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Abstract:  

Bacterial RNA polymerase (RNAP) is an effective target for antibacterial treatment. In order 

to search new potential targets in RNAP of Mycobacterium, we detected adaptive selections of 

RNAP related genes in 13 strains of Mycobacterium by phylogenetic analysis. We first collected 

sequences of 17 genes including rpoA, rpoB, rpoC, rpoZ, and sigma factor A-M. Then maximum 

likelihood trees were constructed, followed by positive selection detection. We found that sigG 

shows positive selection along the clade (M. tuberculosis, M. bovis), suggesting its important 

evolutionary role and its potential to be a new antibacterial target. Moreover, the regions near 

933Cys and 935His on the rpoB subunit of M. tuberculosis showed significant positive selection, 

which could also be a new attractive target for anti-tuberculosis drugs. 
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1. Introduction 

The bacterial RNA polymerase (RNAP）subunit sequences are highly conserved and play an 

important role in broad-spectrum antibacterial targets searching (Chopra, 2007; Darst, 2004). 

RNAP is also a key target for the therapy against Mycobacterium especially for Mycobacterium 

tuberculosis. The RNAP enzyme comprises a multi-subunit αββ‟ω core which forms a 

„crab-claw-like‟ structure, and the β and β‟-subunits form the main components of each „pincer‟ of 

the claw. The commonly used anti-tuberculosis (anti-TB) drug rifampicin binds to the β-subunit of 

the RNAP encoded by rpoB and inhibits transcription.  
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However, multidrug-resistant (MDR) strains of Mycobacterium tuberculosis are resistant to 

some anti-TB drugs targeting RNAP including rifampicin and isoniazid (Gandhi et al., 2010). 

Resistance to rifampicin can result from several reasons; first, resistance to rifampicin typically 

contains substitution of residues in or close to this drug binding site on bacterial RNAP (Campbell 

et al., 2001). More than 95% of Mycobacterium tuberculosis clinical strains resistant to rifampicin 

have at least one mutation in an 81-basepair region of rpoB called rifampicin resistance 

determining region (RRDR) (Ramaswamy and Musser, 1998). A second reason for the emergence 

of rifampicin resistance is the avoidance of fitness deficit in MDR strains. Although experimental 

work has shown that drug resistance in bacteria was often associated with a fitness deficit 

(Andersson and Hughes, 2010; Andersson and Levin, 1999), this fitness cost of MDR 

Mycobacterium tuberculosis strains can be mitigated by compensatory mutations on rpoA or rpoC, 

which causes the mutant strains to thrive successfully (Comas et al., 2012). Therefore, there is a 

stringent need for new antibacterial agents targeting at bacterial RNAP but distinct from the 

rifampicin binding site. 

A common method to search for key sites in proteins is to confirm the function by 

site-directed mutagenesis, which is time-consuming and labor-intensive. However, molecular 

evolutionary studies provide another opportunity. According to molecular evolution theories, the 

sequence of a gene with a key function should be highly conserved among species. As a result, 

mutations at conserved sites usually lead to deleterious effects on its function, and mutants are 

eliminated by negative selection. Only the mutations benefitting the species‟ survival and 

reproduction could be fixed by positive selection, suggesting that the sites undergoing frequent 

positive or negative selections are crucial to the gene function. Therefore, it is possible to find the 

ideal target site of anti-TB drugs by detecting the sites undergoing adaptive selections in the RNA 

polymerase. 

In this study, we constructed phylogenetic trees with 17 corresponding genes separately 

which have great influence on the function of the RNAP enzyme in 13 Mycobacterium species. 

Based on these phylogenetic trees, we detected selective pressure on each branch and searched for 

the positive selection sites. Moreover, we predicted the tertiary structure of RNAP using 

homology modeling, and marked potential antibacterial therapeutic target sites. Finally, we 

compared positive selection sites with the molecular docking results of the RNAP enzyme in 

Mycobacterium tuberculosis and broad-spectrum antibacterial drugs. In short, this study provides 

a novel way to seek for drug targets and develop new anti-TB drugs.  

 

 

2. Materials and methods 

 

2.1 Collection and Identification of the related genes to RNAP enzyme  

In this study, we chose 17 corresponding genes which have significant impacts on function of 

the RNAP enzyme. These genes were rpoA, rpoB, rpoC, rpoZ and 13 sigma factors from A to M. 

We collected the nucleotide sequences of these genes in 13 strains of Mycobacterium genus and 2 

strains which are Gordonia bronchialis DSM 43247 and Rhodocshaoccus opacus B4 as outgroups 

in NCBI (http://www.ncbi.nlm.nih.gov/) for the phylogenetic analysis (Table 1). Based on the 17 

diverse genes of Mycobacterium tuberculosis H37Rv, the relevant orthologous genes in other 12 

strains were obtained by best reciprocal hit in BLAST (Bork et al., 1998; Tatusov et al., 1997).  



 

2.2 Construction of phylogenetic trees in each relevant genes 

Each homologous gene nucleotide sequence was first translated into its amino acid sequence 

and aligned by the Emboss software package (Rice et al., 2000). Then we realigned nucleotide 

sequences of each gene based on the result of amino acid sequence alignments. 

The best Akaike information criterion (AIC) model of every genes in all strains was obtained 

with PAUP 4.0 (Swofford, 1993) and Modeltest 3.7 (Posada and Crandall, 1998). Based on the 

AIC model, the maximum likelihood (ML) trees of each gene were constructed using PHYML 3.0 

(Guindon et al., 2010) with 1000 bootstrap replications. 

 

2.3 Detection of selective pressures 

The analysis of adaptive evolution was performed with the CODEML algorithm in PAML 4.4 

(Yang, 2007). We used the topology of maximum likelihood tree and the result of codon alignment 

of corresponding genes to calculate the selective pressure on each branch. Two different 

approaches were used, branch models and branch-site models. For both approaches, branches in 

the tree were divided a priori into foreground and background categories, and only foreground 

lineages may have experienced positive selection. The branches and sites under positive selection 

were identified by likelihood ratio tests (LRTs) which were applied by comparing the differences 

in log-likelihood (In L) values between two nested models, which are single ratio and free ratio 

using a χ2 distribution, and the differences in the number of parameters between two nested 

models is the degrees of freedom. 

 

3. Results 

3.1 Phylogenetic analysis of the related genes to RNAP enzyme 

Sigma factors are components of the RNAP complex that are responsible for binding to the 

RNAP complex, promoter recognition and separating DNA strands (Paget and Helmann, 2003). 

The number of sigma factors is extremely diverse between bacteria, ranging from 3 in 

Helicobacter pylori to 63 in Streptomyces coelicolor. In our study the relevant orthologous genes, 

except for rpoA, rpoB, rpoC and rpoZ, only four sigma factors including sigA, sigB, sigD and 

sigE were found in the genome of all 13 strains on Mycobacterium genus and 2 outgroup strains. It 

was interesting that we only found the orthologous gene of sigC in 7 pathogenic Mycobacterium 

species, including M. abscessus, M. avium, M. bovis, M. leprae, M. marinum, M. tuberculosis and 

M. ulcerans. This was in line with the viewpoint that sigC governs expression of an important 

pathogenic Mycobacterium regulon and is essential for lethality in host but not required for 

bacterial survival (Sun et al., 2004). As a typical intracellular parasite, M. leprae has the smallest 

genome in Mycobacterium due to gene elimination. It is worth mentioning that M. leprae only 

contains rpoA, rpoB, rpoC, rpoZ, sigA, sigB, sigC and sigE genes while the other sigma factors 

were either pseudogenes or lost. Because every sigma factor has its own specificity which allows 

the initiation of transcription of different subsets of genes (Manganelli et al., 2004), we inferred 

that sigma factors which are most relevant to virulence are sigA, sigB, sigC and sigE. 

The phylogenetic trees based on different related genes to the RNAP enzyme had similar 

architecture. Six out of seven pathogenic Mycobacterium strains were clustered in one big clade, the 

remaining one, M. abscessus strain, was on the basal branch of Mycobacterium genus. In addition, 

the 5 nonpathogenic Mycobacterium strains including M. gilvum, M. vanbaalenii, M. sp. JLS, M. sp. 



KMS and M. sp. MCS that are considered as decomposers of aromatic compounds in the soil were 

clustered in a clade between the 6 pathogenic Mycobacterium strains and the M. abscessus strain 

(see Figure 1). Because Mycobacterium abscessus is the most resistant and rapidly growing 

Mycobacterium and causes a wide range of clinical infectious diseases (Huang et al., 2010), we 

inferred that pathogenesis-related protein domains have greatly changed in Mycobacterium 

abscessus, therefore further study needs more attention on the virulence factors of this strain and 

corresponding target drugs. In addition, Mycobacterium smegmatis as a saprophytic Mycobacterium 

has none of the pathogenic properties described for Mycobacterium tuberculosis. But this strain is a 

potential cause of inflammation of soft tissues (Reyrat and Kahn, 2001; Shimizu et al., 2012). 

Therefore Mycobacterium smegmatis was not always clustered in the clade of nonpathogenic 

Mycobacterium, and sometimes it was on the basal branch of the Mycobacterium genus, indicating 

that a great change has occurred in its gene sequence and relevant protein structure. 

 

3.2 Identification of positive selection in adaptive evolution. 

We found that no positive selection was detected in the phylogenetic trees of corresponding 

genes to the RNAP enzyme including rpoA, rpoZ, sigA, sigC, sigD, sigE, sigH, sigI, sigK, sigL 

and sigM by using the CODEML algorithm in PAML 4.4. 

In the phylogenetic tree of rpoB gene (Figure 1A), we found positive selection using branch 

model on the branch including ((M. tuberculosis, M. bovis), M. leprae) and (M. tuberculosis, M. 

bovis), and there were 3 positively selected sites which are 656His (A→H), 933Cys (V→C), and 

935His (K→H) detected on the branch (M. tuberculosis, M. bovis) using the branch-site model 

(Table 2). For the rpoC gene (Figure 1B), positive selections were found on the branch including 

(M.marinum, M. ulcerans), M. leprae and M. avium, and 1 positively selected site 952Cys (L→C) 

was detected on the branch (M. marinum, M. ulcerans) with the branch-site model (Table 2). 

In this study, we also found positive selection on sigma factors consisting of sigB, sigF, sigG 

and sigJ. In the phylogenetic tree of the sigB gene (Figure 2A), we found positive selection on the 

branch (((M. marinum, M. ulcerans), ((M. tuberculosis, M. bovis) M. leprae)), M. avium), but no 

positively selected sites were detected (Table2). For sigF gene (Figure 2B) positive selection was 

found on the branch (((M. marinum, M. ulcerans), (M. tuberculosis, M. bovis)), M. avium), but 

only 1 positively selected site 14Asn (S→N) was detected (Table 2). For sigG gene (Figure 2C), 

we found positive selection on the branch (((M. marinum, M. ulcerans), (M. tuberculosis, M. 

bovis)), M. avium), (M. tuberculosis, M. bovis) and M. avium, in addition, we found 3 positively 

selected sites 59Thr(L→T), 91Leu Y→L), and 316Leu(T→L) on the branch ((M. marinum, M. 

ulcerans), (M. tuberculosis, M. bovis)), M. avium), 2 positively selected sites 174Asn(S→N) and 

306Tyr(E→Y) on the branch (M. tuberculosis, M. bovis) and 2 positively selected sites 

204Gly(Q→G), 206Arg(K→R) on the branch M. avium(Table 2). For sigJ gene (Figure 2D), we 

found positive selection on 2 branches, M. avium and M. marinum, we also found 3 positively 

selected sites including 3Gly(F→G), 8Glu(P→E), and 9Val(H→V) on the branch M. avium and 

only 1 positively selected site 198Arg(K→R) on the branch M. marinum (Table 2). 

 

4. Discussion 

In this study, we found many positively selected sites in components of the RNAP complex 

enzyme in the Mycobacterium genus including rpoB, rpoC and three sigma factors, sigF, sigG and 

sigJ. Moreover, the positively selected sites of sigG were much more than the other two sigma 



factors. In addition, positively selected sites on the branch (M. tuberculosis, M. bovis) only 

appeared in sigG, indicating that sigG may be an important potential antibacterial therapeutic 

target subunit. Furthermore, sigG would be significantly upregulated by Mycobacterium 

tuberculosis in human macrophage infection (Cappelli et al., 2006; Lee et al., 2008). Therefore, it 

can be inferred that sigG plays an important role in the evolution of M. tuberculosis and M. bovis. 

It appears that sequence alignments of the sigma
70

 family members have four conserved regions 

that can be further divided into sub-regions (Lonetto et al., 1992). It is interesting that most 

positively selected sites of sigF, sigG and sigJ were concentrated on region 2 and region 4 which 

banded on the upstream of the promoter and participate in DNA strand opening (Paget and 

Helmann, 2003). As a result, it is necessary to detect whether there were mutants on the upstream 

sequences of corresponding regulation genes. 

It is well-known that rpoB and rpoC are two important components, β and β‟-subunits, of a 

multi-subunit αββ‟ω core which forms a “crab claw-like” structure. As two “pincers” of the claw, 

they form a groove that accommodates the template DNA and provides a catalytic site for 

phosphodiester bond formation, a secondary channel for incoming nucleotides, and a separate exit 

for the growing RNA transcript (Borukhov and Nudler, 2008; Koch et al., 2014). Many medical 

inhibitors including rifampicin, tagetitoxin and myxopyronin specifically target rpoB and rpoC 

subunits of the RNAP enzyme (Artsimovitch et al., 2011; Malinen et al., 2012; Mukhopadhyay et 

al., 2008). According to the docking results of Mycobacterium tuberculosis RNAP and rifampicin 

(Lin and Mandal et al.,2017), RNAP and rifampicin interactions are similar to those in previously 

reported structures of Thermus aquaticus RNAP, and Thermus Thermophilus RNAP with 

rifampicin (Campbell and Korzheva et al., 2001; Artsimovitch and Vassylyeva et al., 2005). The 

binding sites are concentrated entirely among R173 S437 L436 Q438 S456 G459 Q435 L458 

V176 R465 N493 I497 P489 R613 R454 D441 H451 H680 F439 on rpoB subunit. Beyond the 

rpoB subunit, the rpoC subunit is also a good target to create a new drug to inhibit Mycobacterium 

tuberculosis RNAP; there is a new small molecule inhibitor of Mycobacterium tuberculosis RNAP 

named Nα-aroyl-N-aryl-phe-nylalaninamides (AAPs) binding on both rpoB and rpoC subunits. 

The interaction region of D-AAP1 (the prototype of AAPs) and RNAP contains V568 R562 G566 

Y480 P477 V475 on rpoB subunit and F850 H854 P827 N826 I851 I832 E848 R834 L847 on 

rpoC subunit. We compared our positively selected sites on rpoB and rpoC with the binding sites 

of rifampicin and D-AAP1 (PDB code:5UHG) on Mycobacterium tuberculosis RNAP protein 

with PYMOL (Figure 3). The three positivel selection sites, H656, C933 and H935 on rpoB 

encompass the center of the interaction region of rifampicin on Mycobacterium tuberculosis 

RNAP protein. Based on the location of the three positively selection sites, the H656 on rpoB and 

C952 on rpoC may cause surface conformational changes in other Mycobacterium genus, while 

the C933 and H935 are close to each other and in the vicinity of similar binding sites to tagetitoxin 

in bacterial RNAP from T. thermophilus (Vassylyev and Svetlov et al.,2005), but separated by a 

helix of a dozen amino acids; the region near them might be a new potential therapeutic target. 

Furthermore, both two positively selected sites C933 and H935 on rpoB are close to the 

“switch region” which is located at the base of clamp also called the “pincer” and serves as the 

hinge on which the clamp swings in clamp opening and closure (Cramer, 2002; Cramer et al., 

2001; Gnatt et al., 2001). The switch region adopts different conformations in open and closed 

clamp conformational states. Moreover, the clamp must to be open to permit DNA to enter the 

active-center cleft during early stage of transcription initiation and is required to close to keep 



DNA in the active-center cleft during later stages of transcription initiation and elongation. Based 

on the similarity of the location of our positively selected sites on rpoB and binding sites to 

tagetitoxin on bacterial RNAP, we suggest RNAP switch region to be an attractive target for new 

antibacterial therapeutic agents for Mycobacterium tuberculosis. Firstly, the comprised residues of 

the switch region were highly conserved in all species of Mycobacterium genus even in 

Gram-positive bacterial RNAP and Gram-negative bacterial RNAP, providing a foundation for 

broad-spectrum activity of drugs. Secondly, two positive selection sites were found close to the 

“switch region” of RNAP in Mycobacterium tuberculosis, indicating the specific functional 

structure which could be a specific drug target. Thirdly, this switch region is far away from the 

binding sites for typical inhibitors of bacterial RNAP and also not in the rifampicin 

resistance-determining region (RRDR) (Chopra, 2007). The large distance therefore provides a 

basis for absence of cross-resistance with other classic inhibitors of RNAP, especially rifampicin. 

Moreover, the distance ensures a low probability of occurrence of putative compensatory 

mutations which decreases fitness cost (Comas et al., 2012). Finally, the ligand binding sites in 

this region contain a nearly completely enclosed hydrophobic pocket which offer a basis for 

efficient “druggability” by multiple chemotypes (Mukhopadhyay et al., 2008), just like HIV-1 

reverse transcriptase NNRTI sites which have high druggability and utility (Sluis-Cremer et al., 

2004).  

Overall our study provides a new way to search for potential antibacterial therapeutic targets 

in the RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites. In 13 

strains on Mycobacterium genus, new potential targets possessing the highest fitness costs of 

resistance and lowest likelihood of compensation have been detected by phylogenetic analysis and 

selection pressure detection. Fortunately as these findings are not in the known binding region, we 

can regard these positive selection sites as potential inhibitor targets. 
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