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Main points: 

• Mutant tau induction produced myelin pathology within weeks associated with 
failure of action potential conduction. 

• Myelin remodeling accompanied continued transgene induction, producing a 
thin myelin phenotype with restored excitability.  
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Abstract 
 Early white matter (WM) changes are common in dementia and may 
contribute to functional decline. We here examine this phenomenon in an 
induced dementia model for the first time. We report a novel and selective 
form of myelin injury as the first manifestation of tauopathy in the adult CNS. 
Myelin pathology rapidly followed the induction of a P301 tau mutation 
associated with fronto-temporal dementia in humans (rTG4510 line). Damage 
involved focal disruption of the ad-axonal myelin lamella and internal 
oligodendrocyte tongue process, followed by myelin remolding with features 
of re-myelination that included myelin thinning and internodal shortening. The 
evolution of the re-myelinated phenotype was complete in the molecular layer 
of the dentate gyrus (ML DG) after 1 month and in the optic nerve (ON) after 9 
months of transgene induction and proceeded in the absence of actual 
demyelination, reactive glial changes or inflammatory response. The initial 
rapid myelin pathology was associated with loss of WM function and 
performance decline in a novel recognition test and both these effects largely 
reversed during the myelin re-modeling phase. The initial phase of myelin 
injury was accompanied by disruption of the vesicle population present in the 
axoplasm of hippocampal and ON axons. Axoplasmic vesicle release is 
significant for the regulation of myelin plasticity and disruption of this pathway 
may underlie the myelin damage and remodeling evoked by tauopathy. WM 
dysfunction early in tauopathy will disorder neural circuits, the current findings 
suggest this event may make a significant contribution to early clinical deficit 
in dementia. 
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Introduction 
 Hyper-phosphorylated and misaggregated forms of the microtubule-
associated protein tau (MAPT) are present in various forms of dementia and 
are implicated in disease pathogenesis (Goedert & Spillantini, 2006; Zempel & 
Mandelkow, 2014) (Boeve & Hutton, 2008). In the healthy CNS, tau is 
enriched in WM brain structures and localizes to the axonal projections of 
neurons where it plays a role in microtubule stability (Binder, Frankfurter, & 
Rebhun, 1985; Harada et al., 1994; Zempel & Mandelkow, 2014). In 
dementias such as Alzheimer’s disease (AD) and fronto-temporal dementia 
(FTD), tau is miss-sorted to the soma/dendrites and can aggregate to form 
neurofibriliary tangles and threads. The majority of central axons are located 
in WM and WM structural changes are a common feature of dementia. For 
example, histological, imaging and biomarker studies report WM involvement 
in ~60% of AD cases (Brun & Englund, 1986; de la Monte, 1989; Roher et al., 
2002; Schmahmann, Smith, Eichler, & Filley, 2008; Skillback, Zetterberg, 
Blennow, & Mattsson, 2013; Yin et al., 2015). WM changes in dementia were 
originally considered to be secondary to the pathological progression of gray 
matter elements such as synapses and neuronal somata, but this is 
inconsistent with the timing of events. WM structural changes are some of the 
earliest indications in brain imaging studies of AD (Amlien & Fjell, 2014; Back 
et al., 2011; Brun & Englund, 1986; de la Monte, 1989; Gold, Johnson, 
Powell, & Smith, 2012; Schmahmann et al., 2008), and prodromal forms of 
AD are associated with an elevation in WM injury biomarkers and the 
presence of structural changes indicative of myelin pathology (Amlien & Fjell, 
2014; Skillback et al., 2013; Zetterberg et al., 2015; B. Zhang, Xu, Zhu, & 
Kantarci, 2014). Microstructural WM changes are also apparent years before 
the onset of symptoms in sporadic AD of genetic origin (Bendlin et al., 2010; 
Gold et al., 2012).  
 It is well established that neurological decline in dementia is 
accompanied by the disruption of neural networks, while axonal projections 
maintained by WM underpin all networks connections in the CNS (Brier et al., 
2012; Provenzano et al., 2013; Teipel et al., 2016). Any compromise of WM 
function associated with the early structural changes apparent in dementia will 
therefore have significant consequences for cognitive performance. Despite 
this, the effects of tauopathy induction in WM has not been explored, nor has 
the functional consequences of tauopathy been examined in WM. Recent 
studies highlight the significance of axo-glial signaling in the regulation of 
axonal myelin (Fields, 2015; Spitzer, Volbracht, Lundgaard, & Karadottir, 
2016), a phenomenon that appears to share features with synaptic 
transmission and is likely to have a comparable sensitivity to pathological 
forms of tau (Zhou et al., 2017). We here report the effect of tauopathy 
induction on mature WM structure and function, revealing a novel form of 
early non-inflammatory ad-axonal myelin disruption associated with transient 
loss of action potential conduction. During ongoing tauopathy, myelin 
remodeling subsequently restored excitability and produced a phenotype that 
is consistent with the microstructural changes apparent in prodromal forms of 
human dementia. 
 
Materials and Methods 
 All animal procedures were approved by the Plymouth University 
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Animal Welfare and Ethical Review Board and conformed to UK home office 
regulations. rTg4510 tauP301L mice were generated by crossing B6.Cg-
Tg(Camk2a-tTA)1Mmay/DboJ mice (stock # 007004) with FVB-Tg(tetO-
MAPT*P301L)#Kha/JlwsJ (stock # 015815), both from The Jackson 
laboratory (USA). B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ are on a C57Bl/6J 
background, and were specifically chosen to avoid tet-off DG neurotoxicity 
(Han et al., 2012). Following genotyping, mice carrying a single copy of both 
the CamKIIa and MAPT P301L genes were considered rTg4510(+) and mice 
positive for CamKIIa only were rTg4510(-). Western blot of cell lysates using 
polyclonal anti human tau (Dako, total tau) reported a 2-fold tau increase in 
rTG4510(+) relative to rTG4510(-) at 4 months induction. Pregnant animals 
and offspring ≤P30 (30 post-natal days) were fed doxycycline diet ad lib. To 
induce expression of tauP301L transgene, diet was changed to doxycycline-
free at P30 and maintained thereafter (for both rTg4510(+) and the rTg4510(- 
controls).  

 

Immunostaining. 

 ONs were transferred to 0.1M phosphate buffered saline (PBS) prior to 
fixing in 4% paraformaldehyde (PFA: 30 min), cryoprotected (20-30% sucrose 
for 5 min), transferred to Tissue Tec media (Sigma, UK.) and frozen using 
ethanol and dry ice. 20µm sections were cut by cryostat, submerged in 0.1M 
PBS for 5 min and blocked in 0.1M PBS containing 10% goat serum and 0.5% 
Triton-X for 120 min prior to overnight exposure to primary antibody at 4ºC in 
the same solution. Monoclonal glial fibrillary acidic protein (GFAP) (Molecular 
Probes, 1:200), and Ser202 and Thr205 phosphorylated tau (AT8, Thermo 
Fisher Scientific, UK, 1:1000) were used. Slides were then washed and 
incubated in the appropriate Alexa conjugated secondary antibody (Molecular 
Probes, 1:1000). Images were collected using a TCS SP8 confocal 
microscope (Leica, Germany,60x objective). In all cases, control staining 
where primary antibody was omitted from the protocol were blank. 
 

Behavioral testing 

 Novel object recognition was performed as we have described 
previously (Hall, Yang, Sauchanka, Spillantini, & Anichtchik, 2015) using a Y-
maze. After 30 minutes habituation to the testing room, male rTG4510 mice 
were exposed to two identical objects located in the short arms of Y-maze for 
5 minutes and then returned to their home cages. After one hour, mice were 
individually reintroduced to the Y-maze, where a novel object was introduced 
alongside the familiar one, and the interaction with the objects (sniffing, 
touching, biting) was recorded. A discrimination index (D.I.) was calculated as 
(Tn-Tf)/(Tn+Tf), where Tn was the time spent exploring the novel object and 
Tf was the time spent exploring the familiar object, both within the 5 minutes. 
Groups were balanced by randomization of the position of the novel object 
(left or right side), to avoid side-preferential bias. In addition to the test being 
performed in a Y maze, recognition memory in these mice was confirmed with 
additional experiments using the same protocol but within the more commonly 
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used open square arena, which is more strongly associated with hippocampal 
function. In this version, the square arena measured 400x 400 x 400mm and 
had a camera placed overhead, which recorded movement using NORT-3D 
software (Bioseb, France). Settings in the NORT-3D software were changed 
so that the maximum distance from the object, for the object exploration to be 
detected, was 1mm and the maximum angle between head and object was 
44o. The maximum exploration duration per trial used was 5 minutes. The 
NORT-3D software automatically tracked the movement of each mouse and 
calculated the exploration duration of outlined objects.   

 

Electrophysiology 
 ON were dissected into artificial cerebrospinal fluid (aCSF) (in mM: 
NaCl, 126; KCl, 3; NaH2PO4, 2; MgSO4, 2; CaCl2, 2; NaHCO3, 26; glucose, 
10; pH, 7.45), bubbled with 5% CO2 / 95% O2. Compound action potentials 
(CAPs) were evoked and recorded with glass electrodes and the rectified 
area, CAP amplitude and conduction latency to first peak used to determine 
changes in excitability (see(Alix et al., 2012) for further details). CAPs were 
evoked via square-wave constant current pulses (Iso stim A320, WPI), 
amplified (Cyber Amp 320, Axon Instruments), subtracted from a parallel 
differential electrode, filtered (low pass: 800–10000 Hz), digitized (1401 mini, 
Cambridge Electronic Design) and displayed on a PC running Signal software 
(Cambridge Electronic Design). 
 
Electron microscopy 
 Mice were anaesthetized and transcardially perfused for 5 min with 
cold saline + 5 min 4% PFA in Sorenson’s solution. The brain was then 
removed, hemisected and one hemisphere and the ONs immersion fixed in 
2.5% gluteraldehyde/0.1 M Sorensen buffer overnight. Tissue was post-fixed 
(1% osmium tetroxide) and serially dehydrated prior to epoxy infiltration. 
Ultrathin sections were counterstained with uranyl acetate and lead citrate 
prior to examination using a Joel JEM1400 electron microscope. ON were 
sectioned cross-section (X-S) or long-section (L-S); hippocampi were 
sectioned in the sagittal plan. A minimum of 4 grid-sections in each of a 
minimum of 2 specimens were analyzed blind by hand including the tracing of 
axons, myelin and mitochondria and the measurement of endoplasmic 
reticulum and myelin layer thickness (Image-J, NIH). G-ratio was calculated 
by measuring the envelope area around the outermost layer of myelin and the 
axon, converting these two areas to ideal circles and dividing. Note this will 
include areas of decompaction within the sheath and the periaxonal space. 
Myelin thickness, periodicity and periaxonal space width were all measured 
separately and are presented where relevant. Pre-synaptic vesicle pool 
envelope size was calculated using a region of interest connecting the outer 
edges of the pool and the post-synaptic density (PSD), vesicle density was 
calculated from the number of vesicles within this envelope.  
 
Statistics 
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 Data are mean ± SEM, significance determined by t-test or ANOVA 
with Holm-Šídák post hoc-test as appropriate. All data were collected blind 
and significance tested vs., littermates. * P = 0.05, ** P = 0.01, *** P = 0.001. 
 
Results 
 Hyper-phosphorylated tau was evident from 2 months of age (1 month 
transgene induction) in rTG4510(+) littermates in the dentate gyrus (DG) (Fig 
1 A-D). As in prior studies using the model (Ramsden et al., 2005; Santacruz 
et al., 2005), granule cell loss in this structure was evident at 9 months of 
induction (Fig 1 G, H). No astrocyte reaction was apparent during the first 3 
months of induction assessed via immuno-staining for GFAP (Fig 1 E, F) or 
via ultrastructural assessment of reactive changes in astrocytes identified 
using well established structural criteria (Fig S 1). DG granule neurons receive 
synaptic input from the entorhinal cortex via perforant path (PP) axons which 
terminate in the DG molecular layer (ML). The corresponding presynaptic 
vesicular pool envelope area, pool vesicle density and post-synaptic density 
length were not significantly altered at 1 or 3 months induction (Fig 1 I, J). 
Despite the absence of astrogliosis or changes in synaptic morphology, the 
myelinated axons of the PP that project these presynaptic elements within the 
DG ML exhibited significant myelin thinning at 1 month of transgene induction 
(Fig 1 K, L). G-ratio increased from 0.772 +/- 0.057 to 0.8001 +/-0.060 
(P<0.05) but no other form of myelin pathology was apparent.  
 
Figure 1 
 
 Tauopathy induction can interfere with synaptic transmission via the 
direct action of tau upon vesicle motility and release (Zhou et al., 2017), while 
axonal vesicular release may mediate axo-myelinic signaling (e.g., (Kukley, 
Capetillo-Zarate, & Dietrich, 2007), representing a potential mechanisms 
leading to early myelin changes such as the thinning apparent in Figure 1 in 
the rTG43510(+) mice. Myelinated DG ML PP axons in tau(-) littermates 
contained both clustered and dispersed axoplasmic vesicles of similar size to 
those present in their pre-synaptic endings (20-40 nm), and total axoplasmic 
vesicle density was reduced in these axons at 1 and 3 months of mutant tau 
induction (Fig 2 A-C). Myelin thinning, such as that observed at 1 month of 
mutant tau induction, is a feature of remyelination. Remyelination following 
focal demyelination can be complete within 6 weeks (Woodruff & Franklin, 
1999), suggesting that a cycle of myelin pathology and recovery may largely 
precede the end of the 1 month induction period in the rTG4510 mutant. 
Indeed, myelin damage was widespread in ammonic path (AP) axons in the 
para-ventricular alveus adjacent to the CA2 region of the hippocampus (Fig 2 
D, E), which take a significantly longer route from the entorhinal cortex than 
axons of the PP (Deller, Adelmann, Nitsch, & Frotscher, 1996), and may 
therefore exhibit relatively delayed myelin pathology. Structural changes in 
these axons included ad-axonal myelin disruption while axonal mitochondria 
retained a normal morphology and there was no sign of a glial reaction. The 
myelin pathology found in the alveus at 1 month induction was highly region 
specific with no myelinated axon pathology evident in adjacent white or gray 
matter structures. Neuronal and glial populations in the CA2 stratum oriens 
showed no structural deficits or myelin changes (Fig 2 F), but thick neuronal 
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projections within the neuropil contained large numbers of mitochondria 
exhibiting the mitochondria-on-a-stick (MOAS) morphology, an early sign of 
neuronal stress (L. Zhang et al., 2016) which was rare in the same region of 
mutant tau (-) littermates (Fig 2 F, G red arrows).  
 
Figure 2 
 
 The early features of the functional and structural pathology in WM 
were examined in greater detail in the isolated optic nerve (ON), where 
myelinated axons run in parallel in a neuronal synapse-free WM structure and 
hyperphosphorylated tau was present in axons and absent in astrocytes 
following mutant tau induction (Fig 3 A). ON excitability was compromised 
after 1-2 months of mutant tau induction, showing a 70-80% loss of CAP area 
and amplitude and a significant increase in conduction latency (Fig 3 B, C). 
Excitability recovered over 6-10 months of mutant tau induction although a 
significant loss of CAP area was still evident at 10 months (Fig 3 B, C). This 
transient functional failure was not accompanied by frank ON de-myelination 
assessed via fluoromyelin staining, but the mean myelin sheath width was 
expanded at 1 month of induction producing an increase in myelin staining of 
whole sections (Fig 3 D). The rapid onset and subsequent resolution of the 
structural and functional compromise of DG and ON WM was paralleled by a 
decline in performance of a novel object recognition test (Fig 3 F). This 
neurological deficit may reflect compromised ON function or a combination of 
this and a decline in synaptic processing. Since the CamkII promoter is active 
in in olfactory and auditory sensory neurons in addition to retinal ganglion 
cells (Wang, Zhang, Szabo, & Sun, 2013); (Zou, Greer, & Firestein, 2002), 
dissecting sensory and cognitive effects of WM functional loss is not possible 
in the rTG4510 inducible tauopathy model. However, since early sensory 
decline is a common feature of dementia, reduced performance of a visual-
cognitive test whether from sensory or cognitive failure has clear clinical 
relevance.  
 
Figure 3 
 
 ON axon G-ratio was significantly lower after 1 month of transgene 
induction compared to littermate controls. This was the case whether G-ratio 
was calculated from the idealized axon and myelin diameters derived from 
their area or their perimeter (Fig 4 A-C). A low G-ratio indicates a relative 
expansion of the myelin sheath and is often a result of myelin 
decompaction/splitting. However, myelin thickness, periodicity and the 
number of layers in regions of compact myelin were not affected at any axon 
diameter in rTG4510(+) littermates (Fig 4 D-G). In addition, there was no 
change in the width of the peri-axonal space between the inner myelin layer 
and the internodal axolemma, a parameter that can also effect the G-ratio 
calculation (Fig 4 E-G). Since G-ratio is related to axon diameter, we 
determined the axon diameter spectrum in tau (+) and (-) littermates and 
found no significant differences (Fig 4 H). The G-ratio increase was solely 
accounted for by the presence of focal structural defects in the ad-axonal 
myelinic and axoplasmic peri-axonal membranes, apparent in low (Fig 4 A) 
and high power (Fig 5) ultramicrographs. The features of these focal defects 
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included a degree of axoplasmic infolding associated with an expansion of 
oligodendrocyte inner tongue process with preservation of the peri-axonal 
space and splitting/blebbing of the ad-axonal myelin. Damaged myelin was 
often located within the expanded inner tongue process as where lamina 
bodies that occasionally enclosed large vacuoles apparent in L-S (Fig 5 A-D). 
In X-S, the lamina bodies often had features described in other forms of WM 
injury as dystrophic axons (Fig 5 E), but the intra-axonal nature of these 
structures observed in L-S excluded this possibility.  
 Axoplasmic mitochondria had a normal structure (Fig 5 A), but were 
significantly depleted in tau(+) axons and had a significant increase in area 
(Fig 5 F, G). This effect was not found in the mitochondria of accompanying 
glial cells (Fig 5 G). Mitochondrial compromise may be a common factor in 
many forms of axonal pathology (Coleman, 2005), but the preservation of 
cytoskeletal elements such as microtubules are inconsistent with significant 
axonal damage associated with this change in mitochondrial size (Fig 5). 
Axons with an electron-dense axoplasm were present following 1 month of 
transgene induction, and frequently exhibited myelin structural abnormalities 
similar to those in axons with a normal axoplasmic density (Fig S 2).  
 
Figure 4, 5 
 
 As in DG ML PP myelinated axons, sub-myelinic clusters of 20-40 nm 
axon vesicles are apparent in tau(-) rTG4510 ON axons (Fig 6 A). Vesicle 
clusters often incorporated short cylindrical profiles and some less spherical 
structures of a similar diameter. Similar clusters were apparent in X-S, but are 
hard to distinguish from microtubules which have a similar diameter. 
Axoplasmic vesicle clusters (>5 vesicles) were less focal and contained fewer 
elements in tau(+) littermates at 1 month induction (Fig 6 B), confirmed in a 
nearest-neighbor analysis of vesicle distribution within clusters and in the 
mean cluster size (Fig 6 C, D). Individual and small groups of axoplasmic 
vesicles were also observed in both groups. ON nodes of Ranvier in tau(-) 
littermates exhibited a normal morphology with compact myelin reducing in a 
series of end-loops and a relatively unobstructed nodal axoplasm with a mean 
diameter of 0.79 (+/- 0.11 µm; Fig 6 E, right). In tau(+) ON, nodal axoplasm 
was often cluttered with inclusions and although absolute node diameter was 
not significantly different to that in tau(-) littermates (0.792 +/- 0.11 µ m; Fig 6 
E, left), the ratio of peri-nodal/nodal axon diameter was significantly higher in 
tau(+) ON indicating swelling or expansion of the nodal axolemma into the 
peri-nodal space (Fig 6 F).  
 
Figure 6 
 
 
 Functional recovery from the acute pathology associated with mutant 
tau induction was paralleled by resolution of the focal myelin damage in the 
ON. Axon G-ratio across the diameter spectrum gradually shifted from the low 
values associated with myelin pathology at one month induction to high 
values at 10 months induction, typical of the thin myelin sheaths of 
remyelinated axons (Peters, 2009; Prineas & Connell, 1979) (Fig 7 A, B). The 
proportion of node of Ranvier profiles relative to internodal myelin profiles was 
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significantly elevated at 1, 3 and 10 months of transgene induction (Fig 7 C), 
demonstrating a proliferation of short inter-nodes that is also typical of 
remyelinated axons. Despite this remyelinated axon phenotype, there was no 
significant change in axon density at any period of transgene induction (Fig 6 
D), and demyelinated axon cylinders were absent at all time points. Acute 
mutant tau induction therefore evokes rapid and severe myelin injury followed 
by myelin remodeling and repair with the features of remyelination but without 
myelin loss. After 10 months of transgene induction limited focal dark 
expansions of myelin where apparent (Fig 7 F), and low-power images reveal 
no wide-scale pathology other than myelin thinning (Fig 7 G). There were no 
signs of inflammatory changes in the ON at any time point and glia soma and 
processes exhibited no overt changes following mutant tau induction at any 
time point (Fig 8).  
 
Figure 7, 8 
 
Discussion 
 Constitutive expression of mutant tau is associated with a variety of 
pathological WM phenotypes including focal axon swelling and necrosis 
(Brunden et al., 2010; Gasparini et al., 2011; Leroy et al., 2007; Probst et al., 
2000; Sahara et al., 2014; Spittaels et al., 1999), oligodendrocyte injury (Lin et 
al., 2005; Ludvigson, Luebke, Lewis, & Peters, 2011; Zehr et al., 2004) and 
myelin disruption (Maurin et al., 2014; Sahara et al., 2014); anisotropic 
changes typical of general myelin disruption are apparent at 2.5 months in the 
constitutively active rTg4510 mouse (Sahara et al., 2014). Focal axonal 
swelling, axon necrosis, generalized myelin disruption, glial soma pathology 
and reactive glial and inflammatory changes were not observed at any age in 
either the hippocampus or ON following tauopathy induced at one month, a 
major difference that reflects the significance of maturation on pathogenesis 
as found in many forms of CNS pathology (e.g., (R. Fern, Davis, Waxman, & 
Ransom, 1998)). It is not known if constitutive tauopathy evokes loss of WM 
function, but cognitive decline in these models post-dates some of the most 
significant WM structural changes described in earlier studies and functionally 
significant WM failure is therefore unlikely.  
 In the current analysis, tauopathy induction evoked significant action 
potential conduction loss apparent after 1 month in the ON that was largely 
resolved after 10 months of continued induction. This was accompanied by 
disorganization in the morphological arrangement of the axo-myelinic 
interface and a decline in performance of a functional memory test with no 
structural change in ML DG synapses. Myelinated axons within the 
hippocampus exhibited similar structural changes evolving over a more rapid 
time-course. Saltatory action potential conduction is exquisitely sensitive to 
disruption of the myelin sheath, with even quite subtle myelin changes 
associated with significant loss of excitability (e.g.,	
  (Bagchi et al., 2014)). The 
acute ad-axonal myelin pathology evoked following mutant tau induction was 
clearly sufficient to compromise saltatory conduction in the affected axons, 
and since synaptic structures were not affected this presumably is responsible 
for the initial decline in novel recognition test performance. In both the 
hippocampus and optic nerve, a recovery phase progressed during continued 
tauopathy induction involved myelin remodeling and resulted in a thinner 
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myelin sheath and, in the optic nerve, shorter nodal distance, a phenotype 
typical of axons in the re-myelinated and the aged CNS (Peters, 2009; 
Prineas & Connell, 1979). This recovery phase partially restored novel 
recognition test performance, although a trend to a deficit remained and was 
significant after 10 months of induction.  Myelin changes of this type can 
restore action potential conduction to within normal limits following 
demyelination (Wu, Williams, Delaney, Sherman, & Brophy, 2012), but 
impose an energetic cost that is likely to leave WM vulnerable to further 
functional decline (Smith, 2006; Zambonin et al., 2011).  
  The MAPT mutation present in the rTG4510 model disrupts 
axoplasmic transport (Majid et al., 2014; Santacruz et al., 2005). In normal 
WM, axoplasmic transport traffics organelles, gene products, proteins, 
synaptic vesicle components and trophic support factors from the soma to the 
synapse and interruption of this flow may have consequences for the 
functional viability of axons (Noble, Hanger, Miller, & Lovestone, 2013). For 
example, failure to appropriately deliver and target mitochondria may 
compromise axonal energy production, leading to “virtual anoxia” as 
hypothesized in multiple sclerosis (Trapp & Stys, 2009). A significant 
reduction in the number of mitochondria in the axoplasm following mutant tau 
induction was found in the current study, but this was compensated by an 
axon-specific increase in mitochondrial size. Acute tauopathy therefore 
appears to evoke mitochondrial fusion, a protective response to cellular stress 
described in many cell types (Youle & van der Bliek, 2012), rather than 
producing a loss or disruption of mitochondria leading to failure of energy 
supply. The preservation of microtubules, axolemma, and the para-nodal 
morphological arrangement are also inconsistent with the disruption of ionic 
homeostasis that characterize axon injury produced by energy compromise 
(R. F. Fern, Matute, & Stys, 2014). 
 In addition to potential effects upon mitochondria, arrest of axoplasmic 
transport following tau induction will interrupt the delivery of vesicular 
components to the axon itself and this may be the cause of the observed 
disruption in axoplasmic vesicle distribution. Independently of effects upon 
transport, pathogenic tau will bind directly to vesicles to disrupt mobility and 
fusion (Zhou et al., 2017). Tauopathy induction is therefore likely to 
compromise axo-glial signaling mediated via vesicular release, a 
phenomenon implicated in myelin plasticity (Fields, 2015; Spitzer et al., 2016). 
Myelin exhibits a significant degree of plasticity in the mature CNS (Fields, 
2015; Young et al., 2013; Zatorre, Fields, & Johansen-Berg, 2012). For 
example, myelination increases following learning (Sampaio-Baptista et al., 
2013; Scholz, Klein, Behrens, & Johansen-Berg, 2009), and is reduced in a 
number of psychological conditions and following social isolation (Lener & 
Iosifescu, 2015; Liu et al., 2012; Seitz et al., 2016). Axon stimulation is linked 
to an expansion in myelin sheath thickness (Gibson et al., 2014), while axonal 
action potentials evoke vesicular glutamate release to promote myelination via 
oligodendrocyte glutamate receptors (Wake, Lee, & Fields, 2011). Block of 
vesicular glutamate release replicates the internodal shortening effect of 
visual deprivation in the ON (Etxeberria et al., 2016). The myelin thinning and 
internodal shortening that followed tauopathy induction is therefore consistent 
with the predicted effect of axo-glial vesicular signal interruption. Recent 
findings have shown that oligodendrocyte processes continually intercalate 
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internodal segments into established myelin sheaths (Young et al., 2013), and 
that the newly deposited myelin generated in this fashion forms short 
internodes with thin myelin (Chang, Redmond, & Chan, 2016). Despite 
ongoing and extensive myelin re-modeling, sections of demyelinated axons 
were not found following tauopathy induction in the current work, indicating 
that process intercalation of this type contributes to nodal shortening in the 
functionally restored axons. The initial ad-axonal myelin damage observed in 
ON and AP axons may represent an early phase of myelin remodeling, with 
myelin removal leading to a thinner myelin sheath. Interruption in axo-glial 
glutamate signaling is also likely to negatively affect myelin energy utilization, 
with damaging consequences at latter age points (Saab et al., 2016).  
 Failure of WM function during early tauopathy will disrupt neural circuits 
and compromise neurological function. The current findings suggest this 
phenomenon is likely to make a significant contribution to the earliest clinical 
deficit in dementia. The transient nature of the effects described in the results 
may mitigate their clinical consequences, but the findings show that longer 
WM pathways suffer more extended pathology (ON>AP>PP), and large 
human WM structures are correspondingly long. Furthermore, tauopathy 
induction produces relatively synchronized mutant tau expression within a 
particular tract and therefore the recovery phase described in the results is 
also synchronized. In contrast, clinical dementia is an ongoing disorder, where 
WM failure may contribute to symptomology throughout the lifetime of the 
patient. The post-tauopathy phenotype here described here is novel outside 
the fields of aging and multiple sclerosis and the associated elevation in 
energy demand that it imposes may also contribute to disease progression. 
The structural analysis revealed a correlation between axonal vesicle 
organization and ad-axonal myelin pathology. While potentially causal, these 
effects may stem from a common pathogenic trigger. For example, recent 
evidence shows that early mutant tau induction leads to occlusion of synaptic 
transmission via the direct actions of tau upon vesicle release (Zhou et al., 
2017). Potentially, such early synaptic occlusion may uncouple WM 
connections and evoke the structural and functional decline described in the 
results. However, the most direct conclusion from the current findings is that 
early transient WM injury is responsible for a transient neurological deficit, 
placing the phenomena at the leading edge of dementia progression with 
potential consequences for the subsequent health of gray matter synapses. 
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Figure 1. Early structural changes in the hippocampus following mutant tau 
induction. A-D: Tau hyper-phosphorylation detected with AT8 reactivity in DG 
granule neurons after 1 month (A, B) and 3 months (C, D) of induction. E, F: 
No significant astrocyte reaction apparent with GFAP staining of the same 
region at 3 months induction. G, H: Typical cell loss in the same region at 9 
months induction. Note in A-H, rTG4510(-) images are on the left and data 
from (+) littermates on the right. I: Typical synapses in the DG ML (red arrows 
indicate post-synoptic densities: PSDs). J: Mean DG ML DG PSD length, pre-
synaptic vesicular pool area and pre-synaptic vesicle density (vesicle 
number/pool area) in rTG4510 (-) and (+) littermates at 1 and 3 months 
induction. No significant differences are apparent. K: Examples of myelinated 
axon cross-sections in DG ML showing diameter (calculated from area) and g-
ratio following 1 month induction.  L: G-ratio across the diameter range at 1 
month induction in both sets of littermates; mean difference on the right 
showing significantly higher g-ratio following mutant tau induction. “n” 
numbers refer to the number of individual synapses or axons examined; mean 
data collected from a minimum of 4 grid sections from at least two different 
mice. Scale = 10 µm (A-H), 100 nm (I), 500nm (K).  
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Figure 2. Myelinated axon pathology following mutant tau induction. A-C: 
Axoplasmic vesicle density in myelinated axons at 1 and 3 months induction 
in rTG4510(-) and (+) littermates. Examples of vesicle clusters are shown in 
longitudinally oriented ML DG axons (“Ax”) (A, B), with the boxed areas 
shown at higher gain to the right (vesicle shaded blue). D, E: Typical 
myelinated axon pathology in the CA2 paraventricular alveus in rTG4510(+) 
mice at 1 month induction. Note myelin ad-axonal myelin separation and sub-
myelinic lacunae (red arrows in boxed area to the right) evident in axons 
sectioned in X-S (D) and L-S (E). F: Typical features of CA2 stratum oriens 
adjacent to alveus in the same animal. Note the normal myelinated axon 
morphology and the presence of numerous “MOAS”-mitochondria (red 
arrows). G: Similar region in a rTG4510 (-) littermate. Note the normal 
myelinated axon profiles and the single “MOAS”-mitochondria (red arrow). “n” 
numbers refer to the number of individual axons examined; mean data 
collected from a minimum of 4 grid sections taken from at least three different 
mice.  
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Figure 3. Mutant tau induction evoked rapid transient failure of WM function 
and simultaneous memory decline. A: Tau hyper-phosphorylation detected 
with AT8 reactivity in ON (top left), omission of primary antibody yields no 
staining (top right). Co-staining with GFAP showed tau hyper-phosphorylation 
in neighboring axons (red) but not in the astrocytes (green) (bottom). B: 
Representative CAPs recorded from ONs after various periods of doxycycline 
withdrawal in tau (-) (top) and (+) (bottom) rTG4510 littermates. C: 
Electrophysiological parameters at the four age points, showing significant 
loss of CAP amplitude and area and an increase in conduction latency after 1-
2 months of transgene induction that normalized after 6-10 months induction 
(n=4 nerves in all cases). In this and subsequent figures open bars = 
rTg4510(-) and filled bars = rTg4510(+). D (left): FM-red myelin staining at 1 
and 2 month induction. D (right): The width of FM-Red stained myelin sheaths 
after 1 month induction. Note the significant increase in rTG4510(+) compared 
to littermates, (n = myelin sheaths mesured from a minimum of three 
animals). E: FM-red myelin staining intensity at 1, 2 and 6 months induction 
(n= number of regions). F: Novel recognition test performance (D.I. score) at 
2, 6 and 9-10 months induction in rTG4510(-) and (+) littermates (n=number 
of mice).  
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Figure 4. Myelin structural parameters at 1 month mutant tau induction in ON. 
A, B: X-S ultra-micrographs in rTG4510 (+) (A) and rTG4510 (-) (B) ON. 
Examples of ad-axonal myelin pathology are indicated by arrows. C: G-ratio 
across the axon diameter spectrum following transgene induction measured 
using ideal diameter calculated from axon area. The mean g-ratio calculated 
in this way or from the measured circumference is shown to the right. D, E: 
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The width of compact myelin and the periaxonal space was not affected by 
transgene induction at any axon diameter. F: The relationship between the 
number of myelin layers and axon diameter was not affected by tau induction. 
G: Mean myelin periodicity and periaxonal space width were not significantly 
affected by transgene induction. H: Axon diameter distribution (left) and mean 
axon diameter (right) were also unaffected. Open bars = rTg4510(-) and filled 
bars = rTg4510(+), n = number of axons measured (C, E, G) or axons 
measured/sections (H); data collected from a minimum of three mice per 
mean. 
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Figure 5. Structural defects in the ad-axonal face of the myelin sheath 
following mutant tau induction in the ON. A-E:  L-S ultra-micrographs showing 
the range of severity of focal defects in tau(+) rTG4510 RON at 1 month 
induction. Note the infolding of the axolemma (arrow heads), and the 
associated focal myelin decompaction and blebbing (e.g., asterisks). 
Mitochondria (arrow) have a normal appearance. Myelin occasionally formed 
axoplasmic lamina bodies containing large vacuoles (D) which in X-S have 
the appearance of dystrophic axons (E). E: The density of large lamina bodies 
in X-S is significantly higher in rTG4510 (+) littermates. F: The proportion of 
axons in X-S containing mitochondrial profiles. G: Mitochondrial volume is 
significantly larger following transgene induction in axons but not glia. Open 
bars = rTg4510(-) and filled bars = rTg4510(+), n = number of axons or glial 
cells; data collected from a minimum of three mice per mean. 
  



	
   26	
  

 

 
 
Figure 6. Axoplasmic vesicle distribution is altered at 1 month of mutant tau 
induction in the ON. A: Sub-myelinic clusters of 20-40 nm axon vesicles are 
apparent in tau (-) rTG4510 RON axons, often incorporating occasional 
cylindrical profiles (boxed area shown at higher gain). B: Vesicle clusters were 
less focal and contained fewer elements in tau (+) littermates. Several 
clusters indicated by the arrows with the boxed example shown at higher gain. 
C, D: Nearest-neighbor analysis of axon vesicles and mean cluster size, 
confirming this observation. E: Typical nodes of Ranvier showing enlarged 
nodal diameter in tau(+) littermates (right) compared to (-) littermates (left). 
(paranodal end-loop regions indicated by “*”). Lower power images are shown 
at the top to demonstrate the compact myelin in internodal regions either side 
of the myelin-free nodes (e.g., short arrows). F: Analysis of node width at the 
widest point relative to the peri-nodal axon width, and nodal length. Open bars 
= rTg4510(-) and filled bars = rTg4510(+), bars = 1 µm (E), n = number of 
vesicle or nodes; data collected from a minimum of three mice per mean. 
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Figure 7. Myelin remodeling without demyelination in the ON. A: G-ratio at 4 
time periods of mutant tau induction (filled symbols) compared to tau(-) 
littermates (open symbols). The linear regression lines for tau(+) littermates 
are indicated by the arrows. Note that myelin expansion is gradually replaced 
by myelin thinning across the diameter range. B: Mean G-ratio at older time 
points. C: The proportion of node of Ranvier profiles relative to internodal 
myelin profiles in X-S is significantly elevated across the age spectrum. D: 
Mean myelinated axon density is not significantly different in any age-group. 
E, F: Structural characteristics of tau(-) (E) and tau(+) oligodendrocytes at 10 
months transgene induction. Note the homogeneous chromatin in the nucleus 
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(“Nuc”), the expanded endoplasmic reticulum (“ER) in “F”, the normal Golgi 
apparatus (“GA”) and Node of Ranvier (“Node”) in both cases. Focal regions 
of myelin expansion (“My Ex”) are apparent in “F”. Boxed areas shown at 
higher magnification below. G: Low-power images of tau(+)axons and glia at 
10 months induction (tau(-) shown in the insert for comparison). Open bars = 
rTg4510(-) and filled bars = rTg4510(+), n = number of axons; data collected 
from a minimum of three mice per mean.. 
.  
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Figure 8. Changes to ON glial cells are limited. A: A chain of typical 
oligodendrocyte somata running parallel to axons following 1 month transgene 
induction shown in L-S. B: The nucleus (“Nuc”), endoplasmic reticulum (“ER”) 
and mitochondria (“Mt”) exhibit normal structure (X-S, 1 month induction). C: 
Astrocyte showing no features of reactive changes (L-S, 1 month). D: Rough 
ER (“RER”) diameter is not significantly different in unidentified glia, 
astrocytes or oligodendrocytes following 3 months induction. Mitochondrial 
volume fraction shows a small elevation in oligodendrocytes (n= cell number). 
E, F: Typical oligodendrocyte (E) and astrocyte (F) in X-S at 6 months 
induction, “*” = glial filaments. Scale = 2 µm in all cases. Open bars = 
rTg4510(-) and filled bars = rTg4510(+), n = number of  axons; data collected 
from a minimum of three mice per mean. 
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S 
Figure S 1. No structural changes in dentate gyrus astrocytes following 
mutant tau induction. A, B: ML astrocytes after 1 month (A) and 3 months (B) 
mutant tau induction. Lower power ultramicrographs are shown on the top 
with the major process shown at higher gain below (“Nu” indicates the nuclei). 
Note the normal appearance of the mitochondria (“Mt”) and the presence of 
glial filaments (Gf) which positively identify the cells as astrocytes. C: All 
astrocytes identified on structural grounds within a single plane section were 
counted in 3 tau(-) and 3 tau(+) mice showing no significant difference in the 
number of astrocytes following mutant tau induction. There was no significant 
difference in the area of these cells, their mitochondrial volume fraction or 
their endoplasmic reticulum (ER) diameter; n = number of astrocytes/ number 
of mice (same for all histograms). 
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Figure S 2. Dark axons. A: Low power L-S ultra-micrograph showing 
numerous ON myelinated axons (left) and the pixel intensity profiles of the 
component myelin, axoplasm and the whole image (right). Note that low 
intensity indicates darker shades (i.e., to the left) and that the whole profile 
incorporates clear myelin and axoplasm peaks. B: Similar analysis taken from 
tau(+) littermate, showing the presence of dark axons (left: asterisks). Note 
the presence of a darker component to the axoplasm and whole section 
intensity profiles (arrow head) correlating with dark axoplasm. C: Higher gain 
image showing a dark axon with a normal mitochondria (arrow head) and sub-
myelinic blebbing (boxed area shown at higher gain to the right). D: Pixel 
intensity was uniform in axons of different diameters in tau(-) littermates (top), 
but was significantly darker in particular within larger axons in tau(+) 
littermates (bottom, control data shown gray for comparison). E: Axon 
intensity distribution, showing a population of dark axons in tau (+) littermates 
(n=600 axons) (top) compared to tau (-) (n = 450 axons)(bottom).  
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