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Abstract

Health care practitioners analyse possible risks of misleading decisions and need
to estimate and quantify uncertainty in predictions. We have examined the
“gold” standard of screening a patient’s conditions for predicting survival prob-
ability, based on logistic regression modelling, which is used in trauma care for
clinical purposes and quality audit. This methodology is based on theoretical
assumptions about data and uncertainties. Models induced within such an ap-
proach have exposed a number of problems, providing unexplained fluctuation
of predicted survival and low accuracy of estimating uncertainty intervals within
which predictions are made. Bayesian method, which in theory is capable of
providing accurate predictions and uncertainty estimates, has been adopted in
our study using Decision Tree models. Our approach has been tested on a
large set of patients registered in the US National Trauma Data Bank and has
outperformed the standard method in terms of prediction accuracy, thereby pro-
viding practitioners with accurate estimates of the predictive posterior densities
of interest that are required for making risk-aware decisions.

Keywords: Bayesian method, Decision Tree, Predictive posterior distribution,
Injury Severity Scoring

1. Introduction

Health care systems based on Machine Learning (ML) technologies are in-
creasingly demanded for the prevention of lifestyle-related and chronic diseases
as well as for emergency care and life support, see e.g. [1, 2]. This interest is ex-
plained by the need for efficient access to data related to patients’ conditions in
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ambulance, hospital or home environments. To assist health care practitioners
with decision making, these data can be analysed using various ML approaches.

Million people worldwide are injured and admitted to hospitals for emer-
gency treatment. Just in 2014, around 40 million people were treated in the US
and 192,945 of them obtained fatal injuries and died [3]. Reliable, accurate, and
timely information about a patient’s condition is therefore of critical importance
for improving trauma care outcomes.

For evaluation of injury severity and prediction of survival, practitioners ex-
ploit a logistic regression model known as the Trauma and Injury Severity Score
(TRISS). The TRISS model predicts the probability of survival for a patient on
arrival at a hospital, see e.g. [4, 5, 6, 7]. The prediction model combines screen-
ing information and physiological parameters recorded by a paramedic at an
accident scene. For some patients, data that are obtained with medical devices,
such as blood pressure and heart rate, can be missing at the moment of the
examination.

Uncertainties that exist in data as well as in the prediction model will affect
the results and might lead to fatal errors or inadequate treatment. For this
reason, practitioners have raised a concern about the ability of TRISS to provide
reliable and accurate predictions and estimates of uncertainty [8, 5].

The accuracy of predictions is compared against actual survival during model
calibration. A relationship between the predicted and actual probabilities can
be visualised as a calibration curve [9]. In this sense, the TRISS calibration
curve has drifted away from the ideal curve, see e.g. [10, 6, 8].

In [5], it has been found that the accuracy of TRISS predictions is acceptable
when the types and severities of patients injuries are typical. However, for
patients with four or more injuries as well as those with atypical combinations
of injuries, the accuracy has to be improved.In practice, it is critically important
to accurately estimate the uncertainty in a predicted survival probability. The
uncertainty estimates are required in order to minimise risks of fatal errors.
Uncertainty can be represented by confidence intervals. These intervals are
reliably estimated when the density of predicted probabilities is fully tractable,
which is achievable only in trivial cases. Thus TRISS methodology that is based
on theoretical assumptions cannot realistically estimate the uncertainty [11, 12].

To tackle the above problems, we employ the Bayesian approach to learn
prediction models from data. This methodology in theory provides the most
accurate predictions and uncertainty estimation, see e.g. [13, 14, 15, 16]. This
approach, however, requires intensive computations, see e.g. [17, 18, 19].

In our approach we use Bayesian averaging over Decision Tree (DT) models,
also known as Classification and Regression Trees, which are well-known for
their ability to select input variables that maximally improve the performance
[20, 21, 22]. DT models split the given data along input variables recursively,
which is relatively simple to compute. The strategy, however, cannot provide
a global view on the entire data. At the same time, the partitions which are
made along variables are transparent, and when the number of the partitions
is reasonably small then DT models can assist users with new insights into the
data, see e.g. [23].
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We analyse existing approaches and describe our approach based on Bayesian
averaging over DT models. Then we test and compare the proposed and TRISS
methods on the main trauma data benchmark, the US National Trauma Data
Bank (NTDB) [24]. The comparison of the methods is made in terms of the Area
Under the receiver operating characteristic Curve (AUC), which is a summary
measure of the accuracy of a quantitative diagnostic test, see e.g. [25]. Finally,
we discuss a DT model that can be used for purposes of interpretation with the
maximum predictive ability.

2. Logistic Regression Model for Predicting Survival Probability

Logistic regression modelling is a way of calculating probabilities of survival
for given predictors, see e.g. [4, 9]. As such, the TRISS model includes both
continuous and categorical tests. The former include: age, systolic blood pres-
sure, and respiratory rate, while the latter include: severity scores of injuries
that a patient can obtain, the Glasgow Coma Scale (GCS), and the type of
injury. Screening tests are evaluated on the patient’s arrival by a trained scorer,
see e.g. [6].

The above screening tests form two aggregated predictors: Injury Severity
Score (ISS), and Revised Trauma Score (RTS). However, practitioners have
found that such an aggregation causes unexplained fluctuations of the ISS over
observed probabilities of survival, which affects the prediction accuracy, see e.g.
[5, 26]. The calculation of survival probabilities has been made available online
as a TRISS Calculator [27].

The current standard TRISS allows for up to three of the most severe injuries
that a patient can obtain in six regions of the body: head, face, chest, abdomen,
extremities, and external (skin, subcutaneous tissue and burns).

Within this methodology, a density of predicted values is assumed to be a
Gaussian distribution, N(µ, σ2), where µ and σ2 are defined by the parameters
b and by the regression error, respectively. As follows from [28], under such
an assumption, the uncertainty interval for a prediction cannot be realistically
estimated for a patient.

3. Methodology

In most practical cases, any given model is incapable of fully explaining
the real-world data, which means that a single “true” model does not exist.
The method of Bayesian averaging over models, adopted in our study, assumes
that different models can be mixed together so that their average under certain
conditions will approximate the true model of interest. The averaging strategy
is often more efficient than model selection in real-world applications when the
predictive ability (or fitness function) is not unimodal, see e.g. [28, 16].

The use of DT models within Bayesian method gives us the following advan-
tages [20, 29]. In comparison with other Machine Learning methods, the DT
technique is directly applied to the given data without time-consuming data
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preprocessing or careful tuning of the learning algorithm, and so the DT tech-
nique is often called “off-the-shelf”. The following advantages could be also
important when dealing with real-world problems. DT models are robust to
outliers in the given data. When a domain problem is represented by a mix of
numerical and categorical variables, the DT technique naturally captures the
relationships between them.

DTs perform internal feature selection as an integral part of the learning
procedure, and so the use of general data transformations, such as Principal
Component Analysis, is not required, see e.g. [30].

Models learnt from given data are calibrated and their accuracy is statisti-
cally evaluated by goodness-of-fit tests. In the medical domain the calibration
is usually assessed via the Hosmer-Lemeshow (HL) statistic [9, 8]. HL statis-
tics are typically calculated for 10 intervals of predicted values. Under certain
conditions, the larger the HL statistic, the worse is the calibration. The HL-
test, however, is statistically significant in 100% of models when the number
of patients is 50,000 or more. So this test has to be analysed along with the
overall number of patients, see e.g. [31], which has been taken into account in
our experiments.

The HL-test of goodness-of-fit is typically used along with others metrics of
medical decision-making models, such as sensitivity and specificity, True Positive
(TP) and False Positive (FP) rates. We also compare the diagnostic potentials
of the proposed and existing methods in terms of AUC as discussed in Section 1.

4. Data

For comparison of the proposed and standard TRISS methods, we use a
set of patient records from the US NTDB, the major source of data about
injured patients admitted to hospitals and emergency units [24]. The data
include patient age, gender, type and regions of injuries along with some clinical
and background information about patient state. The NTDB also includes the
TRISS prediction and the outcome of care, alive or died, for each patient.

Table 1 shows the screening tests (or predictors) that are used by the TRISS
method based on the NTDB. The variables Age, Blood pressure, and Respiration
rate are continuous, and the remaining variables are categorical. The patient
outcome is the discharge status, y ∈ {0, 1}, where 0 is alive, and 1 is died. The
table also shows the minimal and maximal values of each test.

For our study, we selected records of patients with 1-20 injuries. After ex-
clusion of missing values, the number of records was 571,148. Approximately
11% of the data were missing not at random. For example, the respiration rates
were undefined for intubated patients. However, both our approach and TRISS
method consider only complete cases, see e.g. [4]. Thus the bias caused by
excluding patient data with missing values not at random is not investigated.

The distribution of the records over 3 groups of injuries was as follows: (1)
174,647 with 1 injury, (2) 381,137 with 2-10 injuries, and (3) 15,364 with 11-20
injuries. Survival rates in these groups were 0.977, 0.953, and 0.831, respectively.
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Table 1: Screening tests and ranges of NTDB

# Name min max

1 Age 0 100
2 Gender 0 female 1 male
3 Injury type 0 penetrating 1 blunt
4 Blood pressure 0 300
5 Respiration rate 0 200
6 GCS Eye 1 4
7 GCS Verbal 1 5
8 GCS Motor 1 6
9 Head severity 0 6

10 Face severity 0 4
11 Neck severity 0 6
12 Thorax severity 0 6
13 Abdomen severity 0 6
14 Spine severity 0 6
15 Upper extremity severity 0 6
16 Lower extremity severity 0 6
17 External severity 0 6

Table 2 shows statistics of the screening tests A to ES (listed in Table 1) in
the groups of patients who obtained 1-20, 1, 2-10, and 11-20 injuries. The
statistics are represented by values of the mean, standard deviation, median,
and quartiles.

The records of patients with the largest numbers of injuries in group 3 were
equally split into 2 subsets, one for training and the other for validating the
model. The model was learnt from the training subset, and its ability to predict
new data was analysed on the remaining data including groups 1, 2, and the
validation subset of group 3. The model calibration was analysed on all groups.
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5. Bayesian Averaging over DT Models

Bayesian method is analytically tractable for trivial cases when the likelihood
function and probability distributions of given data and model parameters are
known. In practice, when the distributions are unknown, the Bayesian method
can be feasibly approximated with Markov chain Monte Carlo (MCMC) meth-
ods, see e.g. [28]. Bayesian averaging over DT models has been implemented
with MCMC in [32, 17].

MCMC aims to explore a posterior density of model parameters by mak-
ing random walk proposals. The desired density is approximated by drawing
samples from areas of high posterior density, so-called areas of interest. Then
samples of model parameters are used for calculating probabilities of predicted
outcomes that are distributed according to a predictive posterior distribution
function of interest.

The MCMC approximation can be outlined as follows. First we define pa-
rameters, Θ, of a prediction model that can be learnt from a labelled data set,
D = (x(i), y(i))ni=1, where x = (x1, . . . , xm) are the m-dimensional input vec-
tors, y are the model outcomes, and n is the numbers of instances in the data
D. Given an input x, the predicted outcome y is assigned to one of the given
classes, y ∈ {1, C}. In our case of survival prediction, C = 2, and the outcomes
are: y = 0 if a patient is survived, and y = 1 if died.

The predictive posterior distribution of interest, p(y|x,D), is calculated as
an integral over model parameters Θ as follows:

p(y|x,D) =

∫
Θ

p(y|x,Θ)p(Θ|D)dΘ, (1)

were p(y|x,Θ) is the posterior predictive density given input x and model pa-
rameters Θ, and p(Θ|D) is the posterior density of Θ given data D.

The above integral is analytically tractable only in trivial cases when the dis-

tribution p(Θ|D) is known. In practice, we can generate N samples,
(
Θ(i)

)N
i=1

,
distributed with a density function, p̂(Θ|D), that under certain conditions can
be accurately simulated with MCMC:

Θ(i) ∼ p̂(Θ|D). (2)

The desired approximation is achieved when MCMC generates a random
sequence with a stationary probability distribution. Thus we can draw samples
Θ(i) defined in Eq. 2 and then calculate the predictive density of interest as
follows:

p(y|x,D) ≈
N∑
i=1

p(y|x,Θ(i),D)p(Θ(i)|D) =
1

N

N∑
i=1

p(y|x,Θ(i),D). (3)

From Eq. 2, the required model parameters Θ(i) are drawn from a posterior
distribution simulated by MCMC. The collected samples are then used in Eq. 3
to calculate the posterior predictive probabilities.
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In practice, the model parameter space can be very large, so the desired
approximation of p(Θ|D) is achieved with the Reversible Jump (RJ) extension of
MCMC [33]. The approximation becomes accurate when RJ MCMC algorithm
can explore all areas of high posterior density. However, when posterior density
functions are multimodal, the detailed exploration of the areas of interest cannot
be achieved in a reasonable time, see e.g. [28]. In order to mitigate the above
problems, we proposed a new RJ MCMC strategy in our previous work [34].
This strategy has delivered more accurate results than the existing MCMC
techniques that employ the restarting [32] and restricting [17] strategies, as well
as randomised DT strategy [35].

DT models are grown to be fitted to given data by the RJ MCMC sampler.
The sampler can search model parameters of variable dimensionality by making
the following types of moves:

1. Birth. To randomly split the data points falling in one of the terminal
nodes by adding a new splitting node with a variable and rule drawn from
a given prior.

2. Death. To randomly pick a DT splitting node with two terminal nodes to
be assigned a single terminal node with the merged data points.

3. Change-split. To randomly pick a splitting node and assign it a new
splitting variable and rule drawn from a given prior.

4. Change-rule. To randomly pick a splitting node and assign it a new rule
drawn from a given prior.

The birth and death moves are reversible and change the dimensionality of
the model parameters. The change moves are required to search the parameters
within the current dimensionality of the model.

In the next section we describe our experiments with these methods for the
prediction of survival probabilities and assessment of uncertainty.

6. Results

The proposed method was tested and compared with the standard TRISS
method on the US NTDB data outlined in Section 4. The comparison was made
in terms of classification accuracy and goodness-of-fit (or calibration) using the
HL statistic as discussed in Section 4.

According to the HL-test, calibration curves were calculated for 10 intervals
equidistantly distributed over survival probabilities [0, 1]. The curves calculated
for the TRISS and proposed Bayesian DT (BDT) methods are shown in Fig. 1.
Here the confidence intervals, calculated as 25th and 75th percentiles, are shown
by the lines, and the actual (observed) survival probabilities falling within the
intervals are denoted by the filled circles.

There is a significant difference in the plotted curves in terms of accuracy
of estimating the confidence intervals. The TRISS calibration on the left-hand
plot in Fig. 1 shows that most of the observed survival probabilities (marked
by the circles) lie outside the confidence interval (solid lines). By contrast for
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Figure 1: Calibration curves and confidence intervals for TRISS (left) and proposed BDT
(right) methods for patients with 1-20 injuries. Observed survivals are denoted by the filled
circles, predicted survivals are the squares, and confidence intervals are the solid lines.

our method, all the observed survival probabilities shown in the right-hand plot
lie within the confidence interval, which is evidence of more accurate estima-
tion. The values of the HL statistics were 3,893.4 and 557.1 for the TRISS and
Bayesian methods, respectively.

We see that the second result is just one-sixth of the first, and thus the
Bayesian method is considerably better in terms of the HL statistic. A high
value of the HL statistic for the Bayesian method is explained by the large
number of patients, as we discussed in Section 4.

The HL-test shows a significant improvement of goodness-of-fit of the Bayesian
method. In terms of uncertainty, 2σ intervals were reduced from 0.628 to 0.569
for patients with 2-10 injuries and from 1.227 to 0.930 for patients with 11-20 in-
juries. Fisher’s F-test shows that these improvements are statistically significant
(p-value < 0.005).

The proposed and TRISS methods were also compared in terms of classifica-
tion accuracy. The patients with predicted survival ≥ 0.5 were assigned to class
“alive”, and the others with smaller probability to class “dead”. Table 3 shows
the classification accuracy, sensitivity, and specificity along with AUC values
and TP rates given for FP=0.1. We can see that the accuracy and AUC of the
Bayesian method are slightly higher in all injury groups. Fig. 2 shows the ROC
curves for both BDT and TRISS methods.
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Table 3: Classification accuracy of the TRISS (TRS) and BDT methods in the injury groups:
1-20, 1, 2-10, and 11-20.

Accuracy Sensitivity Specificity AUC TP(FP=0.1)
Inj. TRS BDT TRS BDT TRS BDT TRS BDT TRS BDT
1-20 0.968 0.971 0.528 0.474 0.988 0.994 0.948 0.954 0.855 0.858
1 0.986 0.987 0.487 0.518 0.998 0.998 0.945 0.951 0.815 0.824
2-10 0.964 0.968 0.517 0.464 0.987 0.993 0.946 0.954 0.849 0.864
11-20 0.838 0.875 0.664 0.475 0.874 0.956 0.882 0.894 0.621 0.660
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Figure 2: ROC curves for TRISS and proposed methods in the injury groups: 1-20, 1, 2-10,
and 11-20. The solid line denotes ROC for BDT and the dashed line denotes ROC for TRISS.
In all groups AUC for BDT is larger than for TRISS.
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We applied the McNemar statistical test in order to estimate the changes in
proportions of outcomes that are predicted by the Bayesian and TRISS methods
on patients in the three groups. The results show that the proposed Bayesian
method has improved the prediction accuracy by 0.04%, 0.36%, and 3.64% (p-
value < 0.05) for patients with 1, 2-10, and 11-20 injuries, respectively.

7. Discussion

In this section we discuss the main findings and work related to applications
of the Bayesian method.

7.1. Main Findings

Practitioners are guided by the TRISS methodology of evaluating injury
severity and prediction of survival probabilities. TRISS is the current standard
for evaluation of patients on arrival at a hospital as discussed in Section 1. The
TRISS method outlined in Section 2 analyses the screening tests described in
Section 4.

The results of the TRISS evaluation are affected by uncertainties that exist in
both data and prediction model. These uncertainties increase risks of making
fatal errors. Practitioners are unsatisfied with the ability of TRISS to make
reliable predictions when errors affect patient outcomes [8, 5], they are concerned
that goodness-of-fit of the TRISS model is not ideal [8], and they have also found
that the accuracy of TRISS predictions for patients with four or more injuries
as well as with atypical injuries needs to be improved [5].

Uncertainty intervals within which predictions are distributed can be reliably
estimated if the distribution function of predicted probabilities is known. The
TRISS methodology is based on theoretical assumptions about distributions of
probabilities, and so cannot reliably estimate intervals of interest [5].

In Section 5 a Bayesian approach to the above problems has been described.
Bayesian method is well known for accurate modelling and estimation of uncer-
tainty, which however require intensive computations. The methodology applied
to DT models is made feasible with MCMC, which under certain conditions can
accurately approximate a parameter density function of interest [28, 17].

In our experiments on the US NTDB described in Section 6, we found that
the Hosmer-Lemeshow statistical test shows a significant improvement of cali-
bration for the new model. As a result, uncertainty intervals shown in Fig. 1
were reduced from 0.628 to 0.569 for patients with 2-10 injuries and from 1.227
to 0.930 for patients with 11-20 injuries. The improvement of model calibration
is the key factor for increasing the accuracy of predictions and classification.

Our contribution is that the accuracy of the proposed method has been im-
proved by 0.36% for patients with 2-10 injuries and by 3.64% for patients with
11-20 injuries. Further improvements of evaluation accuracy could be achieved
with new variables, such as the number of injuries, added to the standard screen-
ing tests. The current TRISS method that is based on these tests should then
be modified in order to provide trauma care practitioners and researchers with
a new “gold” standard.
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7.2. Related Work on Bayesian Applications

In terms of usability for reasoning, DT models are complementary to Bayesian
Networks (BNs) that are graphical models where the nodes represent variables
and the arcs represent probabilistic dependencies between these variables. Such
networks are called Directed Acyclic Graphs (DAGs), see e.g. [16, 36].

There are two main types of methods for learning BN structures from given
data: (i) methods based on scoring functions plus search, and (ii) methods based
on conditional independence tests, also known as constraint-based methods.
The first type of methods aims to find a graph that maximises a score function
which is designed to measure fitness of the graph to the given data. The scoring
function and search method are designed so as to define a space of feasible
solutions [16]. The second type of methods aims to find a BN that explains
the dependencies between variables in the best way. However the result can be
sensitive to failures in individual independence tests when BNs are large [16].

It is important to note that the above score-based and constraint based
methods employ model selection, whereas our approach is based on Bayesian
averaging over models.

BNs have been studied to model the uncertainty of factors that influence
the performance of emergency medical service at a hospital [37]. Different al-
gorithms for learning of BNs have been applied and compared in the specific
case of the emergency service in order to develop a management-oriented deci-
sion support system aiming to improve the health service. The best result has
been obtained with a scoring-based algorithm using a local search in the space
of DAGs. Starting from an initial DAG the algorithm makes step-by-step local
changes that maximise the gain until a local maximum is reached. This strategy
is implemented by adding or deleting an arch in the BN.

In [38] the BNs and DTs have been learned to predict access to renal trans-
plant waiting lists on a data set including 809 patients. It is interesting that both
models have provided the same prediction accuracy, using the variable age that
makes the greatest contribution. Using the BN, physicians have a global view of
the relationships between variables, while the DT was more easily interpretable.

A new approach to building BNs from given data has been recently proposed
in [39] within a generalised framework capable of providing a repeatable method
for building BN models from patient questionnaires and interviews containing
contradictory responses. Learning of the BN model structure and parameters
from such data is often unsatisfactory. The proposed framework has demon-
strated an improvement in predictive performance in terms of AUC scores. Be-
sides the improvement, the resultant BN models were useful for medical decision
support.

In study [40], BNs have outperformed DTs in terms of accuracy and ability
to model the complexity of the underlying decision-making. However BNs were
limited in terms of interpretation and efficiency of rules derived from the BN,
while rules derived from DTs have a simple and direct interpretation. The idea
of combining DTs and BNs has been shown to be capable of maintaining the
potential advantages of both techniques.
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It is important to note that the above methods of learning BNs provide
practitioners with a global view on clinical decision-making, while DTs are local
models which are limited in this capacity, see e.g. [39]. This advantage, however,
is difficult to achieve without an expert’s knowledge and theoretical insights. At
the same time, DT models provide a direct interpretation of rules learnt from
given data, see e.g. [38].

However, when a domain problem is represented by observations only, and
experts have no knowledge to share, a DT model can be learnt from the data
more efficiently than a BN. This is because the space of possible DT structures is
smaller than that for possible BN structures. The use of heuristic-based search
methods does not guarantee finding the best result. However when experts share
their knowledge, BN can outperform DT models. The BN framework is more
convenient than the DT one in terms of the ability to formulate and incorporate
the expert’s knowledge [36, 16].

From this point of view, BNs and DTs are complementary to each other.
Despite the differences, BN models can be used within the MCMC methodology,
see e.g. [16], to approximate predictive posterior distribution when estimates of
uncertainty intervals for making risk-aware decisions are needed.

8. Conclusion

We analysed the standard logistic regression model, known as the Trauma
and Injury Severity Score (TRISS), that is currently used for predicting survival
of injured patients and found areas where TRISS methodology can be improved
in terms of accuracy of prediction and uncertainty estimation. The main findings
are as follows.

The TRISS methodology does not support the estimation of predictive sur-
vival probability density that is required for evaluating an individual confidence
interval for a patient in order to assist practitioners with making risk-aware de-
cisions. Trauma care practitioners found unexplained deviations in the TRISS
calibration curve, which can lead to inadequate decisions. They also found that
the accuracy of predicting outcomes of patients with multiple injuries has to be
improved.

To improve the evaluation accuracy, we proposed a Bayesian method for
prediction and uncertainty modelling. The proposed method was compared
with TRISS on the large set of records included in the US NTDB, the main
data repository in trauma care research.

In our experiments we found that the goodness-of-fit of the Bayesian method
is superior to that evaluated for the TRISS method. The proposed method was
shown to be capable of reducing uncertainty intervals and increasing the pre-
diction accuracy in all groups of patients, especially in the group with multiple
injuries. The achieved improvements were statistically significant.
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