribute with “&rdf;PlainLiteral” value 

and assigns property value to the “Literal” element. Finally, the function appends 

“DataProperty”, “NamedIndividual” and “Literal” elements to be child elements 

of the “DataPropertyAssertion” element. 

Example 4.7: 

Given the property values of the “cocktail_1” instance as “20150819113959” and 

“1, 0, 1”. The algorithm calls the ClassifyProperty () function with 

“20150819113959” property value. The ClassifyProperty () function assigns the 

property name as “hasTime”. The algorithm calls the AssignProperty () function 

with the “cocktail_1” instance, “hasTime” property name and “20150819113959” 

property value. The AssignProperty () function creates OWL as property value as: 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

        <Literal datatypeIRI="&rdf;PlainLiteral">20150819113959</Literal> 

</DataPropertyAssertion>. 

The algorithm appends the property value to property tag. The process continues 

by calling the ClassifyProperty () function with “1, 0, 1” value and it returns 

property name as “hasLocation”. It calls the ClassifyProperty () function with the 
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“cocktail_1” instance, “hasLocation” property name and “1, 0, 1” property value. 

The AssignProperty () function creates OWL as property value as: 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="#cocktail_1"/> 

          <Literal datatypeIRI="&rdf;PlainLiteral">1, 0, 1</Literal> 

</DataPropertyAssertion>. 

The algorithm appends property value to property tag again. The algorithm stops 

processing when the last property value is reached. The instance tag of 

“cocktail_1” as shown in Figure 4.12 appends with property tag as OWL. The owl 

tags as shown in Figure 4.14 is sent to Semantic Knowledge Acquisition. 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

        <Literal datatypeIRI="&rdf; PlainLiteral">20150819113959</Literal> 

</DataPropertyAssertion> 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="# cocktail_1"/> 

          <Literal datatypeIRI="&rdf; PlainLiteral">1, 0, 1</Literal> 

 </DataPropertyAssertion> 

Figure 4.14 The instance of cocktail, property names and values 
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4.3 Summary 

The Automatic Ontology process within the DIRAOF framework is presented in 

order to create concepts, relations, instances of concepts, properties and their 

values by using WordNet, ConceptNet and Web Documents from Data and 

Information Retrieval. The Automatic Ontology process consists of five modules: 

Concept Creation, Relation Creation, OWL Creation, Instance Creation and 

Property Creation. The studies on the Automatic Ontology process and the Data 

and Information Retrieval process show that the retrieved concept names and the 

“is-a”, “HasA” and “MadeOf” relations are created in Robot Ontology. Instances 

of concepts, properties and their values are created and are sent to the Semantic 

Knowledge Acquisition. Therefore, Automatic Ontology is able to create the 

components of the ontology as OWL tags and send them to the Robot Ontology 

and Semantic Knowledge Acquisition processes. 

The Semantic Knowledge Acquisition process is presented in Chapter 5 in order 

to apply the OWL from Property Creation for representing the relation between 

instances of a concept and their properties in the environment.  
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CHAPTER 5 SEMANTIC KNOWLEDGE ACQUISITION  

 

Semantic knowledge refers to knowledge about instances of concepts, properties 

and property values. From the ontology development point of view, knowledge is 

represented using an ontology. An ontology provides a formal and explicit 

specification of a shared conceptualization. It does not contain information about 

instances in environments. Homecare robots, however, require such information 

when they are asked to find instances in domestic environments. Therefore, there 

is a need for associating semantic knowledge with the instances stored in the 

ontology.  

Furthermore, home environments are dynamic and unstructured because human 

users and robots share the same space. Robots may place objects in one place and 

human users can move the objects to different places later without informing the 

robots. Humans can also introduce objects into the space. Semantic knowledge 

would contribute to robots being able to locate objects in dynamic and 

unstructured environments. 

The Semantic Knowledge Acquisition process within the DIRAOF framework is 

designed to associate semantic knowledge for instances and to use semantic 

knowledge for tracing instances. This chapter details the Semantic Knowledge 

Acquisition process. The structure of Semantic Knowledge Acquisition consists of 

four modules: Ontology Updating, Semantic Representation, NFile and Object 

Prediction. This chapter also presents Tracking Instances: that is, a novel method 

to solve the problem of locating instances in a dynamic environment by predicting 

the future locations of instances. 

5.1 Association of Semantic Knowledge with Instances 

Semantic knowledge is available from the Data Input process. The Data Input 

process retrieves information from Gazebo which is a 3D simulator and simulates 
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populations of robots, objects and sensors. The framework assumes that the labels 

of objects from Gazebo are retrieved in text-file format.  

The label (name) of an object is tackled by Concept Creation and Relation 

Creation to create concepts, and relations between concepts. An instance is built 

by Instance Creation after the new concept is created or the new instance of a 

concept occurs, whereas a property value consists of time value, location value 

and other property values. They are identified by Property Creation in Automatic 

Ontology. Property Creation aims to assign a property name for each property 

value.  

It is necessary to associate semantic knowledge with the instance. Thus, Ontology 

Updating associates semantic knowledge of an instance with the instance in Robot 

Ontology. Semantic knowledge consists of property names and property values of 

the instance. There are at least two property names of an instance (“hasLocation” 

and “hasTime”) that always occur for every instance. 

5.1.1 Structure of the Semantic Knowledge Acquisition Process 

The structure of the Semantic Knowledge Acquisition process is given in Figure 

5.1. It consists of four modules: Ontology Updating, Semantic Representation, 

NFile and Object Prediction. The functionality of each module is described as 

follows. The Ontology Updating module updates semantic knowledge of instances 

into Robot Ontology. Semantic Representation uses semantic knowledge of 

instances to identify FileN, assigns semantic knowledge of instances to FileN and 

searches for instances of similar concepts to the concept name. The NFile module 

uses semantic knowledge of instances to calculate the weight function of all 

instances of a concept and finds instances in the dynamic environment. The 

Object Prediction module uses semantic knowledge of instances to compute the 

decision score for predicting the location of the instance of the concept and to 

send similar instances to the Query process. 

Figure 5.1 presents information exchange between Automatic Ontology, Semantic 

Knowledge Acquisition, Robot Ontology, Result Evaluation and Query. Concepts 
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and relations between concepts from OWL Creation in Automatic Ontology are 

stored at the Ontology Level in Robot Ontology. Whereas instances, their 

property names and property values from Property Creation in Automatic 

Ontology are represented as semantic knowledge by the Semantic Knowledge 

Acquisition process and they are stored at the Semantic Knowledge Level in 

Robot Ontology. Query receives the concept name from Robot Ontology and 

sends it to Semantic Representation. Semantic Knowledge Acquisition manages 

semantic knowledge of all instances of the concept name and sends the prediction 

location of the concept name and instances of concept back to Query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 The structure of Semantic Knowledge Acquisition 
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5.1.2 Assigning Semantic Knowledge to the “hasLocation” Property  

Semantic knowledge of an instance provides knowledge about the instance in the 

unstructured environment. The problem of locating objects in dynamic and 

unstructured environments is tackled by the idea of assigning semantic knowledge 

of location to the instance of a concept. As mentioned earlier, every instance has a 

“hasLocation” property name and property value in order to indicate the location 

of the instance in the environment. The “hasLocation” property value is assigned 

with semantic knowledge of the location of the instance and is updated into Robot 

Ontology. The OntologyUpdating algorithm is given in Figure 5.2.  

Algorithm: OntologyUpdating 

Input:  OT  

RO  document is loaded from “RobotOntology.owl”; 

 

Begin  

Do { 

 UpdateOntology (RO); 

} While (P and PV! = End Of File) 

Return RO; 

Figure 5.2 OntologyUpdating algorithm  

In this algorithm, OT represents an OWL tag as text from Property Creation, RO 

stands for the Robot Ontology document that stores concepts, relations between 

concepts, instances, properties and their property value, P stands for property of 

instance and PV stands for property value. The main loop with the condition of 

while (P and PV! = End Of File) means updating the property value of an instance 

until reaching the last property and property value of that instance.  

The algorithm has the following function: 

 UpdateOntology () – appending OWL tags to RobotOntology.owl 

UpdateOntology () updates OWL tag text from Property Creation as semantic 

knowledge of each instance into Robot Ontology. The OWL tags provide 
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semantic knowledge about instances, property names and their property values. 

The algorithm retrieves and updates semantic knowledge of instance to Robot 

Ontology. 

Example 5.1: 

OWL tag text from Property Creation is  

“<Declaration> 

        <NamedIndividual IRI="#cocktail_2"/> 

</Declaration> 

<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_2"/> 

</ClassAssertion> 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_2"/> 

        <Literal datatypeIRI="&rdf; PlainLiteral">20150919113959</Literal> 

</DataPropertyAssertion> 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="#cocktail_2"/> 

          <Literal datatypeIRI="&rdf; PlainLiteral">1, 1, 1</Literal> 

</DataPropertyAssertion>”.  

The OWL tag contains the “cocktail_2” instance, the “hasLocation” and 

“hasTime” property names and their values. The algorithm appends the OWL tag 

text that describes the “cocktail_2” instance to Robot Ontology. The OWL 

document contains concepts, relations, instances, properties and their values. In 

this case, the “cocktail” concept has one instance, namely the “cocktail_1” 

instance. 
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The UpdateOntology () appends the OWL tag of the “cocktail_2” instance to the 

OWL document as given in Figure 5.3. Figure 5.3 shows concepts, relations, 

instances, properties and values which are appended by the OWL tag (the italic 

text). There are two instances of cocktail in the OWL document at this point. 

Ontology Updating continually receives the OWL tag and updates the OWL 

document by using the UpdateOntology () until the last property name and 

property value from Property Creation are reached. The OWL document is 

updated into RobotOntology.owl. 

<Declaration> 

        <Class IRI="#cocktail"/> 

</Declaration> 

<Declaration> 

        <Class IRI="#alcohol"/> 

</Declaration> 

<Declaration> 

        <Class IRI="#fluid"/> 

</Declaration> 

<Declaration> 

       <Class IRI="#physical entity"/> 

</Declaration> 

<Declaration> 

        <Class IRI="#beer"/> 

</Declaration> 

 

<SubClassOf> 

        <Class IRI="#cocktail"/> 

        <Class IRI="#alcohol"/> 

</SubClassOf> 

<SubClassOf> 

        <Class IRI="#alcohol"/> 

        <Class IRI="#fluid"/> 

</SubClassOf> 

<SubClassOf> 

       <Class IRI="# fluid"/> 

       <Class IRI="#physical entity"/> 

</SubClassOf> 

<SubClassOf> 

        <Class IRI="#beer"/> 

        <Class IRI="#alcohol"/> 

</SubClassOf> 

 

<Declaration> 

        <ObjectProperty IRI="#HasA"/> 

</Declaration> 

<EquivalentClasses> 

        <Class IRI="#beer"/> 

         <ObjectSomeValuesFrom> 

             <ObjectProperty IRI="#HasA"/> 

             <Class IRI="#alcohol"/> 

         </ObjectSomeValuesFrom> 

</EquivalentClasses> 

 



 

103 

 

<Declaration> 

        <NamedIndividual IRI="#cocktail_1"/> 

</Declaration> 

<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

</ClassAssertion> 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

        <Literal datatypeIRI="&rdf; PlainLiteral">20150819113959</Literal> 

</DataPropertyAssertion> 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="#cocktail_1"/> 

          <Literal datatypeIRI="&rdf; PlainLiteral">1, 0, 1</Literal> 

</DataPropertyAssertion> 

<Declaration> 

        <NamedIndividual IRI="#cocktail_2"/> 

</Declaration> 

<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_2"/> 

</ClassAssertion> 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_2"/> 

        <Literal datatypeIRI="&rdf; PlainLiteral">20150919113959</Literal> 

</DataPropertyAssertion> 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="# cocktail_2"/> 

          <Literal datatypeIRI="&rdf; PlainLiteral">1, 1, 1</Literal> 

</DataPropertyAssertion> 

Figure 5.3 The OWL document is updated by OWL tags 
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5.2 Tracking Instances 

An instance has a semantic knowledge of location at one time given by the 

“hasTime” property value. Thus, semantic knowledge of location can be traced 

from time to time. This idea of assigning location of semantic knowledge leads to 

trace instances for predicting the future location of instance. 

Tracking Instances presents the method for locating instances with semantic 

knowledge. Tracking Instances gathers semantic knowledge from instances and 

predicts the future location of instance. It uses semantic knowledge to predict the 

future location of an instance. NFile, Recency and Frequency techniques are 

applied in Tracking Instances. 

5.2.1 NFile Module 

The NFile module computes the summation of the weight function of each 

instance of a concept name. NFile module searches for number of FileN that 

instance occur at specific location. FileN is a system that contains the number of 

files. Each file records the location of an object during a period of time. FileN is 

created in the Semantic Representation module.  

Each instance of the concept name that appears in FileN is calculated by the 

weight function. The pair of weight functions is presented in equation 5.1a and 

equation 5.1b. 

F frequency (x) = 1 (5.1a) 

F recency (x) = 0.5(NFileN−𝑥) (5.1b)



𝐹(𝑥) is a weight function. X is the index of the file where a particular concept is 

found in NFileN. NFileN is the total number of FileN files. There are two types of 

weight function: weight function of frequency (equation 5.1a) and weight function 

of recency (equation 5.1b). The weight function of frequency counts instances of 

the same concept as 1 for each file. Instances represent the concept and they can 
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change from place to place in a dynamic environment. The concept represents 

concrete objects that tend to be placed in a specific location. The weight function 

of recency is (0.5) to the power the number of total FileN files minus the number 

of FileN of that instance which was found in the location. 

The NFile algorithm is given in Figure 5.5. 

Algorithm: NFile 

Input:  RO 

FC1; 

 

Begin  

Do { 

 FF  Find_FileN (RO); 

 If (FF) Then  

  WF=WeightF (FF); 

  WR=WeightR (FF); 

} While (FC! = Max (FC)) 

Return FF, WF, WR 

Figure 5.4 NFile algorithm 

In this algorithm, RO represents Robot Ontology, FC stands for the number of 

FileN, FF represents the number of the file of that instance found, WF stands for 

the weight function of frequency and WR stands for the weight function of 

recency. The main loop with the condition of while (FC! = Max (FC) means 

processing the WeightF and WeightR functions until the maximum number of 

FileN. The algorithm uses the following three functions:  

 Find_FileN () – searching for FileN of each instance name  

 WeightF () – calculating the summation of the weight function for the 

frequency score 

 WeightR () – calculating the summation of the weight function for the recency 

score. 
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Find_FileN () searches for FileN in Robot Ontology. The number of FileN is used 

to compute the summation of the weight function for the frequency score and 

recency score. 

WeightF () calculates the summation of the weight function for the frequency 

score from equation 5.1. 

WeightR () calculates the summation of the weight function for the recency score 

from equation 5.1. 

File1   File2   File3  File4 

 

 

 

 

 

File5   File6   File7  File8 

 

 

 

 

 

File9   File10 

 

 

 

Figure 5.5 The number of NFileN is 10 

Figure 5.5 shows how to calculate weight function of instances that occur in a 

period of 10 files of FileN. Each file consists of times locations and instances. 

There are four instances of whiskey as given in Figure 5.4. There are two 

instances of whiskey that occur in File1 (whiskey_1 and whiskey_2). File2 found 

whiskey_3 instance, and File5 found whiskey_4 instance. The weight function of 

frequency of whiskey concept is 3. The weight function of recency of whiskey 

concept can be calculated from ƒ (5) = (0.5) (10-5). 

20150819113959 

1, 0.1, whiskey_1 

1, 1, 1 whiskey_2 

20150829113959 

1, 0.1, whiskey_3 

20150829203959 

1, 0.1, milk_1 

20150901113959 

1, 1, 1 milk_2 

20150909113959 

1, 1, 1 whiskey_4 

20150929113959 

1, 1, 1 noodle_1 

20150919113959 

1, 0.1, water_1 

20150920113959 

1, 0.1, water_2 

20151009113959 

1, 0.1, water_3 

1, 1, 1 water_4 

20151019113959 

1, 0.1, milk_3 

1, 1, 1 noodle_2 
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5.2.2 Frequency and Recency  

Dynamic environments are random and they cannot guarantee the future location 

of instances. Randomness is an unstructured event that can give results in any of 

several outcomes. It cannot predict the outcome in any particular case. Frequency 

can be counted in the randomness. Instances occur in lawless locations in FileN. 

The locations have an equal chance of getting sampled. Selecting one particular 

location does not affect the chances of any other location being selected. Semantic 

knowledge of instances can be used by counting the frequency of a particular 

instance in the same location in FileN. The frequency is counted and calculated 

for locating the instance. The frequency known as spatial locality that an object 

will appear again based on how often it has been seen before. Frequency counts 

do not pertain only to the lifespan of a particular object, but can also be persistent 

across multiple lifetimes of the object.  

Frequency relates to location that human often places the object. However, human 

can change their behaviour or the furniture can be moved from place to place in 

dynamic environment. Robot may not be able to find the object. Recency should 

be included. 

Recency means the latest time that robot makes a scan to recognise objects. 

Recency is applied in order to gather the recent location of instances. Recency is 

one of theory and observation of human memory. It refers to the decrease of 

memory performance with the time since an instance was presented. The last 

instance is remembered much better than the previous instances. The Tracking 

Instances keeps track of the recent instance in order to gain the number of FileN. 

Because the recent FileN is remembered, it tends to find the instance.  

Tracking Instances is implemented in random experiments. A random experiment 

is repeated multiple times under the same conditions. It shows possible results but 

cannot show precise results, because the Tracking Instances will be implemented 

in real environments where results cannot be guaranteed. The sample space 

presents the set of possible outcomes of random experiments. Thus, the sample 

space is all locations in the environment. 
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The key problem is to find out the location of an object in a dynamic environment. 

The meaning of finding an object is about the location of the object. The location 

is related to Frequency and Recency. Frequency indicates how many times that 

robot found the object in a particular location. Recency indicates the latest 

location of the object in FileN. 

Object Prediction applies Frequency and Recency for computing the decision 

score. Object Prediction predicts the location of an instance. Object Prediction 

calculates all decision scores of each location of the instances. Because the same 

instances occur in same FileN and robots do not classify the same instance of a 

concept in different scenes. The result of Object Prediction is the highest decision 

score of location.  

The weight function is used to balance the decision score of location by 

multiplying the weight function of frequency with the frequency score and 

multiplying the weight function of recency with the recency score. The frequency 

score is calculated from the number of times that the robot found the instance in a 

particular location divided by the number of total FileN files. The recency score 

calculates from the latest file number divided by the number of total FileN files. 

The decision score of location is presented in equation 5.2. 

 

𝐷𝑙𝑜𝑐 =  
𝐹𝑙𝑜𝑐

𝑁𝐹𝑖𝑙𝑒𝑁
 + ( (0.5)𝑁𝐹𝑖𝑙𝑒𝑁−𝑅𝐹𝑖𝑙𝑒𝑁 ×  

𝑅𝐹𝑖𝑙𝑒𝑁

𝑁𝐹𝑖𝑙𝑒𝑁
 )  (5.2) 

Dloc is the decision score of the specific location (loc). Floc is the number of times 

that the robot found the instance in a particular location. NFileN is the total 

number of FileN files. RFileN is the latest file number that the robot found an 

instance in that location. The RFileN value can range in value from 1 to NFileN. 

O notation (Mehlhorn and Sanders, 2008) is used to describe the performance or 

complexity of an algorithm. It describes the execution time required by an 

algorithm. Equation 5.2 is used by Tracking Instances to calculate the decision 

score for each location. Equation 5.2 is justified by O notation in order to describe 

the performance of this equation for calculating the decision score of each 
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location that the instance was found. O notation gives time complexity (CPU 

usage). The time required by equation 5.2 gives O(𝑛) time complexity as follows: 

 O(
𝐹𝑙𝑜𝑐

𝑁𝐹𝑖𝑙𝑒𝑁
)  +  𝑂((0.5)𝑁𝐹𝑖𝑙𝑒𝑁−𝑅𝐹𝑖𝑙𝑒𝑁) × O(

𝑅𝐹𝑖𝑙𝑒𝑁

𝑁𝐹𝑖𝑙𝑒𝑁
)  

O(
𝐹𝑙𝑜𝑐

𝑁𝐹𝑖𝑙𝑒𝑁
)  gives O(𝑛)  time complexity, 

O((0.5)𝑁𝐹𝑖𝑙𝑒𝑁−𝑅𝐹𝑖𝑙𝑒𝑁) gives  O(1) time complexity and 

O (
𝑅𝐹𝑖𝑙𝑒𝑁

𝑁𝐹𝑖𝑙𝑒𝑁
)  gives O(𝑛)  time complexity. 

Thus, equation 5.2 gives  O(𝑛) time complexity for calculating the prediction 

location of an instance. O(𝑛) shows that equation 5.2 will grow linearly and in 

direct proportion to the size of the input dataset. 

The ObjectPrediction algorithm is given in Figure 5.6.  

Algorithm: ObjectPrediction 

Input:  FN, LI, FF, WF, WR  

 

Begin  

Do { 

 PS  PredictionScore (FN, FF, WF, WR); 

  

} While (LI! = Last instance location) 

If (Max of PS) Then  

{ 

 PL  IL of Max of PS; 

} 

Return PL; 

Figure 5.6 ObjectPrediction algorithm 

In this algorithm, FN represents the total number of FileN, LI stands for location 

of instance, FF represents the number of FileN of that instance found, WF stands 

for weight function of frequency, WR stands for weight function of recency, PS 
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stands for prediction score, IL stands for instance location and PL represents 

prediction location.  

The main loop with the condition of while (LI! = Last instance location) means 

calculating the prediction score until reaching the last instance location. The 

maximum value of the prediction score is selected as the prediction location. 

The algorithm has the following function: 

 PredictionScore () – calculating prediction score following equation 5.2. 

 

Example 5.2: 

The total of FileN is 2 as shown in Figure 5.3. There are two locations of the 

“cocktail” instance: “1, 0, 1” and “1, 1, 1”. The number of FileN that found the 

“cocktail_1” instance is 1. The number of FileN that found the “cocktail_2” 

instance is 2. The decision score of “1, 0, 1” location is calculated as (1/2) + 

((0.5)2-1 * (1/2), which equals 0.75. The decision score of “1, 1, 1” location is 

calculated as (1/2) + ((0.5)2-2 * (2/2), which equals 1.5. ObjectPrediction selects 

the maximum value of the prediction score as 1.5. Therefore, the prediction 

location is “1, 1, 1”. 

5.3 Usage of Semantic Knowledge Based on Query 

After semantic knowledge of instances is associated with the instances and 

assigned to instances in Robot Ontology, the Query process inquires the future 

locations of instances and the similar objects. First, the future location of instance 

is queried by calculating the decision location of instance. Second, searching for 

similar objects in Robot Ontology is needed in order to present the similar objects 

in dynamic environment where the robot cannot find the particular object. 

The ideas for predicting locations are  

 grouping the same semantic knowledge of the “hasTime” property name in 

order to identify FileN 
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 grouping the same semantic knowledge of the “hasLocation” property name of 

instances of concept in order to count the frequency and to calculate the 

weight function of recency 

 applying Tracking Instances to calculate the prediction score of each location 

and 

 selecting the highest prediction score of location as the future location of 

instance. 

Semantic Representation manages instances of a concept by using semantic 

knowledge, due to the framework automatically querying the concept name from 

the Query process. Semantic Representation receives the concept name from 

Query and receives the updated RobotOntology.owl from Robot Ontology. 

Semantic Representation searches for instances of the concept name, sorts them 

by the “hasTime” value, assigns FileN to each instance of the concept and counts 

the “hasLocation” value of the instance. 

The algorithm searches for instances of the concept name in Robot Ontology. In 

the case where instances of the concept name can be found, it returns all instance 

names of the concept name. The algorithm sorts the “hasTime” property values of 

instances, assigns FileN to each instance and counts the occurrence of 

“hasLocation” for each instance. 

The “hasTime” property value indicates each time that the robot observes 

approaches the objects. One “hasTime” property value is a FileN which starts 

from 1. FileN is increased by 1 for each “hasTime” property value. FileN is the 

time period from the reference in the past to the current time. Because there are 

instances, property names and values occur in a FileN. 

The ideas for searching for similar objects are  

 searching for parent concepts of the concept 

 searching for similar concepts by finding “HasA” and/or “MadeOf” relations 

with the parent concept name in Robot Ontology 

 searching for instances of the similar concepts in the recent FileN. 
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Algorithm: SemanticRepresentation 

Input:  C  

RO  document is loaded from “RobotOntology.owl”; 

 

Begin  

SortHasTime (RO); 

Do { 

  AssignFileN (SearchInstance (C), count the “hasTime” value of all 

instances in RO); 

  CountLocation (“hasLocation” value of all instances of C); 

SearchSimilar (C); 

} While (IN! =last IN of C) 

Figure 5.7 SemanticRepresentation algorithm 

The SemanticRepresentation algorithm is given in Figure 5.7. In this algorithm, C 

represents concept name, RO stands for the Robot Ontology document that stores 

concepts, relations between concepts, instances, properties and their property 

values and IN stands for instance name. The main loop with the condition of 

while (IN! = last IN of C) means processing from the first instance name until 

reaching the last instance name of each concept.  

The algorithm has the following functions: 

 SortHasTime () –sorts the “hasTime” property values  

 AssignFileN () – assigns the number of FileN to the instance name  

 SearchInstance () – searches for the instance name of the concept in the OWL 

document 

 CountLocation () – counts and assigns the value of the “hasLocation” property 

of all instances of the concept name 

 SearchSimilar () – searches for similar concepts by finding the similar 

concepts that have “HasA” and/or “MadeOf” relations with the concept name 

in Robot Ontology. 

 

SortHasTime () sorts the “hasTime” property values. There are “hasTime” 

property values in Robot Ontology. The “hasTime” property values are sorted by 
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ascending order and duplicate values are eliminated. The function searches for the 

IRI attribute of the “DataProperty” element. The “DataProperty” element is a 

child element of the “DataPropertyAssertion” element as:  

“<DataPropertyAssertion> 

<DataProperty IRI="property name"/> 

<NamedIndividual IRI="instance name"/> 

<Literal datatypeIRI="&rdf;PlainLiteral">property value</Literal> 

</DataPropertyAssertion>” OWL tag. 

 

In the case where the IRI attribute of the “DataProperty” element is “hasTime”, 

the function gets the “Literal” element value that is the same child element of the 

“DataPropertyAssertion” element. First, it starts to assign the FileN value as 1. 

Second, FileN is increased by 1 in order to sort the “Literal” element values in 

ascending order and eliminate duplicate values. It continues the process for all 

“Literal” element values until End Of File.  

 

AssignFileN () assigns the number of FileN to the instance name. An instance 

appears in a FileN. A FileN contains many instances. The value of “hasTime” of 

the instance of the concept name matches with FileN. The AssignFileN () assigns 

the FileN number to the instance name. 

 

SearchInstance () searches for instances of concept. The “Class” element is a child 

element of the “ClassAssertion” element as:  

“<ClassAssertion> 

<Class IRI="#concept name"/> 

<NamedIndividual IRI="#instance name"/> 

</ClassAssertion>” OWL tag. 

 

In the case where the IRI attribute of the “Class” element can be found, it returns 

all IRI attribute values of the “NamedIndividual” element as instance name. All 

instances of a concept name are used for accessing their property values. 

Otherwise, it returns false. 
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CountLocation () counts and assigns the value of the “hasLocation” property of all 

instances of concept name. Each “hasLocation” value of the instance is counted as 

an occurrence. The function searches for the IRI attribute of the “DataProperty” 

element. The “DataProperty” element is a child element of the 

“DataPropertyAssertion” element as: 

“<DataPropertyAssertion> 

<DataProperty IRI="property name"/> 

<NamedIndividual IRI="instance name"/> 

<Literal datatypeIRI="&rdf;PlainLiteral">property value</Literal> 

</DataPropertyAssertion>” OWL tag.  

 

In the case where the “hasLocation” value can be found, the function counts the 

occurrence of the same property value of each instance location. 

SearchSimilar () searches for similar objects from the similar concepts by 

selecting the objects that appear in the recent FileN. The recent FileN is the latest 

FileN. It indicates semantic knowledge of the similar physical objects that were 

located in the recent scan. First, SearchSimilar () searches for parents of the 

concept. Second, parents of the concept are link concepts. The similar concepts 

are concept names that match with the link concept from: 

“<EquivalentClasses> 

<Class IRI="#concept name" /> 

<ObjectSomeValuesFrom> 

<ObjectProperty IRI="#HasA" /> 

<Class IRI="#link concept" /> 

</ObjectSomeValuesFrom> 

<EquivalentClasses>” and/or 
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“<EquivalentClasses> 

<Class IRI="#concept name" /> 

<ObjectSomeValuesFrom> 

<ObjectProperty IRI="#MadeOf" /> 

<Class IRI="#link concept" /> 

</ObjectSomeValuesFrom> 

<EquivalentClasses>” OWL tag.  

 

Finally, SearchSimilar () searches for instances of similar objects in the recent 

FileN. The instance name retrieves from 

“<DataPropertyAssertion> 

<DataProperty IRI="#hasTime" /> 

<NamedIndividual IRI="#instance name" /> 

<Literal datatypeIRI="&rdf;PlainLiteral">time value</Literal> 

</DataPropertyAssertion>” OWL tag. 

Example 5.3: 

Given owl_document is Figure 5.3 and concept name is cocktail sent from Query. 

SearchInstance () searches for the “cocktail” instance of the “cocktail” concept in 

the OWL document. It returns the instance name as “cocktail_1” and “cocktail_2” 

as:  

“<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

</ClassAssertion> 

<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_2"/> 

</ClassAssertion>” OWL tag.  
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The “IRI” attribute of the “Class” element indicates the concept name from 

Query. The “IRI” attribute of the “NamedIndividual” element indicates the 

instance of the concept name. 

The SortHasTime () sorts the “hasTime” values of all instances of “cocktail” in 

the OWL document. The result of FileN number 1 is “20150819113959” and of 

FileN number 2 is “20150919113959”. The results are received from:  

“<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

        <Literal datatypeIRI="&rdf;PlainLiteral">20150819113959</Literal> 

</DataPropertyAssertion> 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_2"/> 

        <Literal datatypeIRI="&rdf;PlainLiteral">20150919113959</Literal> 

</DataPropertyAssertion>” OWL tag. 

The AssignFileN () assigns the number of FileN to the “cocktail_1” and the 

“cocktail_2” instance. The “cocktail_1” instance appears in FileN number 1 and 

the “cocktail_2” instance appears in FileN number 2. The CountLocation () 

function counts the “hasLocation” value of each instance. The “cocktail” instance 

value has values “1, 0, 1” and “1, 1, 1”. Each “hasLocation” value is counted as an 

occurrence. The results return the “1, 0, 1” instance location as 1 and the “1, 1, 1” 

instance location as 1. The results are received from: 
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“<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="#cocktail_1"/> 

          <Literal datatypeIRI="&rdf; PlainLiteral">1, 0, 1</Literal> 

 </DataPropertyAssertion> 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="# cocktail_2"/> 

          <Literal datatypeIRI="&rdf; PlainLiteral">1, 1, 1</Literal> 

</DataPropertyAssertion>” OWL tag. 

SearchSimilar () searches for the similar “cocktail” objects by finding the similar 

concepts that have “HasA” and/or “MadeOf” relations with concept name in 

Robot Ontology. The “cocktail” concept is a child concept of the “alcohol” 

concept. The results show the “beer” concept and the “wine” concept. They have 

“HasA” and/or “MadeOf” relations with the “alcohol” concept. 

“<EquivalentClasses> 

<Class IRI="#beer" /> 

<ObjectSomeValuesFrom> 

<ObjectProperty IRI="#HasA" /> 

<Class IRI="#alcohol" /> 

</ObjectSomeValuesFrom> 

</EquivalentClasses> 

<EquivalentClasses> 

<Class IRI="#wine" /> 

<ObjectSomeValuesFrom> 

<ObjectProperty IRI="#HasA" /> 

<Class IRI="#alcohol" /> 

</ObjectSomeValuesFrom> 

<EquivalentClasses>” OWL tag. 

Next, SearchSimilar () searches for instances of similar concepts in the recent 

FileN. The recent FileN has “20150919113959” value. In the case where the 
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“beer” instance is found in the recent FileN, the result of similar concept is “beer” 

that is retrieved from 

“<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#beer_1"/> 

        <Literal datatypeIRI="&rdf;PlainLiteral">20150919113959</Literal> 

</DataPropertyAssertion>” OWL tag. 

 

5.4 Summary 

The Semantic Knowledge Acquisition process within the DIRAOF framework is 

presented through four modules: Ontology Updating, Semantic Representation, 

NFile and Object Prediction. The studies on the Semantic Knowledge Acquisition 

process show that OWL tags are updated into Robot Ontology and the Tracking 

Instances can be calculated. The OWL tags in Robot Ontology indicate concepts, 

relations between concepts, instances, properties and values. The Tracking 

Instances show the usage of semantic knowledge to predict the future location of 

the concept. The Query and the Result Evaluation processes are described in 

Chapter 6 in order to validate the framework by using the Query and Result 

evaluation processes.  
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CHAPTER 6 QUERY, RESULT EVALUATION AND 

SYSTEM VALIDATION 

 

This chapter provides the detail of the Query and Result Evaluation processes. It 

also reports the system validation of the DIRAOF framework.  

The ontology generated in the Automatic Ontology process using WordNet, 

ConceptNet and Web Documents data sources needs to be evaluated to ensure the 

correctness of the concepts, relations and instances before utilising the ontology. 

The Query process generates queries to automatically access the hierarchy of the 

ontology without human involvement. Result Evaluation works with the Query 

process to assess the correctness of Robot Ontology. The idea to solve the 

problem of evaluation of the correctness of Robot Ontology is comparing the 

standard deviation of the semantic similarity value between the pair of concepts in 

both Robot Ontology and WordNet. 

There are two methods for checking the validation of an ontology. First, Local 

checking is the method to check only the newly created concept. The framework 

assumes the newly created concept is correct, thus the Local checking is 

unnecessary because the framework always checks the parent of the newly created 

concept that exists in WordNet. Second, Global checking is the method to check 

all concepts in the concept hierarchy in Robot Ontology after ontology 

components are created by the Automatic Ontology process. The validation 

process uses Global checking to check the overall structure is still correct after 

adding newly created concepts.  

Global checking should be done after each time that a newly created concept is 

added to the existing ontology. There are three parameters from the Global 

checking: standard deviation, semantic similarity and overall score of correctness 

of the ontology. Section 6.2.2 is used as an example to show the process and the 

meanings of the three parameters. 
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The semantic similarity measures how related two concepts are. The range of 

scores is between 0 and 1. A score that approaches 1 indicates two concepts are 

closely related. Second, standard deviation measures the dispersion of a set data. 

A low standard deviation indicates the data is clustered closely around the mean; 

the data is more reliable. Overall, the standard deviation of the ontology structure 

indicates how well the ontology is created.  

6.1 Query Process and Result Evaluation Process 

The information flow is given in Figure 6.1. It shows information exchange 

between the Query and Result Evaluation processes and those with other related 

processes. Query automatically searches for the concept name from Robot 

Ontology and then sends the concept name to Robot Ontology via Result 

Evaluation. Result Evaluation assesses the correctness of the taxonomy of 

concepts in Robot Ontology. Moreover, Query sends the concept name to 

Semantic Knowledge Acquisition to query the semantic knowledge as presented 

in Chapter 5. Robot Ontology is accessed and is evaluated during this chapter. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Information flow between Query and Result Evaluation  

The step-by-step process of information exchange is as follows: 

 The Query process randomly chooses a concept name from Robot Ontology as 

a query and sends the query to Semantic Knowledge Acquisition. 

 The Semantic Knowledge Acquisition process searches for the instances of the 

concept and returns the location of the concept. 
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Result Evaluation 

 

concept names 

 

Semantic Knowledge 

Acquisition 
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 The Query process searches for child concepts of the concept name. 

 The Query process sends the concept name, child concept name(s) and the 

prediction location to the Result Evaluation process. 

 The Result Evaluation process calculates the semantic similarity between the 

concept name and child concept name(s) and calculates the standard deviation. 

 The Result Evaluation process stores and the prediction location, the semantic 

similarity score and the standard deviation value as a text file. 

 

6.1.1 Query Process 

The Query is a process of: 

 choosing a concept name from Robot Ontology as a query and sending the 

concept name to Semantic Knowledge Acquisition 

 searching for child concepts of the concept name from Robot Ontology 

 sending the concept name and child concept name(s) to the Result Evaluation 

process. 

The Query process selects a concept name from Robot Ontology in order to query 

the prediction location of the concept from Semantic Knowledge Acquisition. The 

Query process searches for child concepts of the concept name from Robot 

Ontology and sends the concept name and child concept name(s) to the Result 

Evaluation process to evaluate the structure of the concept name and child concept 

name(s). 

The QueryConcept algorithm is given in Figure 6.2, PL represents prediction 

location, C stands for concept, SC represents sibling concepts, SKA stands for 

Semantic Knowledge Acquisition and CH stands for child concepts. The concept 

is sent to Semantic Knowledge Acquisition, and Semantic Knowledge Acquisition 

sends the prediction location back as the input of the algorithm. The loop is to 

choose the concept in WordNet. A loop with the While condition (Last C) 

searches for child concepts of the concept until the last concept in Robot 

Ontology. In the case that the concept is a leaf node, the algorithm searches for 
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sibling concepts, assigns the sibling concept as child concept and assigns parent of 

the concept as concept.  

 

Algorithm: QueryConcept  

Input:  PL 

Begin  

C QueryConcept (); 

Send C to SKA and retrieve PL as input;  

Do { 

If C is leaf node then 

SC  SearchSiblings (C); 

CHSC; 

Cparents of C; 

  Else 

   CHSearchChilds(C); 

} While (Last C) 

Return C, CH, PL; 

Figure 6.2 QueryConcept algorithm 

This step uses the following three functions:  

 QueryConcept () – choosing the concept in Robot Ontology 

 SearchSiblings () – searching for sibling concepts 

 SearchChilds () – searching for child concepts. 

 

QueryConcept searches for and selects concept names in Robot Ontology.  

SearchSiblings searches for sibling concepts. First, the function searches for 

parent concepts of the concept name. Second, the function searches for child 

concepts of parent concepts and assigns them as sibling concepts. 

SearchChilds searches for child concepts. The function searches for child 

concepts of the concept. 

 

Example 6.1: 

The algorithm in Figure 6.2 calls the QueryConcept () function to select a concept 

name in Robot Ontology by searching for the “IRI” attribute of the “Class” 
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element that is a child element of the “Declaration” element. The “cocktail” 

concept is selected. The algorithm sends the “cocktail” concept to Semantic 

Knowledge Acquisition and Semantic Knowledge Acquisition sends the 

prediction location of the “cocktail” concept back to Query process.  

The “cocktail” concept is a leaf node that does not have child nodes; then the 

algorithm calls the SearchSiblings () function to search for parent concepts of the 

“cocktail” concept. The parent concept of the “cocktail” concept is the “alcohol” 

concept. After that, SearchSiblings () searches for child concepts of the “alcohol” 

concept. The results are the “whiskey” and “beer” concepts as the “SubClassOf” 

element of the “alcohol” concept in Figure 6.3.  

The “alcohol” concept (parent of the “cocktail” concept) is assigned as the 

concept. The “whiskey” and “beer” concepts (child concepts of the “alcohol” 

concept) are assigned as child concepts. 



 

124 

 

 

Figure 6.3 Part of OWL tags in Robot Ontology
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6.1.2 Result Evaluation Process 

Result Evaluation applies the Global checking method to check the overall 

structure of Robot Ontology after adding newly created concepts in concept 

hierarchy. Result Evaluation retrieves a concept name, its child concept(s) and the 

prediction location of the concept from the Query process. Result Evaluation 

assesses the concept and its child concept(s). Robot Ontology contains an “is-a” 

hierarchy between the parent concept and child concepts. The following 

operations are presented below in order to show all child concepts are related to a 

concept name.  

 calculating the semantic similarity of a pair of a concept name and child 

concept(s)  

 calculating the standard deviation of the semantic similarity value and 

 keeping the prediction location of the concept, the semantic similarity score 

and the standard deviation value as a text file. 

 

Due to the structure based or edge counting semantic measure being based on “is-

a” hierarchy links between concepts, it computes the semantic similarity measure 

in the hierarchy of the ontology. The length of the path linking the concepts and 

the position of the concepts in the taxonomy are counted.  

 

Algorithm: ResultEvaluation  

Input:  C, CH, PL 

Begin  

StoreResults (C, PL);  

Do { 

SS WordSimilarity (C, CH); 

StoreResults (C, CH, SS);  

} While (Last CH of C) 

SD StandardDeviation (SS); 

StoreResults (C, SD); 

Figure 6.4 ResultEvaluation algorithm 
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The ResultEvaluation algorithm is given in Figure 6.4. In this algorithm, C stands 

for concept, CH represents child concepts, PL represents prediction location, SD 

stands for standard deviation and SS stands for semantic similarity score. First, the 

algorithm stores the prediction location of the concept. The condition of the While 

loop (Last CH of C) calculates the semantic similarity between the concept and 

child concepts. It processes until the last child concept of the concept. After that, 

the algorithm calculates the standard deviation and stores the result. This 

algorithm uses the following three functions:  

 StoreResults () – keeping the prediction location of the concept as a text file 

 WordSimilarity () – calculating semantic similarity score for each concept and 

its child concepts 

 StandardDeviation () – calculating the standard deviation of the semantic 

similarity of the concept. 

 

StoreResults keeps the results as a text file. The function connects texts together 

in StoreResult.txt. The pattern of text is name, bookmark and value. The name is a 

name of a concept. The bookmark indicates the type of result. There are three 

types of results. The “@” bookmark indicates location of an instance from 

Semantic Knowledge Acquisition. In the case of the semantic similarity score 

between the concept and child concepts, the texts are concept name, “#” 

bookmark and child concept name. The “#” bookmark indicates the semantic 

similarity score between the concept and child concepts. The “$” bookmark 

indicates the standard deviation value of the concept name. 

 

Semantic similarity measures between two concepts in hierarchy structure. It is 

calculated from Wu and Palmer (1994). This method is suitable for computing the 

semantic similarity in an ontology hierarchy. A high semantic similarity score of 

two concepts means the two concepts are the closely related. A low semantic 

similarity score indicates a lack of cohesion of the two concepts. The semantic 

similarity measure score is between 0 and 1.  
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The standard deviation is a quantity measure in statistics. It measures the 

dispersion of a set of data. A low standard deviation of the semantic similarity 

between parent concept and child concepts indicates the child concepts relate to 

the parent concept. It means that the hierarchy of the parent concept and child 

concepts in Robot Ontology is correct. On the other hand, a high standard 

deviation means the data spread over the mean of the set of data. It means that the 

hierarchy in Robot Ontology tends to be incorrect. 

Example 6.2: 

WordSimilarity () calculates the semantic similarity score between “alcohol” and 

“cocktail”, between “alcohol” and “whiskey” and between “alcohol” and “beer” 

concepts. StoreResults () stores concept, prediction location, standard deviation, 

semantic similarity score between “cocktail” and “whiskey” and between 

“cocktail” and “beer” concepts. The semantic similarity between “alcohol” and 

“cocktail”, between “alcohol” and “whiskey” and between “alcohol” and “beer” is 

0.88. Standard deviation is 0.  

 

The text file stores: “cocktail@1,0,0alcohol#cocktail#0.8 alcohol#whiskey#0.8 

alcohol#beer#0.8alcohol$0”. 

 

6.2 System Validation 

Chapters 3 to 5 presented the components of the DIRAOF framework for creating 

a dynamic ontology, namely, Automatic Ontology and Semantic Knowledge 

Acquisition. The system validation aims to show that the DIRAOF framework is 

able to learn and build a dynamic ontology. The expected results from the 

DIRAOF framework are the correct concepts and relations between concepts in 

concept hierarchy. 

The semantic similarity and standard deviation are criteria for evaluating the 

concept hierarchy in Robot Ontology. In the case that the semantic similarity 

between the two concepts meets a minimum word-to-word threshold of 0.5 

(Lintean, 2012), the two concepts are related. The threshold is fixed to accept the 
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similarity between two concepts. In the case that the standard deviation of each 

concept is nearly 0, the semantic similarity score is clustered closely around the 

mean. A concept hierarchy that has a low standard deviation is more reliable than 

a concept hierarchy that has a high standard deviation value. 

6.2.1 Setting 

The ontology is empty at the beginning. There are 200 object names in the 

household environment as given in Table 6.1. Object names are categorised into 9 

categories. The category names are pastry, drink, food, fruit and vegetable, meat 

and fish, perishable, product, medicine and kitchenware. The category names 

were suggested by various sources from internet. 

Table 6.2 shows the property values associated with the object names given in 

Table 6.1. As mentioned earlier, the “date and time” and “location” properties are 

mandatory. The framework can randomly choose object names from Table 6.1 

and their property values from Table 6.2. The object names and property values 

form a text file in which the number of object names can vary. Each file consists 

of a unique time value and each line in a file consists of a location value of each 

object name, other property name(s) and the object name. For example, the first 

file consists of four object names and all object names have “20150819113959” as 

the time value. The “cocktail” object name has “1,1,1” as the location value and 

“frozen” as the property value. The “beer” object name has “0,0,1” as the location 

value. The “milk” object name has “0, 3, 0” as the location value and “semi-

skimmed” as the property value. The “cheese” has “1, 1, 0” as the location value. 

To test the Semantic Knowledge Acquisition process, 10 text files were generated 

in this way, as given in Figure 6.5. 

The framework is linked to WordNet, ConceptNet and Web Documents in order 

to create concepts and relations between concepts. The WordNet 3.1 database is 

stored in ASCII format. The ConceptNet 5 Web API for accessing is available 

from http://conceptnet5.media.mit.edu/data/5.4/search. Web Documents searches 

are for category names of object names that do not exist in WordNet. 
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6.2.2 Testing and Results 

Concept Creation, Relation Creation and OWL Creation in the Automatic 

Ontology process receive object names from the text files in order to create 

concepts and relations between concepts. Data and Information Retrieval provides 

concept names for Concept Creation and provides concept names and relations 

between concept names for Relation Creation. It recognises concepts, hierarchy 

and non-hierarchy relations with WordNet, ConceptNet and Web Documents. 

Instance Creation creates instances of concepts and Property Creation receives 

property values to classify property names from property values. 

Referring to Section 4.2, Concept Creation assumes the object name as the 

concept name in WordNet. In the case where the concept name’s parent is in 

WordNet and the concept name’s antecedent is the “physical entity” concept, the 

ConceptCreation algorithm accepts the object name as a concept and creates the 

concept name in Robot Ontology. Using the first text file as an example, the 

process of Automatic Ontology can be explained as follows. 

Concept Creation assumes a “cocktail” object name as a “cocktail” concept name 

in WordNet. In the case where the “cocktail” concept name’s parent (“course” and 

“alcohol” concepts) is in WordNet and the “cocktail” concept name’s antecedent 

is the “physical entity” concept, the ConceptCreation algorithm accepts a 

“cocktail” object name as a concept and creates the “cocktail” concept name in 

Robot Ontology and the concept name is sent to Relation Creation in order to 

create concepts and relations between concepts. The result of the RelationCreation 

algorithm is the text file that presents the relations between the concepts. The 

concept_relation_text is an “is-a” relation between “cocktail” and “course”, 

“course” and “food”, “food” and “matter”, “matter” and “physical entity”, 

“cocktail” and “alcohol”, “alcohol” and “food”, “alcohol” and “drug”, “alcohol” 

and “fluid”, “drug” and “physical entity”, “fluid” and “physical entity”, as given 

in Table 6.3. The “HasA” and “MadeOf” relations are not created due to the first 

concept in Robot Ontology. OWL Creation generates OWL tags from concept 

relation text that are obtained from Relation Creation.  
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Figure 6.5 The example input files in the experiment 
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Table 6.1 Example object names in nine category names 

 

pastry drink food fruit and vegetable meat and fish perishable product medicine

loaf pepsi ketchup orange cod cheddar glove cough syrup storage chopper

baguette coke mayonnaise avocado pork cheese shampoo pastilles jug blender

biscuit lemonade gravy spinach chop egg soap syrup peeler grinder

bread kronenbourg popcorn potatoes mince butter lotion plasters poacher steamer

mochi orangeade mustard broccoli prawn jam spray bandage opener jar

daifuku juice rice carrot fishcakes pastry dishwasher ointment spoon fryer

ice cream cake water sugar cauliflower mussel buttermilk tissue lozenges baking tray scoop

flaugnarde squash noodle celery salmon margarine liners inhalator funnel mortar

cordial cereal tomato steak mascarpone rack nicorette fork nutribullet

ale tagliatelle mushroom sea bass quiche brush senokot spatula sandwich press

beer chow mein pear oyster pizza toothbrush windsetlers mug corkscrew

cocktail linguine garlic fowl coleslaw roller revitalens dish

punch spaghetti beans goose smoothies duster germolene plate

milk pasta grapefruit lamb juice plunger nicolites cartomiser menthol bowl

champagne instant noodle melon squid clementine toilet roll decongestant shaker

chocolate remoulade mango tteokbokki bin linctus teaspoon

tea ramen lime chikuwa conditioner saucepan

coffee miso lemon okonomiyaki cigars pan

strawberry daiquiri sauerkraut banana nabemono lighter glass

cocoa basmati rice nectarine pfefferpotthast candle tumbler

malt parsnip spanferkel bulb coasters

lager ginger fajita toothpaste muffin tin

cider grape hand mixer

bitter raspberries cake tester

chardonnay cucumber cafetiere

merlot strawberry saltball

prosecco konjac pot

sauvignon cooker

jameson

mojito

yakult

kitchenware
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The result of the algorithm consists of concepts and relations between concepts as 

given in Figure 6.6. Instance Creation creates the “cocktail_1” instance of the 

“cocktail” concept as: 

“<Declaration> 

        <NamedIndividual IRI="#cocktail_1"/> 

</Declaration> 

<ClassAssertion> 

        <Class IRI="#cocktail"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

</ClassAssertion>” OWL tags in Robot Ontology. 

The concepts, relations between concepts and instances of the “cocktail” concept 

are sent to Robot Ontology.  

Table 6.2 Examples of property values of object names 

 

Table 6.3 The output of the “cocktail” object name and the “frozen” value 

 

Object names Category names

1,1,1 biscuit bakery

0,0,1 pepsi drinks

0,1,1 beer drinks

1,0,0, frozen cocktail drinks

1,0,1, semi-skimmed milk drinks

0,1,0, minted, slow-cooked gravy food

0,-1,0, sweet, salty popcorn food

0,1,-1 konjac fruit and vegetable

1,-1,1 cheese perishable

1,1,-1 jam perishable

Adjectives

HasA MadeOf instance name property name  value

cocktail course cocktail_1 hasTime 20150819113959

course food hasLocation 1,1,1

food matter hasColour

matter physical entity hasShape

cocktail alcohol hasProperty frozen

alcohol food

alcohol drug

alcohol fluid

drug physical entity

fluid physical entity

Semantic Knowledge

is-a

Concept and Relations
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Figure 6.6 OWL tags of the “cocktail” concept  

Property Creation classifies the property name from the property values and sends 

OWL tags as a text file as given in Figure 6.7 to the Semantic Knowledge 

Acquisition process. 
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Figure 6.7 OWL tags of the “cocktail_1” instance  

Semantic Knowledge Acquisition associates semantic knowledge of the “cocktail” 

instance with the “cocktail” instance in Robot Ontology. The “cocktail” instance 

has a “hasTime” property name with “20150819113959” value, a “hasLocation” 

name with “1,1,1” value and a “hasProperty” property name with “frozen” value. 

The next object names, the “beer” object name with “0,0,1” value, “milk” object 

name with “0,3,0” and “semi-skimmed” value, “cheese” object name with “1,1,0” 

value in the first input file, are processed and the results are as given in Table 6.4. 

<DataPropertyAssertion> 

        <DataProperty IRI="#hasTime"/> 

        <NamedIndividual IRI="#cocktail_1"/> 

        <Literal datatypeIRI="&rdf;PlainLiteral">20150819113959</Literal> 

</DataPropertyAssertion> 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasLocation"/> 

         <NamedIndividual IRI="#cocktail_1"/> 

          <Literal datatypeIRI="&rdf;PlainLiteral">1, 1, 1</Literal> 

 </DataPropertyAssertion> 

<DataPropertyAssertion> 

       <DataProperty IRI="#hasProperty"/> 

         <NamedIndividual IRI="#cocktail_1"/> 

          <Literal datatypeIRI="&rdf;PlainLiteral">frozen</Literal> 

 </DataPropertyAssertion> 
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Table 6.4 The results of the first input file 

 

After creating the “cocktail” concept, ConceptCreation creates the “beer” concept 

as a child concept of the “alcohol” concept. The ConceptCreation algorithm 

creates a “HasA” relation between the “beer” and “alcohol” concepts by using 

ConceptNet, as the “alcohol” concept already exists in Robot Ontology. The 

“cheese” concept also has a “MadeOf” relation with the “milk” concept due to the 

“milk” concept already existing in Robot Ontology. ConceptNet is used for 

building “HasA” and “MadeOf” relations between physical entity concepts. 

Results from the ten input files are present in Table 6.5. They consist of concepts 

and relations between concepts. There are 39 concepts and 59 relations from the 

ten input files. After concepts, relations between concepts and instances are 
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created. Semantic Knowledge Acquisition keeps a record of the semantic 

knowledge of the instances as given in Table 6.6 in order to locate objects in the 

dynamic environment. There are 32 instances in Robot Ontology. The “cocktail”, 

“beer” and concepts have one instance (cocktail_1, beer_1). The “popcorn” 

concept has two instances. The “cheese” concept has three instances. The 

“biscuit”, “corm” and “pepsi” concepts have four instances. The “gravy” concept 

has five instances. The “milk” concept has seven instances. 

The Query process retrieves 39 concept names from Robot Ontology and sends 

each concept name to Semantic Knowledge Acquisition. Semantic Knowledge 

Acquisition locates instances of the concepts’ location by Tracking Instances for 

predicting the future location. For example, the “milk” concept is sent from Query 

to Semantic Representation in Semantic Knowledge Acquisition. Decision scores 

are calculated by equation (5.3) in Section 5.4 for each location of the “milk” 

instance. The “milk” instances are found at FileN as 1,3,5 and at “0,3,0” location 

at 3 times, as 6,7,8 at “0,0,1” location at 3 times, and as 9 at “1,0,0” location at 1 

time. The decision score of each location can be calculated as given in Table 6.7. 

The “1,0,0” location is selected as the future location of the “milk” instance due to 

it having the highest decision score (0.55). 

The number of concepts, relations between concepts and instances of concepts 

depend on the physical object names and property values in the household 

environment. The object names in Table 6.1 are processed randomly. The 

experiments assume that all 200 object names are processed as given from Table 

6.8 to Table 6.16. Table 6.8 to Table 6.16 show the results of pastry, drink, food, 

fruit and vegetable, meat and fish, perishable, product, medicine and kitchenware, 

respectively. The structure of each table consists of object name, concept name 

and parents of concept name. The “is-a”, “HasA” and “MadeOf” relation between 

concept names and parents of concept name are present in appendix A. 
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Table 6.5 Concepts and relations between concepts from ten input files 

 

gravy -1,1,1 gravy condiment

minted condiment ingredient

slow-cooked ingredient food

gravy event

event physical_entity

gravy foodstuff

biscuit 1,0,1 biscuit baked_goods

baked_goods solid

biscuit bread

bread food

popcorn 0,1,1 popcorn grain

sweet grain grass

salty grass herb

herb substance

herb physical_entity

grass physical_entity

grain food

popcorn cereal

cereal food

substance physical_entity

konjac corm plant_organ

plant_organ physical_entity

pepsi 0,0,1 pepsi soft_drink

soft_drink liquid

liquid matter

soft_drink food

HasA MadeOf

cocktail 1,1,1 cocktail course

frozen course food

food matter

matter physical_entity

cocktail alcohol

alcohol food

alcohol drug

alcohol fluid

drug physical_entity

fluid physical_entity

beer 0,0,1 beer alcohol alcohol

milk 0,3,0 milk food

semi-skimmed milk stream

stream thing

stream physical_entity

thing physical_entity

milk liquid

milk body_substance

body_substance physical_entity

cheese 1,1,0 cheese solid milk

cheese foodstuff

solid physical_entity

foodstuff physical_entity

jam 1,0,0 jam confiture

confiture dainty

dainty food

jam gathering

gatering event

gatering group

event physical_entity

group physical_entity

object name value Concepts and Relations

is-a
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Table 6.6 Semantic knowledge of ten input files 

 

Table 6.7 The decision score of three locations 

instance name property name  value instance name property name  value

cocktail_1 hasTime 20150819113959 milk_3 hasTime 20151120113959

hasLocation 1,1,1 hasLocation 0,3,0 

hasProperty frozen hasProperty semi-skimmed 

beer_1 hasTime 20150819113959 corm_2 hasTime 20151125113959

hasLocation 0,0,1 hasLocation 1,1,1 

milk_1 hasTime 20150819113959 milk_4 hasTime 20151125113959

hasLocation 0,3,0 hasLocation 0,0,1 

hasProperty semi-skimmed hasProperty semi-skimmed 

cheese_1 hasTime 20150819113959 pepsi_2 hasTime 20151125113959

hasLocation 1,1,0 hasLocation 0,3,0 

jam_1 hasTime 20150919113959 biscuit_3 hasTime 20151125113959

hasLocation 5,0,0 hasLocation -1,1,1

cheese_2 hasTime 20150919113959 gravy_3 hasTime 20151125113959

hasLocation 1,1,0 hasLocation 1,0,1

gravy_1 hasTime 20150919113959 pepsi_3 hasTime 20151130113959

hasLocation -1,1,1 hasLocation 1,1,1

hasProperty minted milk_5 hasTime 20151130113959

hasProperty slow-cooked hasLocation 0,0,1 

biscuit_1 hasTime 20150919113959 corm_3 hasTime 20151130113959

hasLocation 1,0,1 hasLocation 0,3,0 

popcorn_1 hasTime 20150919113959 pepsi_4 hasTime 20151225113959

hasLocation 0,1,1 hasLocation 1,1,1

hasProperty sweet milk_6 hasTime 20151225113959

hasProperty salty hasLocation 0,0,1 

corm_1 hasTime 20151019113959 corm_4 hasTime 20151225113959

hasLocation 10,0,0 hasLocation 0,3,0 

pepsi_1 hasTime 20151019113959 biscuit_4 hasTime 20151225113959

hasLocation 0,0,1 hasLocation -1,1,1

milk_2 hasTime 20151019113959 gravy_4 hasTime 20151225113959

hasLocation 0,3,0 hasLocation 1,0,1

gravy_2 hasTime 20151119113959 gravy_5 hasTime 20151230113959

hasLocation -1,1,1 hasLocation 1,0,1

biscuit_2 hasTime 20151119113959 milk_7 hasTime 20151230113959

hasLocation 1,0,1 hasLocation 1,0,0 

popcorn_2 hasTime 20151119113959 cheese_3 hasTime 20151231113959

hasLocation 0,1,1 hasLocation 1,1,0 

hasProperty sweet

hasProperty salty

Semantic Knowledge Semantic Knowledge

Location FileN NFileN-RFileN F loc /NFileN 0.5 (NFileN-RFileN)
RFileN/NFileN Decision score

0,3,0 1,3,5 9,7,5 0.3 0.03125 0.5 0.315625

0,0,1 6,7,8 4,3,2 0.3 0.25 0.8 0.5

1,0,0 9 1 0.1 0.5 0.9 0.55
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Table 6.8 The pastry category  

 

Table 6.9 The drink category  

 

Object name Concept name Parents of concept name

loaf loaf solid, baked_good

baguette baguette white_bread

biscuit biscuit baked_good,bread

bread bread food,foodstuff

mochi rice grass,foodstuff,writer

daifuku strawberry edible_fruit,vascular_plant

ice cream cake cream foodstuff

flaugnarde strawberry edible_fruit,vascular_plant

Object name Concept name Parents of concept name

pepsi pepsi soft_drink

coke coke substance

lemonade lemonade beverage

cherryade cherryade container, object

orangeade orangeade beverage

juice juice food, electrical_phenomenon, body_substance

water  water fluid

squash squash athletic_game, produce

cordial cordial drug_of_abuse,beverage,

ale  ale brew

beer beer alcohol

cocktail cocktail alcohol,course

punch punch stroke,alcohol,implement

milk milk food, stream, liquid,body_substance

champagne champagne wine,geographical_area

chocolate chocolate food,solid,liquid

tea tea nutriment,food,liquid,party,flavorer

coffee coffee food,liquid

strawberry daiquiri strawberry daiquiri cocktail

cocoa cocoa liquid,food

malt malt foodstuff, drink, malt

lager lager military_quarters,brew

cider cider liquid,food

bitter  bitter property,beer

chardonnay chardonnay wine

merlot merlot wine

prosecco wine red,drug_of_use,beverage

sauvignon wine red,drug_of_use,beverage

jameson whiskey alcohol

mojito juice food, electrical_phenomenon, body_substance

yakult container artifact
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Table 6.10 The food category  

 

Object name Concept name Parents of concept name

ketchup ketchup flavorer

mayonnaise mayonnaise sauce

gravy gravy condiment, event, foodstuff

popcorn popcorn grain,cereal

mustard mustard vegetable, herb

rice rice grass,foodstuff,writer

sugar sugar organic_compound, flavorer, molecule

noodle noodle food,head

cereal cereal food

tagliatelle tagliatelle food

chow mein chow mein nutriment

linguine linguine food

spaghetti spaghetti dish,food

pasta pasta nutriment,solid

instant noodle noodle food,head

remoulade shrimp person,food

ramen bowl artifact

miso condiment ingredient

sauerkraut nutriment substance,physical entity

basmati container artifact
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Table 6.11 The fruit and vegetable category 

 

Object name Concept name Parents of concept name

orange orange stream,color,coloring_material

avocado avocado produce

spinach spinach vegetable,herb

potatoes potatoes vegetable,foodstuff

broccoli broccoli herb

carrot carrot plant_organ,vegetable

cauliflower cauliflower herb

celery celery produce

tomato tomato vascular_plant

mushroom mushroom fungus, produce, physical_phenomenon

pear pear produce

garlic garlic ingredient

beans beans herb

grapefruit grapefruit edible_fruit

melon melon produce

mango mango produce

lime lime material

lemon lemon whole

banana banana produce

nectarine nectarine produce

parsnip parsnip plant_organ,vegetable

ginger ginger ingredient,vascular_plant

grape grape produce

raspberries raspberries edible_fruit

cucumber cucumber produce

strawberry strawberry edible_fruit,vascular_plant

konjac corm plant_organ
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Table 6.12 The meat and fish category 

 

Table 6.13 The perishable category  

 

Object name Concept name Parents of concept name

cod cod sheath,seafood

pork pork food

chop chop meat,natural_phenomenon

mince mince food

prawn prawn food

fishcakes fishcakes region, causal_agent

mussel mussel seafood

salmon salmon fish,stream,color,food

steak steak meat

sea bass sea bass fish,seafood

oyster oyster seafood

fowl fowl food

goose goose simpleton,bird,

lamb lamb food,person

squid squid food

Object name Concept name Parents of concept name

cheddar cheddar dairy_product, food,settlement,

cheese cheese solid, foodstuff

egg egg food

butter butter person, solid, foodstuff

jam jam confiture, gathering

pastry pastry concoction, food

buttermilk buttermilk fluid, part

margarine margarine condiment

mascarpone mascarpone cheese

quiche quiche amerindian

pizza pizza nutriment

coleslaw coleslaw dish

smoothies smoothies deceiver

juice juice food,electrical_phenomenon,body_substance

clementine clementine citrus

tteokbokki rice grass,foodstuff,writer

chikuwa skin artifact, causal_agent

okonomiyaki hiroshima municipality, geographic_point

nabemono article whole

pfefferpotthast span digit,artifact

spanferkel pig unpleasant_person, block, lawman, container

fajita container artifact
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Table 6.14 The product category 

 

Table 6.15 The medicine category 

Object name Concept name Parents of concept name

glove glove clothing

shampoo shampoo formulation

soap soap club_drug, formulation

lotion lotion matter

spray spray chemical, vapor, decoration, container, discharge

dishwasher dishwasher workman

tissue tissue material,part

liners liners piece

rack rack locomotion, meat, ending, supporting_structure, device

brush brush process

toothbrush toothbrush implement

roller roller bird, solid, pigeon, movement,mechanism, machine

duster duster whole

plunger plunger person

dishbrush dishbrush ester

bleach bleach causal_agent,physical_entity

conditioner conditioner chemical

cigars cigars tobacco

lighter lighter substance

candle candle light_unit, source_of_illumination

bulb bulb body_part, object

toothpaste toothpaste cleansing_agent

Object name Concept name Parents of concept name

cough syrup cough evidence

pastilles pastilles candy

syrup syrup flavorer

plaster plaster artifact, building_material, substance

bandage bandage cloth_covering

ointment ointment matter

lozenge lozenge medicine, sweet

inhalator inhalator container, device

nicorette auto self_propelled_vehicle

senokot senna woody_plant

windsetlers storage facility, possession, device, component

revitalens lense device

germolene state district, unit

nicolites cartomiser menthol cigarette tobacco

decongestant decongestant drug

linctus medicine agent
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Table 6.16 The kitchenware category 

 

Object name Concept name Parents of concept name

storage storage facility, possession, device, component

jug jug vessel

peeler peeler person, entertainer

poacher poacher acquirer, container, kitchen_utensil

opener opener causal_agent,physical_entity

spoon spoon tableware

baking tray baking tray kitchen_utensil

funnel funnel chimney, implement

fork fork implement, space

spatula spatula kitchen_utensil

mug mug person

dish dish adult, tableware, food, antenna, female

plate plate cut, course, artifact, body_part, tableware, layer

bowl bowl artifact, solid

shaker shaker person, causal_agent

teaspoon teaspoon container, cutlery

saucepan saucepan kitchen_utensil

pan pan kitchen_utensil

glass glass drug, matter

tumbler tumbler athlete, container

coasters coasters traveler, inhabitant

muffin tin tin chemical_element

hand mixer mixer food,equipment,liquid

cake tester cake artifact,food,nutriment

cafetiere block group, region, copy, whole

saltball pan kitchen_utensil

pot pot fixture,resistor,soft_drug,kitchen_utensil

cooker cooker kitchen_utensil

chopper chopper aircraft, bone, edge_tool

blender blender kitchen_utensil

grinder grinder machine, snack_food, bone

steamer steamer kitchen_utensil

jar jar white_goods

fryer fryer poultry

scoop scoop radiation

mortar mortar artifact

nutribullet container artifact

sandwich press sandwich dish

corkscrew corkscrew opener
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In the case where the parent of the object name cannot be found in WordNet, the 

keyphrase search is employed in the Web Documents search. The keyphrase is 

formed in the format as “object name keyword” as given in Table 6.17. The 

results depend on the richness of the information in the Web Documents. There 

are 35 object names in the experiment. The results show 37.14% of correct 

category name identification from “is” keyword. (The highlighted category names 

are the correct category names.) 

Table 6.17 The keyphrase with the different keywords 

 

is is or contain is or including contain or including all keywords

mochi rice form rice form

daifuku strawberry link strawberry link

ice cream cake cream cake ice cake

flaugnarde french cherry french person container

kronenbourg brewery page people son margin

prosecco wine external wine grape wine

sauvignon wine wine wine example wine

jameson whiskey whiskey whiskey whiskey

mojito juice cocktail cocktail page

yakult container sugar bottle children container

instant noodle noodle noodle noodle noodle noodle

remoulade shrimp social shrimp social

ramen bowl width container

miso condiment condiment condiment condiment condiment

sauerkraut nutriment nutriment nutriment nutriment nutriment

basmati rice rice rice indian indian container

konjac corm fiber gum gum fiber

tteokbokki rice container rice spain container

chikuwa skin article skin article

okonomiyaki hiroshima hiroshima hiroshima highlight hiroshima

nabemono article article min add-on article

pfefferpotthast span span story span

spanferkel pig

fajita container container stalk stalk container

cough syrup cough container cough cough cough

inhalator inhalator container container container container

nicorette auto character arab arab character

senokot senna senna taking widget senna

windsetlers storage container arab arab storage

revitalens lense character lense lense lense

germolene state state isle isle state

nicolites cartomiser menthol cigarette cigarette cigarette

linctus medicine codeine medicine medicine medicine

nutribullet container container work turn container

sandwich press sandwich block sandwich sandwich block

Correctness 13 10 10 4 10

Percent 37.14% 28.57% 31.43% 14.29% 31.43%

Object name

Keywords
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6.2.3 Analysis of Results 

The Automatic Ontology process changes object names and their property values 

to concept names, relations between concepts, instances, property names and 

values. In order to analyse the results, the object names are compared with the 

category name by using semantic similarity. 

The semantic similarity measures the similarity score between two concepts. The 

two concepts are connected through “is-a” relations (Wong et al., 2012). The 

semantic similarity is calculated from Wu and Palmer’s (1994) measurement as 

equation 6.1.  

 𝑆𝑖𝑚(𝐶1, 𝐶2) =
2 ×𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆(𝑐1𝑐2))

𝑥1+ 𝑥2 +2 ×𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆(𝑐1,𝑐2))
 (6.1) 

Sim (c1, c2) is the semantic similarity score between concept 1 (c1) and concept 2 

(c2). The Least Common Ancestor (LCS) is the concept that subsumes both terms. 

Depth (LCS (c1, c2)) is the depth from root concept to LCS of c1 and c2. Wu and 

Palmer count the number of “is-a” relations from c1 to LCS and c2 to LCS as x1 

and x2, respectively.  

The reasons for using the semantic similarity between two concepts are as 

follows:  

 The measure is suitable to measure an “is-a” structure, as Robot Ontology 

is built from “is-a” relations from WordNet. 

 The result of the semantic similarity score indicates the relatedness of the 

concepts. The greater semantic similarity score of two concepts indicates 

the greater links between the concepts and the more closely related they 

are. The semantic similarity score ranges between 0 and 1. 

The framework assumes the concept name in Robot Ontology as concept name 

(c1) in WordNet and the category name as concept name (c2) in WordNet. It 

calculates the semantic similarity between c1 and c2 as equation 6.1. In the case 
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where the semantic similarity between the two concept names is above the 

threshold of 0.5 in the experiment, the two concept names are related. 

The semantic similarities between the concept names from the ten input files and 

their category names are given in Table 6.18. The semantic similarity scores are 

above the threshold for all concept names.  

Table 6.18 Semantic similarity between concept names from the ten input files 

and their category names 

 

 

 

Figure 6.8 Semantic similarity between concept names from the ten input files and 

their category names 

Object name  Category name Concept name Semantic similarity 

biscuit pastry biscuit 0.8

pepsi drink pepsi 0.8

beer drink beer 0.8

cocktail drink cocktail 0.8

milk drink milk 0.92

gravy food gravy 0.77

popcorn food popcorn 0.71

konjac fruit and vegetable corm 0.66

cheese perishable cheese 0.8

jam perishable jam 0.56
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For example, the semantic similarity score between the “biscuit” concept name 

and the “pastry” category name is 0.8. This means that the “biscuit” concept name 

relates to the “pastry” category name, as the semantic similarity score is close to 

1, as given in Figure 6.8. In the case where the semantic similarity score between 

the concept name and the category name is close to 1, the algorithm correctly 

creates the concept name in the category name. 

The semantic similarity between the pastry category name and concept names are 

created from the proposed algorithm. The average of the semantic similarity score 

is 0.73 and the standard deviation is 0.08. The algorithm searches for the concept 

names for “mochi”, “daifuku”, “ice cream cake” and “flaugnarde” object names. 

The results of concept name from the algorithm are “rice”, “strawberry”, “cream” 

and “strawberry”, and the semantic similarity scores are 0.71, 0.62, 0.71 and 0.62, 

respectively. The definition of “mochi” and “daifuku” are a kind of rice cake, the 

definition of “ice cream cake” is a kind of cake and the definition of “flaugnarde” 

is a baked French dessert.  

However, the algorithm selects the “strawberry” category name for the “daifuku” 

and “flaugnarde” object names. The semantic similarity between “strawberry” and 

“daifuku”, and “strawberry” and “flaugnarde” are 0.62. 

Figure 6.9 shows the semantic similarity between the pastry category name and 

the concept names. Overall, the semantic similarity scores are above the threshold. 

The low standard deviation means that concept the names are related to the pastry 

category name. In the case of high semantic similarity scores of all concept names 

and the low standard deviation score, all concept names are arranged into the 

related category name. This means that all concept names are arranged correctly 

into the pastry category name. 
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Figure 6.9 Semantic similarity between concept names and pastry  

The semantic similarity between the drink category name and the concept names 

are created from the proposed algorithm. The average of the semantic similarity 

score is 0.78 and the standard deviation is 0.16.  

Figure 6.10 shows the semantic similarity between the drink category name and 

the concept names. The semantic similarity between the drink category name and 

the concept names varies. There are three low values at brewery (0.29), squash 

(0.43) and container (0.33).  

The algorithm searches for the concept name of “kronenbourg”, “squash”, and 

“yakult” object names. The results of the concept name from the algorithm are 

“brewery”, “squash”, and “container”, and the semantic similarity score are 0.29, 

0.43 and 0.33, respectively. This means that there are outlier concept names in the 

drink category name. “kronenbourg” is a brand of beer, “squash” is a concentrated 

liquid that is made from fruit and “yakult” is a brand of drink.  
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Figure 6.10 Semantic similarity between concept names and drink  

The semantic similarity between the food category name and the concept names 

are created by the proposed algorithm. The average of the semantic similarity 

score is 0.73 and the standard deviation is 0.15.  

Figure 6.11 shows the semantic similarity between the food category name and 

the concept names. The semantic similarity between the food category name and 

the concept names varies. There are two low values at bowl (0.46) and container 

(0.33). This means that there are outlier concept names in the food category name.  

The “ramen” is a Japanese noodle soup dish and “basmati rice” is a kind of rice. 

The algorithm selects the “bowl” concept name for the “ramen” object name and 

selects the “container” concept name for the “basmati” object name from Web 

Documents.  
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Figure 6.11 Semantic similarity between concept names and food 

The semantic similarity between the fruit and vegetable category name and the 

concept names are created by the proposed algorithm. The average of the semantic 

similarity score is 0.80 and the standard deviation is 0.07. Figure 6.12 shows the 

semantic similarity between the fruit and vegetable category name and the concept 

names. Overall, the semantic similarity scores are nearly the same high score for 

all concept names. The low standard deviation means that, the concept names are 

related to the fruit and vegetable category name. In the case of high semantic 

similarity scores of all concept names and the low standard deviation score, all the 

concept names are arranged into the related category name. This means that all the 

concept names are correctly arranged into the fruit and vegetable category name. 
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Figure 6.12 Semantic similarity between concept names and fruit and vegetable  

The semantic similarity between the meat and fish category name and the concept 

names are created by the proposed algorithm. The average of the semantic 

similarity score is 0.75 and the standard deviation is 0.11. The low standard 

deviation means that the concept names are related to the meat and fish category 

name. 

Figure 6.13 shows the semantic similarity between the meat and fish category 

name and the concept names. The semantic similarity between the meat and fish 

category name and concept names varies. There is one low value at mince (0.46). 

This means that there are outlier concept names in the meat and fish category 

name.   

The algorithm selects the “mince” concept name for the “mince” object name but 

the semantic similarity score between “mince” and “meat”, and “mince” and 

“fish” is 0.46.  

The semantic similarity between the perishable category name and the concept 

names are created by the proposed algorithm. The average of the semantic 

similarity score is 0.58 and the standard deviation is 0.21. 
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Figure 6.14 shows the semantic similarity between the perishable category name 

and the concept names. The semantic similarity between the perishable category 

name and the concept names varies from the average of the semantic similarity 

score. There are eight low values at quiche (0.3), clementine (0.35), skin (0.43), 

hiroshima (0.3), article (0.31), span (0.29), pig (0.27) and container (0.29). This 

means that there are outlier concept names in the perishable category name.   

 

Figure 6.13 Semantic similarity between concept names and meat and fish  

The “chikuwa” is a kind of food product. The algorithm selects the “skin” concept 

name for the “chikuwa” object name. “okonomiyaki” is a Japanese savoury 

pancake. The algorithm selects the “hiroshima” concept name for the 

“okonomiyaki” object name. “nabemono” is a hot pot dish. The algorithm selects 

the “article” concept name for the “nabemono” object name. “pfefferpotthast” is a 

kind of perishable. The algorithm selects the “span” concept name for the 

“pfefferpotthast” object name. “spanferkel” is roasted or grilled suckling pig. The 

algorithm selects the “pig” concept name for the “spanferkel” object name. 

“fajita” is a kind of perishable. The algorithm selects the “container” concept for 

the “fajita” object name. 
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Figure 6.14 Semantic similarity between concept names and perishable  

The semantic similarity between the product category name and the concept 

names are created by the proposed algorithm. The average of the semantic 

similarity score is 0.66 and the standard deviation is 0.07. The low standard 

deviation means that the concept names are related to the product category name. 

Figure 6.15 shows the semantic similarity between the product category name and 

the concept names. Overall, the semantic similarity scores are nearly the same, 

high score for all the concept names. The low standard deviation means that the 

concept names are related to the product category name. In the case of high 

semantic similarity scores of all concept names and the low standard deviation 

score, all the concept names are arranged into the related category name. This 

means that all the concept names are correctly arranged into the product category 

name. 
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Figure 6.15 Semantic similarity between concept names and product  

The semantic similarity between the medicine category name and the concept 

names are created by the proposed algorithm. The average of the semantic 

similarity score is 0.53 and the standard deviation is 0.25.  

Figure 6.16 shows the semantic similarity between the medicine category name 

and the concept names. The semantic similarity between the medicine category 

name and the concept names varies from the average of the semantic similarity 

score. There are ten low values at cough (0.38), pastilles (0.44), syrup (0.47), 

plaster (0.46), bandage (0.4), inhalator (0.27), auto (0.24), senna (0.25), lense 

(0.27) and state (0.33). This means that there are outlier concept names in the 

medicine category name.   

The “cough syrup” is a kind of medicine. The algorithm selects the “cough” 

concept name for the “cough syrup” object name. A “pastille” is a small sweet or 

lozenge. The algorithm selects the “skin” concept name for the “pastille” object 

name but the semantic similarity is 0.44. “syrup” is a thick sweet sticky liquid. 

The algorithm selects the “syrup” concept name for the “syrup” object name. 
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Figure 6.16 Semantic similarity between concept names and medicine  

A “plaster” is a kind of a medical dressing. The algorithm selects the “plaster” 

concept name for the “plaster” object name but the semantic similarity is 0.46. A 

“bandage” is a piece of soft material that covers and protects an injured part of the 

body. The algorithm selects the “bandage” concept name for the “bandage” object 

name but the semantic similarity is 0.4. An “inhalator” is a breathing device. The 

algorithm selects the “inhalator” concept name for the “inhalator” object name but 

the semantic similarity is 0.27. “nicorette” is a brand of smoking control product. 

The algorithm selects the “auto” concept name for the “nicorette” object name. 

The “senokot” is a brand of medicine. The algorithm selects the “senna” concept 

name for the “senokot” object name. Senna is a yellow flower used in a medicinal 

manner. “revitalens” is a brand of disinfecting solution for soft contact lenses. The 

algorithm selects the “lens” concept name for the “revitalens” object name. 

“germolene” is a brand of antiseptic product. The algorithm selects the “state” 

concept name for the “germolene” object name. 

The semantic similarity between the kitchenware category name and the concept 

names are created by the proposed algorithm. The average of the semantic 

similarity score is 0.65 and the standard deviation is 0.17.  

Figure 6.17 shows the semantic similarity between the kitchenware category name 

and concept names. The semantic similarity between the kitchenware category 
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name and the concept names varies from the average of the semantic similarity 

score. There are three low values at baking tray (0.45), fryer (0.2) and sandwich 

press (0.21). This means that there are outlier concept names in the kitchenware 

category name.   

A “baking tray” is a flat pan. The algorithm selects the “baking tray” concept 

name for the “baking tray” object name but the semantic similarity is 0.45. A 

“fryer” is a kind of kitchen appliance. The algorithm selects the “fryer” concept 

name for the “fryer” object name but the semantic similarity is 0.2. A “sandwich 

press” is a kind of kitchen appliance. The algorithm selects the “sandwich” 

concept name for the “sandwich press” object name. 

Table 6.19 The overall score of nine categories 

 

The greater the semantic similarity score of two words, the more similar the 

meaning between two words. The overall score of correctness of the ontology, as 

given in Table 6.19, is designed for a human who applies the DIRAOF 

framework. It shows the validation of the concept hierarchy of the dataset. The 

overall score of correctness of the ontology shows the correctness at 86.5% for 

200 random object names. The 13.5% is incorrect due to the description of a 

particular object name being missing from the Web Documents source. The 

disadvantage of Web Documents is that they have to be updated by humans to 

update the description of objects. 

Category name Average Standard deviation Correct Total Percent

pastry 0.73 0.08 8 8 100%

drink 0.78 0.16 28 31 90%

food 0.75 0.11 18 20 90%

fruit and vegetable 0.80 0.07 27 27 100%

meat and fish 0.74 0.12 14 15 93%

perishable 0.58 0.21 14 22 64%

product 0.65 0.08 22 22 100%

medicine 0.53 0.25 6 16 38%

kitchenware 0.68 0.15 36 39 92%

173 200 86.5%Summary
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Figure 6.17 Semantic similarity between concept names and kitchenware category name



 

159 

 

CHAPTER 7 CONCLUSION AND FURTHER WORK 

 

This research develops techniques to enable domestic robots to automatically 

build up ontology components and to associate semantic knowledge with 

instances in an ontology. 

7.1 Conclusion 

This research investigated the effectiveness of using different keywords in 

information collection. It has been found that the keyword “is” is the most suitable 

one in finding a category name when searching for category names from Web 

Documents. The comparison among the different keywords is given in Table 6.17.  

This research found the necessity for having “HasA” and “MadeOf” relations in a 

domestic robot ontology and developed the technique of creating the relations 

between concepts as the part of automatic ontology development. The technique 

searches for the relevant concepts in ConceptNet that may have “HasA” and 

“MadeOf” relations with the newly created concepts. The base URL is 

“http://conceptnet5.media.mit.edu/data/5.4/search”. The “HasA&start+ concept” 

and “MadeOf&start+ concept” arguments are set to specify the “HasA” and 

“MadeOf” relations in the way that “the newly created concept has a relevant 

concept” as a start parameter for “HasA” relation and “the newly created concept 

is made of a relevant concept” as a start parameter for “MadeOf”. In the case 

where the relevant concept can be found in the existing robot ontology, the 

relations of “HasA” and “MadeOf” are then created from the newly created 

concept and the existing concepts in the existing robot ontology. 

This research also included semantic knowledge into the robot ontology. The 

semantic knowledge is represented with three properties, namely, “hasTime”, 

“hasLocation” and “hasProperty”. These property names are associated with 

instances of each concept in such a way that, given an object name, property 

values are picked up from the observed text files such the labels of the object, and 
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the object, on the other hand, is viewed as an instance of the concept that the 

object belongs to. This research also developed a recency and frequency based 

and the NFile algorithm to calculate the location of objects based on the 

“hasLocation” and “hasTime” property names. 

This research confirmed the feasibility of automatic robot ontology with the 

development of the integrated automatic robot ontology framework DIRAOF. 

Observing an object and its property values, the framework is able to search for 

information and to create a new concept, relations between the newly created 

concept with the existing concepts in the robot ontology, instances of the concept, 

property names and property values. It is also able to create semantic knowledge 

of the instances of concept. 

7.2 Contributions 

The main contributions of the research are the following. 

Integrated automatic ontology for service robots 

The automatic robot ontology is important for service robots that are deployed. It 

assigns the robots with the ability to continuously develop their ontology with 

limited human interventions. The framework can be applied to other robotic 

systems that work in unstructured and dynamic environments (section 4.2). 

Discovery of the most effective keyword “is” for information collection 

The research investigated the effectiveness of using different keywords in 

information collection. The “is” keyword gives the correct category name for an 

object name better than other keywords, as shown in the experiment. The “is” 

keyword supports robots to identify an object name that cannot be found in 

WordNet and to create the concept and an instance of the concept. Robots use the 

“is” keyword to search for the category name by selecting the noun with the 

highest frequency as the category name. The category name represents the general 

idea of that object name and it is created as a concept and an instance of the 

concept in the ontology.  
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“HasA” and “MadeOf” relations generation and inclusion 

The “HasA” and “MadeOf” relations will support robots to handle vagueness 

contained in a human user’s commands (section 4.2.3). Human users give the 

commands such as to find what they need. For example, they want to have water 

to drink. Robots will need to link the command that has the word water with 

objects/instances on the ontology to support them to complete the task. The two 

relations “HasA” and “MadeOf” can tell the robots the objects/instances that 

contain water for drinking. The “HasA” and “MadeOf” relations between 

concepts can be applied for the query to search similar objects (section 5.3). For 

example, human users need to prepare dinner but they have limited condiments 

and foods. Robots can provide the relevant foods and condiments (instances of the 

“food” and “condiment” concepts) in the dynamic environment from their “HasA” 

and “MadeOf” relations between concepts. 

Semantic knowledge creation 

The inclusion of semantic knowledge into robots’ ontologies allows robots to 

handle uncertainly caused by environment sharing between human users and 

robots. The robots can use the historical data stored in NFile about the location of 

objects in terms of the “hasLocation” and “hasTime” property names to calculate 

recency and frequency in order to determine the location of the object the human 

user asks for (section 5.2).  

7.3 Further Work 

This study has focused on the development of the DIRAOF and on the 

implementation of the basic principle of the framework components. Further work 

will be needed on further development of the components. 

Data Input process 

The framework requires object names and property values of physical objects as 

text. However, homecare robots retrieve multiple sources of information from 

object perception. Problems will occur when the framework is utilised with a 
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system that does not have text format as input. Therefore, the input process needs 

to be improved in further research. Image understanding, computer vision and 

object recognition will need to be added in further research. The Data Input 

process selects nouns and adjectives from labels of physical objects. However, 

nouns and adjectives are limited when creating relations between concepts. 

Therefore, the Data Input process needs to be improved in further research. An 

automatic method to identify nouns, verbs and adjectives needs to be developed. 

Automatic Ontology process 

Ontology development in Automatic Ontology develops the hierarchical structure 

of concepts. The ontology creation is an iterative process and often consumes 

time. Therefore, further research will be needed to find methods that reduce time 

consumption in the creation process. This might be to apply deep learning for 

ontology development process in further research, as deep learning being 

hierarchical learning for machine learning. It is based on learning representations 

of data with multiple processing layers. It will reduce the time for creating 

concepts and relations between concepts at large-scale in the domain of interest in 

further research. 

Property Creation provides five predefined properties for sending to Semantic 

Knowledge Acquisition to associate information about instances. However, 

homecare robots require more information about instances in the environment. 

Therefore, other properties need to be added in further research. To achieve the 

aim, the object property learning will need to automatically identify and create 

object properties of objects in further research. 

Data and Information Retrieval process  

Robots may categorise objects in the wrong group because the category name is 

selected for an object name which relies on the rich information on the web and 

the keyword that is used to search for the category name. Therefore, the algorithm 

for searching unknown objects that cannot be found in WordNet needs to be 

improved in further work. To achieve the aim, the interaction with human users 
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and the automatic translation into a machine-readable format would be a way to 

retrieve the category name of objects from the expert human in further research. 

Semantic Knowledge Acquisition process 

The Semantic Knowledge Acquisition process provides a method for locating the 

instances of a concept in a dynamic environment. However, it cannot guarantee 

that the location is the exact location of an object in a dynamic environment. 

Tracking Instances needs to be improved in further work. Logical reasoning 

would be an approach to integrate into Tracking Instances in further research. 

Robot Ontology process 

Robot ontology does not support service robots to exchange ontology and 

semantic knowledge with other systems. It cannot use the experience of other 

robots to create knowledge. Therefore, Robot Ontology needs to be improved in 

further work. Sharing of information and knowledge will be needed in further 

research. 

Query and Result Evaluation processes 

The Query process does not provide a user interface for human users to query 

Robot Ontology. It is difficult for users to enquire knowledge directly from Robot 

Ontology. Therefore, the Query process needs to be improved in further work in 

order to provide access to Robot Ontology to users. The user interface will be 

added in further research. Result Evaluation also does not provide access to the 

correctness of Robot Ontology to user. It is difficult for users to decide how good 

the dynamic ontology created in Robot Ontology. Therefore, Result Evaluation 

needs to be improved by adding a user interface in further research.
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Appendix A: “is-a”, “HasA” and “MadeOf” relations between 

concepts and parents of concept 

 

The pastry category name 

 

HasA MadeOf

loaf loaf solid

baguette baguette white_bread

white_bread starches

starches food

biscuit biscuit baked_goods

baked_goods solid

biscuit bread

bread bread food grain

mochi rice grass

grass physical_entity

rice foodstuff

foodstuff substance

foodstuff physical_entity

rice writer

writer person

person physical_entity

daifuku strawberry edible_fruit

edible_fruit reproductive_structure

reproductive_structure plant_part

plant_part whole

edible_fruit food

strawberry vascular_plant

vascular_plant organism

organism whole

ice cream cake cream foodstuff

flaugnarde strawberry edible_fruit

object name Concepts and Relations

is-a
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The drink category name 

 

HasA MadeOf

pepsi pepsi soft drink

soft drink liquid

liquid matter

soft drink food

coke coke substance

lemonade lemonade beverage

beverage substance

brewery brewery artifact

orangeade orangeade beverage

juice juice food

juice electrical_phenomenon

electrical_phenomenon natural_phenomenon

natural_phenomenon physical_entity

juice body_substance

body_substance matter

water water physical_entity

squash squash athletic_game

athletic_game activity

activity physical_entity

squash produce

produce solid

cordial cordial drug_of_abuse

drug_of_abuse agent

agent physical_entity

cordial beverage

ale ale brew

brew drug_of_abuse

brew beverage

beer beer alcohol alcohol

beer alcohol water

cocktail cocktail course

course food

food matter

matter physical_entity

cocktail alcohol

alcohol food

alcohol drug

alcohol fluid

drug physical_entity

fluid physical_entity

object name Concepts and Relations

is-a



 

179 

 

 

HasA MadeOf

punch punch stroke

stroke motion

motion action

action physical_entity

punch alcohol

punch implement

implement artifact

milk milk food water

milk stream

stream thing

stream physical_entity

thing physical_entity

milk liquid

milk body_substance

body_substance physical_entity

champagne champagne wine alcohol

wine beverage

champagne geographical_area

geographical_area location

location physical_entity

chocolate chocolate food

chocolate solid

chocolate liquid

tea tea nutriment

nutriment substance

tea food

tea liquid

tea party

party physical_entity

tea flavorer

flavorer foodstuff

coffee coffee food water

coffee liquid

strawberry daiquiri strawberry daiquiri cocktail

cocoa cocoa liquid

cocoa food

malt malt foodstuff beer

malt drink

drink physical_entity

malt beer

object name Concepts and Relations

is-a
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HasA MadeOf

lager lager military_quarters

military_quarters housing

housing artifact

lager brew

cider cider liquid

cider food

bitter  bitter property

property physical_entity

bitter beer

chardonnay chardonnay wine

wine drug_of_abuse

wine beverage

merlot merlot wine

prosecco wine drug_of_abuse

wine beverage

sauvignon wine drug_of_abuse

wine beverage

jameson whiskey alcohol

mojito juice food

juice electrical_phenomenon

juice body_substance

yakult container artifact

object name Concepts and Relations

is-a
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The food category name 

 

HasA MadeOf

ketchup ketchup ingredient

mayonnaise mayonnaise condiment

gravy gravy condiment

condiment ingredient

ingredient food

gravy event

event physical_entity

gravy foodstuff

popcorn popcorn grain

grain grass

grass herb

herb substance

herb physical_entity

grass physical_entity

grain food

popcorn cereal

cereal food

substance physical_entity

mustard mustard vegetable

vegetable food

mustard herb

herb living_thing

rice rice grass alcohol

rice foodstuff

rice writer

sugar sugar organic_compound bread

organic_compound chemical

chemical physical_entity

sugar flavorer

sugar molecule

molecule thing

thing physical_entity

sugar pepsi

sugar chocolate

object name Concepts and Relations

is-a
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HasA MadeOf

noodle noodle food

noodle head

head physical_entity

cereal cereal food

tagliatelle tagliatelle food

chow mein chow mein nutriment

linguine linguine food

spaghetti spaghetti dish

dish food

spaghetti food

pasta pasta nutriment

pasta solid

instant noodle noodle food

remoulade shrimp person

shrimp food

ramen bowl artifact

bowl solid

miso condiment ingredient

sauerkraut nutriment substance

basmati rice container artifact

object name Concepts and Relations

is-a
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The fruit and vegetable category name 

 

HasA MadeOf

orange orange stream

stream thing

orange color

color property

property physical_entity

color substance

orange coloring_material

coloring_material substance

avocado avocado produce

spinach spinach vegetable

vegetable food

spinach herb

potatoes potatoes vegetable

potatoes foodstuff

broccoli broccoli herb

carrot carrot plant_organ

carrot vegetable

cauliflower cauliflower herb

celery celery produce

tomato tomato vascular_plant

mushroom mushroom fungus

fungus living_thing

mushroom produce

mushroom physical_phenomenon

physical_phenomenon phenomenon

phenomenon physical_entity

object name Concepts and Relations

is-a
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HasA MadeOf

pear pear produce

garlic garlic ingredient

beans beans herb coffee

grapefruit grapefruit edible_fruit

melon melon produce

mango mango produce

lime lime material

material matter

lemon lemon whole

banana banana produce

nectarine nectarine produce

parsnip parsnip plant_organ

parsnip vegetable

ginger ginger ingredient

ginger vascular_plant

grape grape produce

raspberries raspberries edible_fruit

cucumber cucumber produce

strawberry strawberry edible_fruit

konjac corm plant_organ

plant_organ physical_entity

object name Concepts and Relations

is-a
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The meat and fish category name 

 

HasA MadeOf

cod cod sheath

sheath natural_object

natural_object physical_entity

cod seafood

seafood solid

pork pork food

chop chop meat

chop natural_phenomenon

natural_phenomenon process

mince mince food

prawn prawn food

fishcakes fish region

region physical_entity

fish solid

fish causal_agent

causal_agent physical_entity

mussel mussel seafood

salmon salmon fish

salmon stream

salmon color

salmon food

steak steak meat

sea bass sea bass fish

sea bass seafood

oyster oyster seafood

fowl fowl food

goose goose simpleton

simpleton causal_agent

goose bird

bird food

lamb lamb person

lamb food

squid squid food

object name Concepts and Relations

is-a
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The perishable category name 

 

HasA MadeOf

cheddar cheddar dairy_product

dairy_product food

cheddar food

cheddar settlement

settlement region

cheese cheese solid flavor milk

cheese foodstuff

solid physical_entity

foodstuff physical_entity

egg egg food

butter butter person milk

butter solid

butter foodstuff

jam jam confiture

confiture dainty

dainty food

jam gathering

gatering event

gatering group

event physical_entity

group physical_entity

pastry pastry concoction

concoction food

pastry food

buttermilk buttermilk fluid

buttermilk part

margarine margarine condiment

mascarpone mascarpone cheese

quiche quiche amerindian

amerindian causal_agent

pizza pizza nutriment

coleslaw coleslaw dish

object name Concepts and Relations

is-a
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HasA MadeOf

smoothies smoothies deceiver

deceiver bad_person

bad_person causal_agent

juice juice food

juice electrical_phenomenon

juice body_substance

clementine clementine citrus

citrus produce

tteokbokki rice grass

rice foodstuff

chikuwa skin artifact

skin causal_agent

okonomiyaki hiroshima municipality

municipality geographical_area

geographical_area location

municipality district

hiroshima geographic_point

geographic_point location

nabemono article whole

pfefferpotthast span digit

digit number

number whole

span artifact

spanferkel pig unpleasant_person

unpleasant_person person

pig block

block whole

pig lawman

lawman preserver

preserver artifact

pig container

fajita container artifact

object name Concepts and Relations

is-a
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The product category name 

 

HasA MadeOf

glove glove clothing

clothing artifact

shampoo shampoo formulation

formulation chemical

soap soap club_drug

club_drug drug

soap formulation

lotion lotion matter

spray spray chemical

spray vapor

vapor mixture

mixture matter

spray decoration

decoration whole

spray container

spray discharge

discharge substance

dishwasher dishwasher workman

workman worker

worker causal_agent

tissue tissue material

tissue part

liners liners piece

piece physical_entity

rack rack locomotion

locomotion change

change event

event physical_entity

rack meat

rack ending

ending event

rack supporting_structure

supporting_structure artifact

rack device

device artifact

object name Concepts and Relations

is-a
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HasA MadeOf

brush brush process

process part

toothbrush toothbrush implement

implement artifact

roller roller bird

bird chordate

chordate organism

organism whole

roller solid

roller pigeon

pigeon gallinaceous_bird

gallinaceous_bird vertebrate

vertebrate animal

animal living_thing

duster duster whole

plunger plunger person

toilet roll toilet roll tissue

bin bin artifact

conditioner conditioner chemical

cigars cigars tobacco

tobacco drug

tobacco plant_material

lighter lighter substance

candle candle device

bulb bulb body_part

body_part physical_entity

bulb object

object physical_entity

toothpaste toothpaste cleansing_agent

cleansing_agent compound

compound material

object name Concepts and Relations

is-a
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The medicine category name 

 

HasA MadeOf

cough syrup cough artifact

pastilles pastilles candy

candy sweet

syrup syrup flavorer

plasters plasters artifact

plasters building_material

building_material whole

plasters substance

bandage bandage cloth_covering

cloth_covering covering

covering artifact

ointment ointment matter

lozenges lozenges medicine

medicine agent

lozenges sweet

sweet nutriment

inhalator inhalator container

inhalator device

nicorette auto artifact

senokot senna woody_plant

woody_plant plant

windsetlers storage facility

facility whole

storage possession

possession activity

storage operation

operation physical_entity

storage buildup

buildup increase

increase physical_entity

storage device

storage component

coponent physical_entity

revitalens lense device

germolene state physical_entity

nicolites cartomiser menthol cigarette tobacco

decongestant drug agent

linctus medicine agent

object name Concepts and Relations

is-a
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The kitchenware category name 

 

HasA MadeOf

storage storage facility

storage possession

storage operation

storage buildup

storage device

storage component

jug jug vessel

vessel container

peeler peeler person

person physical_entity

peeler entertainer

entertainer causal_agent

poacher poacher acquirer

acquirer causal_agent

poacher container

poacher kitchen_utensil

opener opener causal_agent

spoon spoon tableware

tableware article

baking tray baking tray kitchen_utensil

funnel funnel chimney

chimney conduit

conduit way

way whole

funnel implement

fork fork implement

fork space

space object

spatula spatula cooking_utensil

cooking_utensil kitchen_utensil

mug mug person

dish dish adult

adult organism

dish tableware

dish food

object name Concepts and Relations

is-a
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HasA MadeOf

plate plate cut

cut food

plate course

course location

course food

plate body_part

plate tableware

plate layer

bowl bowl artifact

bowl solid

shaker shaker person

shaker causal_agent

teaspoon teaspoon container

teaspoon cutlery

cutlery ware

ware artifact

saucepan saucepan kitchen_utensil

pan pan kitchen_utensil

glass glass drug

glass matter

glass water

tumbler tumbler athlete

athlete person

tumbler container

coasters coasters traveler

traveler causal_agent

coasters inhabitant

muffin tin tin chemical_element

chemical_element matter

hand mixer mixer food

mixer equipment

equipment artifact

mixer liquid

cake tester cake artifact

cake food

cake nutriment

object name Concepts and Relations

is-a
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HasA MadeOf

cafetiere block group

block region

block copy

block whole

saltball pan kitchen_utensil

pot pot fixture water

fixture whole

pot resistor

resister device

pot soft_drug

pot kitchen_utensil

cooker cooker kitchen_utensil

chopper chopper aircraft

aircraft vehicle

vehicle physical_entity

chopper bone

bone animal_tissue

animal_tissue body_part

chopper edge_tool

edge_tool cutting_implement

cutting_implement implement

blender blender kitchen_utensil

grinder grinder machine

machine physical_entity

grinder snack_food

snack_food nutriment

grinder bone

object name Concepts and Relations

is-a
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HasA MadeOf

steamer steamer kitchen_utensil

steamer vessel

vessel vehicle

steamer shellfish

shellfish food

jar jar container

fryer fryer poultry

poultry bird

bird food

scoop scoop solid

scoop hand_tool

hand_tool implement

scoop club_drug

mortar mortar artifact

nutribullet container artifact

sandwich press sandwich dish

corkscrew corkscrew opener

object name Concepts and Relations

is-a



 

195 

 

Appendix B: PUBLICATIONS 

 

Kanjaruek, S. and Li, D. (2014) ‘Data-Information Retrieval based Automated 

Ontology framework for Service Robots’, In Proceeding of the 2014 International 

Conference on Manipulation, Manufacturing and Measurement on the Nanoscale 

(3M-NANO), pp. 90-94. 

 

Kanjaruek, S., Li, D., Qiu, R. and Boonsim, N. (2015) ‘Automated ontology 

framework for service robots’, In Proceeding of the 2015 IEEE International 

Conference on Robotics and Biomimetics (ROBIO), pp. 219-224. 

 


	Kanjaruekcover
	Saranya-Thesis-Final-17-03-07.pdf

