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Abstract 

Erosion of hard-rock coastal cliffs is understood to be caused by a combination of both 

marine and sub-aerial processes. Beach morphology, tidal elevation and significant 

wave heights, especially under extreme storm conditions, can lead to variability in 

wave energy flux to the cliff-toe. Wave and water level measurements in the nearshore 

under energetic conditions are difficult to obtain and in-situ observations are rare. Here 

we use monthly cliff-face volume changes detected using terrestrial laser scanning 

alongside beach morphological changes and modelled nearshore hydrodynamics to 

examine how exposed cliffs respond to changes in extreme wave conditions and 

beach morphology. The measurements cover the North Atlantic storms of 2013-2014 

and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with 

contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at 

Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the 

elevation of the beach-cliff junction were found to influence the frequency of cliff 

inundation and the power of wave-cliff impacts. Numerical modelling (XBeach-G) 

showed that under highly energetic wave conditions, i.e. those that occurred in the 

North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m 

(reflective site), the combination of greater wave height and steeper beach at the 

reflective site led to amplified wave run-up, subjecting these cliffs to waves over 4 

times as powerful as those impacting the cliffs at the dissipative site (39 kWm-1 

compared with 9 kWm-1). This study highlighted the sensitivity of cliff erosion to 

extreme wave conditions, where the majority (over 90% of the annual value) of cliff-

face erosion ensued during the winter. The significance of these short-term erosion 

rates in the context of long-term retreat illustrates the importance of incorporating 

short-term beach and wave dynamics into geomorphological studies of coastal cliff 

change. 
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Introduction 

Coastal cliff erosion is understood to be due to a complex combination of sub-aerial 

and marine processes weakening the structural integrity of the cliffs, leading to gradual 

erosion and episodic mass failure (Pethick, 1984; Trenhaile, 1987; Sunamura, 1992). 

The variety of cliff profiles and cliff types around the world indicates that there are a 

wide range of processes involved in shaping cliffed coasts (Emery and Kuhn, 1982). 

These processes may include erosion due to wave-attack via abrasion, attrition, 

quarrying and hydraulic action, or physical and chemical weathering of cliff material as 

a result of rainfall, changes in temperature, biochemical and biophysical erosion 

(Trenhaile, 1987, 2005, 2016; Sunamura, 1992; Masselink and Hughes, 2003). The 

mechanisms of cliff failure and conditions leading to the erosion of cliffs have therefore 

been the topic of investigation for many decades.  

Many cliff erosion and rocky coast geomorphological studies have considered the role 

of beach morphology (width, height and volume) in modifying the dissipation of wave 

energy and the extent of cliff-toe/shore platform protection from erosion (Trenhaile, 

1987, 2016; Sunamura, 1992). Modelling the erosion of cohesive clay cliffs related to 

shore platform development, Trenhaile (2005, 2009) has shown that nearshore shore 

platform profile gradient and beach sediment thickness controlled the extent of cliff 

erosion due to the proximity of breaking waves to the cliff face, where waves break 

close to the cliff on a steeply sloping profiles and farther offshore on wider, more gently 

sloping profiles. The presence of a shore platform beneath a thin veneer of sand is 

thought to potentially provide protection to cliffs (Trenhaile, 2016). Other studies have 

also found sediment budget to be an important factor in terms of cliff erosion, due to 

longshore sediment transport contributing to beach width fronting the cliffs (Sunamura, 

1976, 1992; Dickson et al., 2007; Carpenter et al., 2014; Trenhaile 2016) and also 
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beach presence/absence itself and the thickness of the beach playing a role in the 

abrasion/protection of cliffed coasts (Limber and Murray, 2011; Trenhaile, 2016). In 

terms of cliff response to sea level rise, it is typically understood that a decrease in 

beach volume or elevation fronting a cliff will lead to an increase in cliff erosion 

(Walkden and Hall, 2005, 2011; Young and Ashford, 2006; Lee, 2008; Walkden and 

Dickson 2008). 

In order to understand the relationship between the assailing forces and cliff failure 

mechanisms, an accurate quantification is also needed of nearshore wave energy and 

water levels, as well as the morphology of the beach and meteorological conditions 

(Ruggerio et al., 2001, 2004; Trenhaile, 2005, 2016). Studies have previously related 

the interplay between wave run-up, offshore wave climate and beach levels using 

models (Shih et al., 1994; Ruggerio et al., 1996; Trenhaile 2005; Lee, 2008; Walkden 

and Dickson, 2008; Young et al., 2013, 2014); yet, few studies use in-situ observations, 

and those that do tend to use proxies or assumptions for beach morphological, wave 

and water level parameters (Trenhaile, 2009; Lim et al., 2011; Norman, 2012). In terms 

of field measurements, studies using airborne LiDAR data found that soft-rock sea-

cliff erosion along the California coast was a strongly related to the effective beach 

width, elevation of the beach at the cliff-toe and horizontal run-up excursion (Ruggerio 

et al., 2001; Sallenger et al., 2002).  

In-situ measurements of seismically detected cliff-top ground motions have proved to 

be a viable proxy for cliff-base wave conditions (Norman et al., 2013; Young et al., 

2011, 2012, 2013, 2016). An experiment at the same site used in this study 

(Porthleven; Earlie et al., 2015) coupled wave-cliff impacts from a camera and wave 

energy from an offshore wave buoy with seismically detected cliff top-ground motions. 

Cliff-base sand and water levels along the southern California coastline, with 

concurrent monitoring of cliff-top ground motion (Young et al., 2016) found similar 

results, where cliff-top ground response was controlled by tide, incident waves and, in 

addition, beach sand levels. The importance of water levels on cliff erosion was also 

highlighted by Vann Jones et al. (2015), who found that rock falls from the entire cliff-

face, are a result of marine processes and result in failure extending the full height of 

the cliff, not just the cliff-toe. In addition to this, cliff-toe inundation duration was not 

found to be responsible for increased rock fall activity; however, the wave energy 
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expended on the cliffs during these inundation periods was not considered in Vann 

Jones’ study, and the relationship between the failure and forcing proved to be more 

complex. 

Terrestrial Laser Scanning (TLS) is a common method for investigating short-term 

(monthly) cliff dynamics due to its high-resolution data capture and suitability for rapid 

deployment in the field. Over the last decade, TLS has been adopted for monitoring 

both hard and soft-rock cliffs to obtain an accurate three-dimensional surface of a cliff-

face (Rosser et al., 2005, 2007; Poulton et al., 2006; Abellan et al., 2011; Dewez et 

al., 2013; Rohmer and Dewez, 2013). These surveys may provide insight into where 

and when failures are occurring (Rosser et al., 2005, 2007; Norman, 2012; Kuhn and 

Prufer, 2014; Travelletti et al., 2014), and frequent surveys provide a chronology of 

material failure relative to the forcing conditions (Lim et al., 2011). Although TLS is a 

commonly adopted method of measuring coastal morphological change (Rosser et al., 

2005; 2007; Abellan et al., 2010; Lague et al., 2013; Travelletti et al., 2014; Vann 

Jones et al., 2015), few studies compare cliff erosion volumes and locations directly 

with the nearshore hydrodynamics and beach morphology (Earlie, 2015).   

This relationship between the beach and the cliffs has, in the context of climate change 

and the impacts of sea level rise, been evaluated and modelled on long-term time 

scales (O(1–2) yrs.) and over large stretches of coast (O(1–2) km) (Walkden and Hall, 

2005, 2011; Young and Ashford, 2006). With the exception of Young et al. (2016), field 

measurements of beach morphological changes on the short-term time scale (days–

months) are not typically considered in cliff erosion studies. The short-term variability 

of beach elevation in relation to the cliff-toe and the variety of protection afforded by 

different beach types (i.e., reflective versus dissipative) is neither compared nor 

accounted for in many cliff erosion models, and has only recently been investigated in 

the field (Earlie, 2015). Likewise, studies capturing energetic storm conditions (Hs > 5 

m) are rare and such extreme, higher energy scenarios have not yet been incorporated 

into cliff erosion models.   

To consider the more imminent risks to infrastructure on particularly vulnerable and 

eroding stretches of coastline, with dynamics on a much smaller time and spatial scale 

(months to years; tens of metres), an in-situ method that is able to quantify change at 
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a higher temporal (monthly or weekly) and spatial scale (centimetres to metres) is 

required. Annual monitoring of cliff morphology is not suitable for investigating intra-

annual dynamics related to, for example, wave height and rainfall variability. With the 

potential for increased storminess and sea level rise in the future (Cowell et al., 2006; 

Barros et al., 2014; Haigh et al., 2016), this begs the question of ‘how will the cliffs 

stand up to more extreme and frequent assailing forces?’ 

This study aims to help fill the gaps that currently exist in our understanding of the 

processes leading to cliff erosion. Here we consider the processes that govern short-

term cliff dynamics more specifically, i.e., waves, rainfall, water levels, beach 

morphology, as it is the integration of these short-term cliff dynamics that determine 

long-term cliff recession. Using in-situ monitoring at a high spatial and temporal 

resolution, complemented by numerical modelling, we will examine the role of beach 

morphology in controlling delivery of wave energy, and in particular extreme wave 

energy, to the cliffs.  

 

Study area 

Two vulnerable coastal cliff sites on the south-west peninsula of the UK, one facing 

west (Godrevy, north Cornwall) and the other facing south-west (Porthleven, south 

Cornwall) (Fig. 1), were selected for this study. Both sites experience a highly 

energetic wave climate, are exposed to both locally-generated wind waves and 

Atlantic swell from the west (Scott et al., 2011), and are subjected to a macro-tidal 

regime. The two sites have similar geology (lithology, rock mass characteristics) and 

morphology (cliff height), but differ in their coastal setting (shoreline orientation, wave 

exposure) and the morphology of the beach in front of the cliff (beach gradient, 

bathymetry, elevation of beach-cliff intersection). The key characteristics of both sites 

are summarised in Table 1. Along with many other cliff locations along the south-west 

coast of England, the two sites experience current management issues due to on-

going cliff instability impacting on infrastructure, thereby posing risks to beach and 

coast path users. 
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Figure 1. Location of study sites, wave buoys and tide gauges. The line separating the light and dark 
grey zones represents the 50-m Chart Datum (CD) contour line. 

Godrevy 

Godrevy is situated on the south-west peninsula along the west-facing coast of 

Cornwall. Exposed to an energetic wave climate, the cliffs are subject to both north-

westerly and westerly Atlantic swell. The tidal regime at Godrevy is macro-tidal with a 

mean spring range of 5.9 m. The cliffs are fronted by a gently sloping beach (tanβ = 

0.02) composed of well-sorted medium sand (D50 = 0.25–0.5 mm) with a very narrow 

(< 10 m wide), slightly steeper upper beach composed of mixed sand and gravel/ 

pebbles (D50 = 16–30 mm) (Scott, 2012). The coastal slope offshore of Godrevy is 

very wide and flat, with the 10-m contour about 1.5 km offshore. The seabed then 

slopes gently out to the 20-m contour which lies at about 2.5 km offshore to the WNW 

(Lee, 2002; CCO, 2015). 

The cliffs rise 8–15 m above the beach and the beach elevation at the cliff-toe varies 

seasonally between 2.5 and 4.7 m (in m Ordnance Datum Newlyn, ODN, which is c. 

0.2 m above mean sea level, MSL) (Table 1). The geological units at Godrevy consist 

of an underlying, more resistant basal layer of weakly metamorphosed sandstones 
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and mudstones overlain by superficial head deposits, varying in thickness along the 

cliffs. The boundary between the two major units rises from beach level at the northern 

end of the embayment to an elevation of about 15 m at the southern end (Fig. 2). The 

basal layer (Porthtowan formation) comprises weakly metamorphosed Upper 

Devonian sandstones and mudstones (Shail et al., 1998). A unit of superficial head 

deposit overlying the basal layer is composed of a poorly sorted mixture of variably 

sized fragments in a silty cohesive matrix overlain by a layer of wind-blown sand (Shail 

and Coggan, 2010).  

 
Figure 2: (a) Sketch and photograph of a profile through a section of cliff at Godrevy summarising 
the succession of basal layer and superficial units; and (b) 300-m wide panoramic perspective of the 
cliff frontage and beach. 
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Porthleven 

The study site at Porthleven (Fig. 1) is situated along a 300-m stretch of uninhabited 

cliffed coastline just southeast of Porthleven along the south-facing coast of Cornwall, 

exposed to south-westerly Atlantic swell. The tidal regime is macro-tidal with a mean 

spring range of 4.7 m. The cliffs rise 8–12 m above a steep (tanβ = 0.17), fine-gravel 

(D50 = 2–8 mm) beach (Poate et al., 2009), and the beach elevation at the cliff-toe 

varies seasonally between 4.4 m ODN after storms in the winter and 7 m after 

prolonged calm conditions during summer. The coastal slope at Porthleven is slightly 

steeper than at Godrevy, with the 10-m contour about 600 m offshore and the 20-m 

contour about 1.5 km offshore (Lee, 2002; CCO, 2015) (Table 1).  

 
Figure 3: (a) Sketch and photograph of a profile through a section of cliff at Porthleven summarising 
the stratigraphic sequence of basal layer and superficial units; and (b) 300-m wide panoramic 
perspective of the cliff frontage and the beach. 

The cliffs are mainly formed of Late Devonian Mylor slate lithofacies, comprising pale 

grey-green mudstone with interbedded-siltstone and fine-grained sandstone 

(Leveridge and Shail, 2011) (Fig. 3). These cliffs are bounded at either end of the bay 

by Porthscatho lithofacies of alternating beds of green-grey sandstone and dark-grey 

mudstone (Leveridge and Shail, 2011). Much like the cliffs at Godrevy, this basal layer 
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also displays evidence of complex deformation during the late Carboniferous tectonic 

evolution of the south-west of the UK (Alexander and Shail, 1996; Shail and Coggan, 

2010). The cliffs are cut by a variably reactivated network of late Carboniferous – 

Triassic fractures, joints and faults. Along with the relative resistance of the rocks, it is 

the orientation, spacing, roughness and frequency of these features that ultimately 

dictate the likelihood and mode of failure (Wyllie and Mah, 2004). The Mylor slates are 

overlain by a 2–4 m thick Quaternary head deposit of poorly-consolidated clay, silt, 

sand and gravel capped with a thin layer of ‘made ground’ (0.5–1.5 m); a remnant of 

mining activity in the late 19th century (Bird, 1998).  

Table 1 Summary of physical characteristics at each site. Cliff heights and beach-cliff junction 
elevation (b-c junction) and are shown in meters above Ordnance Datum Newlyn (m ODN). 
Tidal elevations are presented in metres relative to ODN and Chart Datum (m CD). Seasonal 
means for 2013–2014 for Tp and Hs are taken from the Channel Coastal Observatory directional 
wave rider wave buoy (CCO, 2015). 

Site characteristic Godrevy Porthleven 

Cliff height (above beach) 8–15 m 8–12 m 
Length of cliff ~300 m ~300 m 
Lithological units Devonian sandstones and 

mudstones (2–15 m) overlain 
by Quaternary head deposit 

(~2 m) 

Mylor slates (5–10 m) overlain 
by Quaternary head deposit 

(2–4 m) 

b-c junction (annual range) 2.5–4.7 m 4.4–7 m 
Beach slope (tan β) 0.02 (s.d. 0.005) 0.17 (s.d. 0.03) 
Offshore slope 0.002–0.01 0.008–0.01 
Mean Spring Tidal range 5.9 m 4.7 m 
MHWS 3.2 m (6.6 m CD) 2.5 m (5.5 m CD) 
Winter Hs (Oct - Mar) 1.7 m (mean) 5.6 m (max) 1.4 m (mean) 10.3 m (max) 
Summer Hs (Apr - Sep) 0.8 m (mean) 3.6 m (max) 0.7 m (mean) 3.8 m (max) 
Winter Tp (Oct - Mar) 12 s (mean) 22 s (max) 9 s (mean) 28 s (max) 
Summer Tp (Apr - Sep) 9 s (mean) 20 s (max) 7 s (mean) 22 s (max) 

 

Method 

Site set-up 

The same experimental set-up was adopted at both locations for a survey period of 

one year, from 10 July 2013 to 17 July 2014. Inshore waves and nearshore water 

levels were measured using directional wave buoys, tide gauges and local pressure 

transducers. The cliffs and beaches were surveyed monthly during spring low tide and 

in response to extreme storms, when conditions permitted.  
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Wave climate and water levels 

Inshore wave climate 

Inshore wave statistics (significant wave height Hs, peak wave period Tp and wave 

direction θ were obtained from directional Waverider wave buoys. For Porthleven, the 

wave buoy located directly offshore in 14 m water depth was used; for Godrevy, the 

wave buoy at Perranporth located 20 km to the north of Godrevy in 15 m water depth 

was used (Fig. 1; Table 1). During the extreme energetic wave conditions over 

February 2014, both wave buoys malfunctioned, causing a 34-day data gap between 

8 February and 12 March at Godrevy, and a 28-day gap between 4 February and 5 

March at Porthleven. 

To address the gap in the Porthleven wave record, the wave buoy located at Looe Bay 

70 km to the east (Fig. 1) was used. Over a three-year (2011–2014) period, Hs at Looe 

Bay (under southerly and south-westerly swell directions; 180°–240°) was 5% smaller 

than that at Porthleven. During the 28-day period of missing data at Porthleven, 87% 

of the waves originated from this quadrant with a mean θ of 200°. The significant wave 

heights for Looe Bay were increased by 5% for this 28-day period and were used to 

represent the nearshore wave climate at Porthleven over the period of missing data. 

There is no wave buoy in the vicinity of Godrevy and therefore the Perranporth wave 

buoy was used instead (Fig. 1). However, the Perranporth wave climate is not directly 

representative for Godrevy, and there is also a 34-day gap in the wave data 

corresponding to the most energetic period. To overcome both shortcomings, 

modelled wave data from a regional SWAN model developed by Austin (2012), which 

was operational during 2011 and 2012, was used. The model is forced by initial wind 

and wave output from the NOAA Wave Watch III Global wave model, providing half-

hourly statistics of Hs and Tp from a 2D spectra at a number of output nodes around 

the coastline, including Perranporth and Gwithian (2 km from Godrevy). The measured 

and modelled wave data sets were compared for the 2011–2012 period to assess the 

suitability of using the Perranporth wave buoy (and SWAN data) to represent the 

inshore wave conditions at Godrevy. For this period, significant wave heights from 

westerly and west-north-westerly swell directions (270° and 325°) (the dominant swell 



11 

 

direction: 98% of the time at Gwithian) were found to be 26% bigger at Perranporth 

than those at Gwithian (R2 = 0.93). The combined Perranporth wave buoy and SWAN 

data wave record (filling the 34-day data gap) were therefore reduced by 26% to 

represent nearshore wave conditions at Godrevy. 

The inshore data for both sites (combination of Porthleven and (adjusted) Looe Bay 

wave buoy data for Porthleven; and combination of Perranporth and SWAN modelled 

Perranporth data for Godrevy (both adjusted)) were de-shoaled to 25 m depth 

according to linear wave theory (Komar, 1998) to obtain representative offshore wave 

conditions.  

Tidal levels 

Measured water levels (including surge) were obtained from the nearest National Tidal 

and Sea Level Facility (NTSLF, 2014) tide gauge: the Newlyn tide gauge (20 km 

distant) for Porthleven and the Ilfracombe tide gauge (130 km distant) for Godrevy 

(NTSLF, 2014) (Fig. 1). Nearshore pressure sensors deployed at both sites only 

captured mid to high tide water levels and were either dry or exposed to bores and 

broken waves in the swash zone at lower tidal elevations. To obtain a full tidal record 

without the effects of breaking waves, bores and wave set-up, mean half-hourly water 

levels for a 2-hr period either side of high tide from the locally-deployed pressure 

sensors were compared with data from the NTSLF tide gauges (NTSLF, 2014) and 

the tide gauge data were adjusted accordingly to derive a full local tidal record at each 

site.  

Beach morphology 

Monthly beach surveys at both sites were conducted using a real time kinematic global 

positioning system (RTK dGPS). At both sites, a 300-m along-shore section of beach 

was surveyed from the toe of the cliff to the shoreline using cross-shore transects at 

50-m spacing. The cross-shore profiles were used to determine the average slope of 

the beach and the elevations of the beach-cliff intersection for each month.  
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Cliff volume loss 

Point cloud data acquisition 

Both sites were surveyed using a Leica ScanStation 2 Terrestrial Laser Scanner (TLS) 

(Leica, 2015) for the first 5 months of the survey period (July 2013–November 2013) 

and a Leica P20 for the following 8 months (December 2013–July 2014). Both are 

time-of-flight laser scanners and provide high-resolution long-range point cloud data. 

A similar set-up was adopted for all monthly scans at both sites and point clouds of 

the cliff-face were obtained at 2-cm resolution at a 40-m range. To acquire optimum 

coverage of the cliff-face and minimise occlusion effects due to shadowing/ blinding of 

complex surfaces, the scanner was repositioned 4–5 times along the 300-m cliff 

frontage.  

Point cloud data processing  

The geo-referenced registered point clouds were removed of any noise (i.e., birds, 

people, dogs and cliff-top vegetation) manually and exported as .xyz files for further 

analysis. The first step in performing point cloud difference analysis is typically to 

create a mesh of the point cloud surface (Rosser et al., 2005; Dewez et al., 2013). In 

complex surfaces such as rocky cliff-faces, meshing becomes inaccurate due to the 

errors involved in interpolating across regions that may show occlusion or the 

complications associated with overhanging parts of the cliff (Lague et al., 2013). In 

addition to this, unless the different surveys are carried out from the exact same 

location and elevation, there is often overestimation of volume change associated with 

mesh comparisons. This is due to the surface roughness creating differences in 

occlusion patterns as a result of varying scanner position during different survey 

periods.  

Point cloud data comparison: The M3C2 algorithm  

Multiscale Model to Model Cloud Comparison (M3C2) is an algorithm developed to 

overcome issues associated with comparing complex surfaces and compute accurate 

point-to-point cloud distances (Lague et al., 2013). It uses surface normal estimations 

along the 3D surface, with orientations varying according to the surface roughness, 
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and computes the distances between two point clouds along these normal directions. 

Eliminating the need for surface meshing, the software reduces computation time and 

retains the high-resolution detail of the cliff-face. Each point cloud distance (between 

the averages of a number of points within a given area) is provided along with a 

confidence interval, which is related to the surface roughness and the point cloud 

registration error (Lague et al., 2013). Surface volume change can then be integrated 

over the area per point-to-point distance calculation. A more detailed description of the 

algorithm and a discussion on the validity of the method compared with meshing 

techniques is provided by Brodhu and Lague (2012) and Lague et al. (2013). 

Directly comparing point-to-point cloud, as opposed to meshing across occluded 

regions, makes volume calculations more robust as the algorithm is only able to 

compare two surfaces where data are present. Regions of the cliff-face exhibiting 

apparent accretion as a result of vegetation growth at the top of the cliff-face were 

excluded from erosion volumes and only negative changes were considered. 

Accumulation of talus at the toe of the cliff is also excluded by only considering 

negative changes, therefore only quantifying losses to the cliff system.  

Meteorological conditions  

Meteorological controls on cliff erosion are typically a function of ground temperatures 

where repetitive freezing/warming can lead to instability of the soil (Durperret et al., 

2005) and precipitation results in an increase in pore water pressure (Sunamura, 

1992). In south-west England, temperatures very rarely fall below freezing at the 

coastline (< 5 days a year) (Met Office, 2012); therefore, the variability of air/ ground 

temperature is not considered here. Cornwall is, however, one of the wettest regions 

in the country with rainfall totals of 1000–1500 mm yr-1 (Met Office, 2012). Monthly 

rainfall totals were obtained from nearby weather stations; Camborne (7 km from 

Godrevy) and Culdrose (3 km from Porthleven) as a proxy for ground saturation (and 

hence cliff instability) due to rainfall.  

Numerical modelling 

To complement and help interpret the field observations, the numerical model XBeach-

G (McCall et al., 2014) was used to quantify the delivery of wave energy to the base 
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of the cliff under different wave and water level conditions and for different beach levels. 

XBeach-G is a 1DH (vertically-averaged) processed-based numerical model for 

predicting storm impacts to gravel beaches, but can also be used for sandy beaches 

provided the appropriate sediment properties are defined. The model is (wave) phase-

resolving and calculates the nearshore and swash hydrodynamics across the beach 

profile, including interactions with the groundwater table, and, if chosen, also 

computes sediment transport and morphological change.  

XBeach-G is applied to both studied beaches (Godrevy and Porthleven) and is forced 

with a selection of wave and tide conditions to specifically quantify wave energy at the 

beach-cliff junction for a 1-hour period. The characteristic profile for each beach was 

taken from the mean profile over the year, measured using dGPS. The profiles were 

extended offshore to a depth of 25 m (2.5 km from the shoreline at Godrevy and 1.5 

km from the shoreline at Porthleven (UKHO, 2016)). Details of waves and water levels 

used in the model are presented later in the paper, based on the waves and water 

levels measured during the monitoring period.  

In addition to the hydrodynamic forcing and the beach gradient (tan = 0.02 for 

Godrevy; tan = 0.17 for Porthleven), which collectively control the wave run-up (Shih 

et al., 1994; Stockdon et al., 2006), another critical factor is the elevation of the beach-

cliff junction (hereafter termed b-c junction), and this factor will be varied between runs 

as well. For both sites, this elevation is always higher than the mean sea level; in other 

words, the base of the cliff is either dry (on lower tides) or subjected to swash action 

(on higher tides). The purpose of the modelling is to quantify the wave energy arriving 

at the base of the cliff using the modelled time series of water surface elevation ηt and 

cross-shore current velocity ut at the b-c junction.  

Two parameterisations have been used to quantify the delivery of wave energy to the 

cliff for the different sites and under different forcing scenarios, with both 

parameterisations yielding the average energy flux (in kWatts m-1 or kJoules s-1 m-1) 

that reaches the beach-cliff junction during the 1-hr model run. The nearshore wave 

energy flux (wave power, P) is typically calculated using linear wave theory as the 

product of wave energy density E (both potential and kinetic energy contributions) and 

the celerity of the wave groups Cn. Although this approach is not normally used in the 
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swash zone it serves here to give a first approximation in this case. The modelled run 

of ηt at the beach-cliff interface and the shallow water approximation of the wave group 

speed is used to compute: 

𝑃𝑙𝑖𝑛 = 𝐸𝐶𝑛 =
1

16
ρg𝐻𝑠

2√𝑔ℎ 
Equation1 

where ρ is density of seawater, g is gravitational acceleration, Hs is significant wave 

height estimated from 4 times the standard deviation of ηt and h is the mean of ηt. In 

the swash zone, the beach is intermittently wet and dry. The variables Hs and h are 

only calculated for when ηt > 0; therefore, the value for Plin represents the average 

potential wave power for when the beach is inundated (in Wm-1 or Js-1m-1). The second 

approximation of the wave energy arriving at the cliff base is based on the kinetic 

energy Pkin associated with the swash velocity time series ut. Using only the onshore 

velocity component, the (onshore-directed) kinetic energy arriving at the base of the 

cliff can be computed by averaging over the full 1-hour model run to obtain Pkin  

𝑃𝑘𝑖𝑛 =
1

2
𝜌𝑢𝑡

3𝜂𝑡 
Equation 2 

 

Results  

Wave climate and water levels 

The wave climate at both sites was highly variable over the year, with inshore 

significant wave heights ranging from 0.5 m to > 5 m and peak wave periods of 5–22 

s along both the north and the south coast. Spring/summer/autumn wave conditions 

(July 2013–November 2013 and April 2014–July 2014) were much calmer than the 

rest of the year with significant wave heights and peak periods less than 3–4 m and 

12 s, respectively, whereas from December 2013 to March 2014 wave heights and 

peak periods ranged from 4 m to > 5 m along the north coast and 4 m to > 10 m along 

the south coast with wave periods from 15 to 22 s.  
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Figure 4: Wave and water level data for: (a) Godrevy and (b) Porthleven from July 2013 to July 2014.  

 

Average monthly wave conditions at Porthleven (Hs = 1.1 m (s.d. = 0.5 m); Tp = 9 s 

(s.d. = 3 s)) were slightly lower over the year than at Godrevy (Hs = 1.3 m (s.d. = 0.6 

m); Tp = 11 s (s.d. = 2 s)). Significant wave heights reached their maximum in February 

2014 at both sites with Hs of 5.6 m and Tp of 15 s at Godrevy, and 10.3 m and Tp of 

22 s at Porthleven. The winter of 2013/14 was the most energetic periods the region 
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has experienced since 1948 (Masselink et al., 2016) with inshore significant wave 

heights exceeding 5 m and wave periods greater than 15 s on seven occasions at 

Godrevy and nine at Porthleven (Fig. 4) from December 2013 to March 2014. As well 

as considerably high maximum significant wave heights, conditions were consistently 

energetic with a 5% exceedance significant wave height of 8 m and an average Tp of 

17 s at Porthleven and 5.5 m and 15 s at Godrevy. 

At both sites, the highest measured tides, as well as significant wave heights, occurred 

during the winter (December 2013–March 2014). Tidal elevations, storm durations, 

associated peak storm surge level and the maximum half-hourly significant wave 

height for the individual storms indicate that Porthleven was characterised by more 

extreme wave conditions during the winter months (Table 2). The coincidence of the 

peak of a storm with a spring high tide, in particular, will result in more wave energy 

delivered to the cliff. At Porthleven, maximum storm surges (in addition to tide levels) 

associated with the nine storms with Hs > 5 m ranged from 0.13 to 0.96 m, and for the 

seven storms at Godrevy the storm surge levels were 0.19 to 1.19 m. Three of the 

storms at Porthleven coincided with spring high tide with two of the storm surges 

exceeding 0.4 m; these storms lasted 4, 16 and 24 hrs and were characterised by a 

maximum Hs of 5, 10.3 and 7 m, respectively. Two of the storms at Godrevy coincided 

with a spring high tide with a storm surge of 0.53 and 0.9 m; these two storms lasted 

4 and 3 hrs with a maximum Hs of 5.4 and 5 m, respectively.. Table 2 identifies the 

mean high water neap (MHWN) and spring (MHWS) tide levels along with associated 

storm surges. MHWS occurs at a higher level at Godrevy compared to Porthleven (3.2 

m ODN as opposed to 2.5 m ODN). In addition to this, the storm surge levels 

associated with the 5% exceedance wave events, averaged 0.37 m at Porthleven and 

0.5 m at Godrevy. 
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Table 2 – Significant wave height, storm duration and corresponding peak measured surge and surge 
+ tidal elevation (max Water Level (WL)) of events exceeding 5 m Hs, measured on the north 
(Godrevy) and the south (Porthleven) coasts. Some of the events occurred on days between springs 
and neaps. S: Spring tide, N; Neap tide, H = around high tide (for shorter storms). To represent the 
average winter conditions, the 5% exceedance Hs, average winter Tp, average winter storm surge 
are presented, along with the MHWS and MHWN levels. 

 Porthleven Godrevy  
Storm event Duration 

(hrs) 
Max 

Surge 
Max 
Hs 

Max 
WL (m 
ODN) 

Duration 
(hrs) 

Max 
Surge 

Max 
Hs 

Max 
WL (m 
ODN) 

Tidal 
stage 

23-24/12/2013 32 0.75 8.42 2.85 - - - - S – N 
27/12/2013 6 0.44 7.14 2.11 3 0.67 5.0 1.78 N 

03-04/01/2014 24 0.47 7 3.59 - - - - S 
06-07/01/2014 29 0.47 7.4 2.5 - - - - S – N 

01/02/2014 4 0.13 5 3.27 4 0.53 5.4 3.37 S (H) 
03-05/02/2014 48 0.86 7.7 3.44 3 0.42 5 0.8 S – N 

08/02/2014 7 0.54 5 2.06 24 1.19 5.6 2.01 N 
12/02/2014 3 0.6 5.1 1.87 7 1.07 5.3 2.3 N - S 

(H) 
14-15/02/2014 16 0.96 10.3 3.51 3 0.9 5 1.4 S  

28/02/2014 - - - - 8 0.19 5.1 3.04 N - S 
(H) 

5% exceedance Hs (m) 8.0 5.5 
Ave Tp for winter period (s) 17 15 

Ave surge for winter (m) 0.37 0.50 
MHWS (mODN) 2.5 3.2 
MHWN (mODN) 1.3 1.5 

 

Rainfall totals  

Not surprisingly, the wettest periods at both sites correspond with the most energetic 

wave conditions. The greatest total rainfall values were recorded from October 2013 

to February 2014 (> 200 mm) at both sites. The annual variability of rainfall suggests 

little difference in seasonal rainfall between the two coastlines, but total rainfall 

suggests the north coast is generally wetter than the south. Over the survey period, 

Godrevy experienced a total rainfall of 1332 mm with an average monthly rainfall of 

102 mm (s.d. = 62 mm), while Porthleven received a total rainfall of 1055 mm with a 

monthly mean of 82 mm (s.d. = 46 mm). Over the winter period, Godrevy experienced 

more total rainfall (610 mm) compared to Porthleven (441 mm). 

Beach morphology 

Both beaches are subject to substantial morphological changes from one survey to 

the next, both cross-shore and along-shore. In order to understand the dissipation of 

wave energy prior to reaching the cliff, here we focus on the cross-shore changes to 
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the beach and, in particular, the variability of beach slope and the elevation of the 

beach at the toe of the cliff (referred to as the b-c junction). The slope of the beach at 

Godrevy remained around 0.02 (s.d. = 0.005) throughout the year; yet, the elevation 

of the b-c junction varied by up to 2.2 m, between 2.5 and 4.7 m ODN (Fig. 5a).  

Porthleven beach is much steeper with a mean slope of 0.17 (s.d. = 0.03) and the 

elevation of the beach also fluctuated by up to 2–2.5 m across the whole beach in the 

cross-shore and along-shore (Fig. 5). The b-c junction fluctuated between 4.4 and 7 

m ODN throughout the year with the lowest elevation and maximum cliff-toe exposure 

during the winter months (December 2013–March 2014). The stormy conditions in 

February led to considerable changes in the b-c junction elevation of +/- 1.5 m over a 

12-hr period. The envelope of change is defined by the range between the maximum 

and minimum levels measured over the year (Fig 5). Relative to the tidal water level, 

the mean elevation of the b-c junction at Porthleven (~3 m above MHWS) is much 

higher than at Godrevy (~1 m above MHWS). 

 
Figure 5 – Mean beach cross-shore profiles for: (a) Godrevy and (b) Porthleven for the year July 
2013–July 2014. The envelope of change is defined by the range between the maximum and 
minimum beach levels recorded. 

Cliff volume changes 

From July 2013 to July 2014, the cliffs at Porthleven experienced more than twice the 

erosion observed at Godrevy, with a total volumetric cliff loss of 3633 m3 compared 

with 1582 m3 (Table 3). Normalised according to the length of the cliff face (~ 300 m 

at each site), this equates to an annual volume loss of 11 m3 per m length of cliff at 
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Porthleven and 5.3 m3 per m length of cliff at Godrevy. The average cliff height above 

the beach at Godrevy and Porthleven is 8–15 m and 8–12 m above the beach, 

respectively (varying according to beach elevation). Assuming an average cliff height 

of 10 m for both sites, this equates to an equivalent cliff retreat rate of 1.1 m yr-1 at 

Porthleven and 0.5 m yr-1 at Godrevy. Significantly less cliff erosion during the 

spring/summer months (May–Sept 2013) was recorded, but small scale changes were 

detected. Godrevy appeared more susceptible to erosion during the summer (monthly 

cliff erosion losses of 8–30 m3) than Porthleven (monthly losses of 1–18 m3). At both 

sites, the erosion volumes were greatest in the winter of 2013–2014, with the largest 

losses measured from December 2013 to the March 2014. 

Table 3: Net cliff erosion volumes for Godrevy and Porthleven from July 2013 – July 2014 (annual 
retreat rate assumes a 10 m cliff height). Monthly periods are from mid-to-mid month, due to 
surveys being carried out during spring tide.  

Survey Period 2013 – 2014 Godrevy erosion (m3) Porthleven erosion (m3) 

Jul – Aug 2013 27 4 
Aug – Sep 2013 

51 (2 months) 
1 

Sep – Oct 2013 3 
Oct – Nov 2013 88 35 
Nov – Dec 2013 54 

1184 (2 months) 
Dec 2013 – Jan 2014 499 

Jan – Feb 2014 629 1958 
Feb – Mar 2014 148 140 
Mar – Apr 2014 28 10 
Apr – May 2014 20 18 
May – Jun 2014 8 6 
Jun – Jul 2014 30 4 

Total 1582 3363 
Total upper cliff (head deposit) 1196 (76%) 1739 (52%) 
Total lower cliff (basal layer) 386 (24%) 1624 (48%) 

Mean 144 306 
Standard deviation 213 650 

Equivalent annual cliff retreat rate 0.5 m yr-1 1.1 m yr-1 

Figure 6 indicates the spatial variability in the annual cliff erosion at each site. At 

Godrevy, the majority of failure (76%) over the one-year survey period occurred within 

the upper unit of head deposit with the remaining failure (24%) taking place in the 

basal layer (Table 3). The boundary between the two units lies at the very top of the 

cliff towards the south (Fig. 6a) and falls almost to beach level at the northern extent 

of the cliffs. In this northern region, where the cliff profile is almost entirely comprised 

of head deposit, erosion of the entire cliff-face occurred via rotational sliding, leading 

to a cliff-normal retreat of 2.3 m (Fig. 6ai). Failure in the central section of the cliff (Fig. 

6aii) occurred via ‘slope-over-wall’ failure where superficial material has been removed 

above the underlying basal layer by 2 m. Toward the southern end of the cliffs, erosion 
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is apparent in both the upper unit and the basal layer by 1 m. Cliff erosion across these 

three sections took place, for the most part, during the winter months (December 

2013–March 2014). The erosional volumes during the other months do not reflect the 

occurrence of any major failures, and are likely to have resulted from a gradual loss of 

material from the cliff-face. 

 
Figure 6: Point cloud of (a) Godrevy and (b) Porthleven cliff face in July 2013 (upper) and annual 
point cloud comparison plot for July 2013–July 2014 (lower), with colour bar scale ranging from blue 
(- 5 m) to red (5 m). Dotted red line indicates the boundary between underlying basal layer of Mylor 
slates and overlying, less resistant quaternary head deposit. (i – iii) 3-D sections through the cliff at 
three locations where the majority of failure has occurred. Initial surface (July 2013) is depicted in 
brighter green, superimposed over the later scan (July 2014, yellow-green). 
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At Porthleven, the annual difference plot indicates failure occurred relatively evenly 

along the cliff section (Fig. 6b). In both the along-shore and the vertical profile, erosion 

was detected in the upper unit (52% of the annual retreat) and the lower basal layer 

(48% of the annual retreat) (Fig. 6b; Table 3). The boundary between the two units at 

Porthleven is about half way up the face of the cliff and remains roughly at this level 

along the entire cliff section. The failure mechanisms are difficult to determine from the 

annual difference plots as there was no remaining material (i.e., talus deposit) present 

to indicate rotational sliding or slope-over-wall failure. The entire cliff elevation has 

retreated almost homogeneously alongshore. Much like Godrevy, the majority of 

failure at Porthleven occurred during the winter months from December 2013 to March 

2014, in both the lower basal layer and in the upper unit. In a two-week period (2–22 

February 2014) an overall volume of 1770 m3 was lost over almost the entire cliff 

elevation across the whole cliff-face. Further failure of the upper unit from overhanging 

material occurred towards the southern end of the cliffs during the month following this 

particularly active period. 

Wave Power - XBeach-G numerical modelling  

To collect field measurements of wave conditions to the cliff during storm conditions 

is very challenging; therefore the numerical model XBeach-G was used to determine 

the role of the b-c junction elevation and beach slope in modulating the amount of 

wave energy reaching the cliff under different wave and water level conditions. To 

account for the highly variable nature of the beach at both sites, three different beach-

cliff morphology scenarios were considered, representing the average beach slopes 

(Godrevy: tanβ = 0.02; Porthleven: tanβ = 0.17) and the mean, minimum and 

maximum b-c junction elevations measured during the survey period (Fig. 7).  
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Figure 7: Beach and bathymetric profiles for XBeach-G modelling for: (a) Godrevy and (b) 
Porthleven. Inset illustrates the minimum, mean and maximum beach profiles and b-c junctions and 
simulated tidal elevations. 

Two different wave conditions were used based on the measured inshore wave 

conditions (Fig. 4): average winter conditions over the 2013/14 winter storm period (Hs 

= 1.8 m and Tp = 12 s for Godrevy; Hs = 1.8 m and Tp = 11 s for Porthleven) and to 

replicate the energetic winter storm conditions over this period, the 5% exceedance 

significant Hs and average associated wave period was used.(Hs = 5.5 m and Tp = 15 

s for Godrevy; Hs = 8 m and Tp = 17 s for Porthleven). To incorporate tidal elevations 

and surge effects into the modelling, the measured water levels during the storm 

periods were replicated at each site (Table 2 and Table 4). MHWS and MHWN lie at 

3.2 m and 1.5 m ODN respectively at Godrevy and 2.5 m and 1.3 m ODN at Porthleven. 

Measured water levels (tide plus surge) during the winter of 2013-14 ranged from 0.8 

m to 3.4 m, with a mean surge level of 0.5 m at Godrevy and from 1.87 m to 3.6 m, 

with a mean surge of 0.37 m at Porthleven. To account for this variability in tide and 

surge elevation over the winter period and replicate the average energetic conditions 

over the winter as opposed to the absolute short-term peaks in energy four different 

water level scenarios were selected: MHWS, MHWS plus the average surge, MHWN 

and MHWN plus the average surge level (Table 4). 
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Table 4 – Wave and water levels used to force the XBeach-G model. Average and maximum (5% 
exceedance) wave conditions are taken from the corresponding wave buoy data (see Table 2), Surge levels 
represent the mean surge recorded during the storm periods (Table2). Water levels and b-c junction 
elevations are presented in m relative to ODN. 

 Porthleven Godrevy 

Average winter conditions  
Hs (m) 

1.8 1.8 

Tp (s) 
11 12 

Maximum winter conditions  
0.5 % Hs (m) 8 5.5 

Tp (s) 17 15 
 

MHWS 2.5 3.2 
MHWS + mean storm surge 2.87 3.7 

MHWN 1.3 1.5 
MHWN + mean storm surge 1.67 2 

Minimum b-c junction 4.4 2.5 
Mean b-c junction 6.2 4.3 

Maximum b-c junction 7 4.7 

The slope of the beach and the b-c junction elevation with respect to MHWS suggests 

that, on average, the cliffs at Godrevy are subject to more frequent inundation than 

those at Porthleven (Fig. 5). Ignoring wave action, at Godrevy the cliff-toe is inundated 

during MHWS, whereas at Porthleven virtually no cliff-toe inundation occurs for any of 

the four water level scenarios (Fig. 7). However, it is the exposure of the cliff-toe under 

extreme wave conditions that is of importance here, and for this model simulations are 

required. The modelled wave height (Hs) and wave power (Plin and Pkin) at the cliff-toe 

for the different wave energy, water level and b-c junction scenarios for the two study 

sites are presented in Figure 8. 
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Figure 8: XBeach-G model output of Hs at the toe of the cliff under varying water level conditions 
(MHWN and MHWS plus mean surge level) for: (a) average winter conditions (left panel) and (b) 
maximum conditions (5% exceedance Hs) over the winter period (right panel). Wave power (lower 
four panels) at the b-c junction is calculated using two different methods to give the energy using 
linear wave theory (Plin) (central panels) and the kinetic energy (Pkin) (lower panels) as per equations 
1 and 2. The upper (lower) limit of the error bar represents the minimum (maximum) b-c junction 
elevation, whereas the circles represent the mean b-c junction elevation. 

Encouragingly, the amount of wave energy reaching the cliff according to the two 

different methods (Plin and Pkin) (Eqs 1-2) yields relatively comparable results for the 

different b-c junctions and water levels, except for maximum wave conditions at 

Porthleven where Plin exceeds Pkin under all b–c junction and tide scenarios. Focusing 

first on the average winter wave conditions (Figure 8a – left panels), the base of the 

cliff at Godrevy experiences more energetic conditions (Hs) than Porthleven during 

spring tide conditions both with and without a storm surge and comparable conditions 

during a neap high tide. Unsurprisingly, very little energy is delivered to either cliff 

during a neap high tide (Hs < 1 m; Plin and Pkin < 0.05 kW m-1). The most energetic 

winter average conditions at the base of both cliffs occur during spring high tide (with 

and without a storm surge) with a low b-c junction, characterised by typical values of 

Hs = 0.5–1 m and Plin = 2–2.8 kW m-1. A different picture emerges during peak (5 % 

exceedance Hs) storm conditions (Fig. 8b – right panels) when the modelled results 

show that Porthleven receives considerably larger significant wave heights at the cliff-

toe and more wave energy under all tide and b-c junction scenarios. This is to be 



26 

 

expected as the peak offshore Hs was 8 m at Porthleven compared to 5.5 m Godrevy. 

It is noteworthy to mention that XBeach-G predicted > 4 m high waves (swashes) 

directly impacting the cliff at Porthleven under peak storm conditions with a low beach-

cliff junction and during spring high tide (upper panel of Figure 8b). This is in 

agreement with field observations at this site (supplementary video clip in Earlie et al., 

2015).  

Comparing the wave power at the toe of the cliff for winter-average wave conditions 

with maximum storm wave conditions, under a minimum b/c junction scenario, Plin at 

Godrevy increases from 0–2.9 kW m-1 to 0.2–9 kW m-1 (Pkin increases from 0–2.1 

kW m-1 to 0.02–7 kW m-1) and Plin at Porthleven increases from 0.03–0.4 kW m-1 to 

24–39 kW m-1 (Pkin increases from 0.01–0.4 kW m-1 to 8–19 kW m-1). For the 

maximum storm wave conditions, wave power values calculated using the first 

approximation according to linear wave theory at the cliff-toe at Porthleven are more 

than four times that at Godrevy, and this difference is larger than that could be 

expected on the basis of the differences in the offshore wave forcing (where the 5% 

exceedance Hs at Porthleven is only 1.45 times greater than at Godrevy, which should 

result in a factor 2 increase in resultant wave energy). This suggests that the higher 

wave energy at the toe of the cliff at Porthleven cannot solely be attributed to the more 

energetic wave conditions at this site.  

Discussion  

Figure 9 summarises the monthly cliff erosion rates and the various forcing and 

controlling factors. Wave and weather conditions over the one-year study period were 

consistent across the two study sites with more energetic waves and wetter conditions 

in the winter compared with the summer. It is evident, however, that during the winter 

period, Godrevy experienced more rainfall than Porthleven. In terms of cliff 

exposure/inundation, the beach at Porthleven provided more protection on average to 

cliff than at Godrevy with the mean b-c junction >2.5 m above MHWS compared to ~1 

m. The difference in erosion volumes for the year (Porthleven = 3363 m3, Godrevy = 

1582 m3), cliff failure patterns and timings tends suggest a disparity in assailing and/or 

resisting forces between the two sites (Figure 9)
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Figure 9: Summary of results from the monthly surveys, showing, from top to bottom: cliff face erosion volume, rainfall, maximum and mean monthly 
significant wave heights (Hs) and wave periods (Tp), and beach-cliff (b-c) junction elevation. Left panel (a) for Godrevy and right panels (b) for Porthleven. 
Length of survey period is represented by the width of the bars.  
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Two key factors that are thought to contribute to the difference in cliff erosion rates 

between the two sites are the difference between the extreme winter wave conditions 

at each site and the morphology (slope of the upper shoreface and b-c junction of the 

beach) in modifying wave energy delivery (as well as protection) to the cliffs. Recent 

studies have also highlighted the influence of extreme wave conditions on the erosion 

of sea-cliffs (Young et al., 2013; Brain et al., 2014; Earlie et al., 2015; Vann Jones et 

al., 2015). The inshore wave climate over the winter was much more energetic along 

the south coast compared to the north, with the south coast not only experiencing a 

greater number of storms exceeding 5 m Hs over that winter, but also a greater number 

of storms coinciding with a spring high tide (three at Porthleven; two at Godrevy), with 

longer durations (4 to 24 hrs and 3 to 4 hrs) and greater significant wave heights (8 m 

and 5.5 m (5 % exceedance Hs)). Therefore, one of the reasons for the greater 

magnitude of cliff erosion at Porthleven compared to Godrevy is likely to be have been 

influenced by the cumulative effect of a more energetic inshore wave climate over that 

particular winter.  

Previous studies have emphasised how the volume of the beach above rock platforms 

and, hence, the position of the still water line relative to the cliff-toe is important in 

dictating cliff-toe inundation, wave attack and subsequent long-term platform down 

wearing and cliff erosion (Ruggerio et al., 2001, 2004; Walkden and Hall, 2005, 2011; 

Lee, 2008; Trenhaile, 2009, 2016). This is apparent in the spring/summer months, 

when regular tidal inundation of the cliff-toe was inhibited by the beach at Porthleven, 

although not at Godrevy due to the lower beach elevation. As a consequence, 

modelled wave energy delivery to the cliff at Porthleven only occurs during a spring 

high tide and a minimum b-c junction (Fig. 8a) and erosion values over the 

spring/summer were considerably greater at Godrevy than Porthleven (Table 3).  

During the winter, however, when wave energy is much higher and the erosion of the 

cliffs was much greater at Porthleven than Godrevy, the interaction between the storm 

waves and the beach tends, through transformation of waves across the upper 

shoreface and wave run-up, to play a more important role than still water levels in 

controlling wave energy delivery to the cliffs. This is evident in the amplification of wave 

energy seen at the different beach profiles in the XBeach-G modelling.  On steeper 

beaches, wave break closer to the cliffs (Walkden and Hall, 2005; Trenhaile 2005, 
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2006, 2009), with little time and distance to dissipate energy after wave breaking, 

resulting in higher run-up heights (Stockdon et al., 2006; Poate et al., 2016). This is 

demonstrated in Figure 8, which shows that, under extreme storm conditions (5.5m 

for Godrevy and 8 m at Porthleven), the wave energy experienced at the toe of the 

cliff at Porthleven is up to 4.2 times greater (when considering the first approximation, 

Plin, and 2.7 times greater with Pkin) than at Godrevy, whereas the maximum inshore 

wave height at Porthleven is only 1.45 times that at Godrevy. The higher levels of 

wave energy reaching the cliff-toe at Porthleven is, therefore, at least partly, attributed 

to the larger wave run-up at this location due to the steeper beach gradient.  

The influence beach slope and offshore bathymetry have on wave energy delivery to 

the cliffs is further illustrated and emphasised with additional XBeach-G model 

simulations. The purpose of this was to explore, hypothetically, the influence the 

offshore slope and beach profile have on the resultant wave power (Plin) reaching the 

cliffs at both sites under the same forcing conditions (Fig. 10). 

 
Figure 10: XBeach-G model simulations of Plinear for Godrevy (a) and Porthleven (b) for the maximum 
wave conditions measured at both the beaches under maximum water levels (MHWS plus mean 
surge level). The wave power (Equation 1) at the mean b-c junction (solid red lines and the minimum 
and maximum b-c junction (dotted red lines) were extracted along the cross-shore profile in the 
model. 

Using the same significant wave height and period scenarios and the maximum wave 

conditions measured at both of the beaches (Hs = 5.5 m Tp = 15 s; Hs = 8 m Tp = 17 s), 

the wave power measured along the coastal slope and beach profile varied quite 

dramatically between the sites (Fig. 10). Increasing the wave conditions from Hs 5.5 

m Tp 15 s to Hs 8 m Tp 17 s leads to an increase in wave energy of a factor 2 at the 
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cliff face at Porthleven, compared to a factor 1.3 increase at Godrevy, implying the 

difference in beach slope and the wave energy dissipation across the shore face prior 

to cliff impact is a contributing factor to the disparity between wave power experienced 

at the cliffs. Considering this maximum wave condition (Hs = 8 m and Tp = 17 s) the 

wave power measured 12 kWm-1 about 10 m from the face of the cliff at Godrevy and 

at Porthleven, with the same wave conditions, the wave power reached 42 kWm-1 5–

10 m from the cliff face. These model simulations demonstrate that if Godrevy would 

have experienced the Porthleven maximum wave conditions, or if Porthleven would 

have experienced the Godrevy maximum wave conditions, in both cases the energy 

at the base of the cliff at Porthleven would still have been a factor 3.5 larger than at 

Godrevy.  

Modelling the wave-cliff interaction under these different forcing scenarios and beach 

configurations provides valuable insight into some of the key factors that influence cliff 

erosion rates and provides an explanation for the differing erosion rates at the two 

sites. The wave energy delivery to the cliff-face, and therefore the degree of wave-cliff 

impact and cliff erosion volumes, is governed not only by the incident wave conditions 

and the water levels relative to the elevation of the b-c junction, but also to differences 

in the morphology of the beach fronting the cliffs. Specifically, the gradient of the upper 

shoreface and the morphodynamic state (reflective versus dissipative) directly 

influences the transformation of waves across the beach, wave dissipation and the 

delivery of wave energy to the cliff-face, particularly under extreme wave conditions. 

Geomorphic context 

The results of this study have provided insight into the short-term episodic processes 

that are averaged out in long-term methods of deriving erosion rates. It is not 

appropriate to compare these short-term rates of retreat with rates derived over longer 

periods of time; however, comparing the rates of cliff erosion derived under different 

time scales places the significance of these extreme events into context (Moore and 

Griggs, 2002). It is important to note, however, that this particular winter was the most 

energetic (in terms of wave climate), the south-west UK has seen in at least 60 years 

(Masselink et al., 2016).  
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The erosion rates at Godrevy and Porthleven calculated over the one-year survey 

period are 0.5 m yr-1 and 1.1 m yr-1, respectively, and these are one order of magnitude 

greater than the long-term rates established using LiDAR for the period 2007/8 to 

2010/11 (Earlie et al., 2014), and even larger in comparison to cliff erosion rates 

derived with historic map analysis representing 50–100 years (Orford et al., 2002) (Fig. 

11). The cliff erosion during 2013/14 primarily occurred during the most energetic 

months of this period and the equivalent annual erosion rate at Porthleven and 

Godrevy during the Jan–Feb 2014 period was 3.9 m yr-1 and 1.3 m yr-1, respectively.  

 
Figure 11: Erosion rates for Porthleven and Godrevy. Historic map rates from (Orford et al., 2002) 
Airborne LiDAR rates from Earlie et al. (2013; 2014), TLS rates from monthly scans over the 1-yr 
period and the contribution of the winter erosion volumes (Dec-Mar) and storm period (Jan-Feb) to 
the total erosion from the year 2013-2014. These values are calculated to an equivalent per year 
rate. 

The results imply that two important parameters need to be considered when 

investigating monthly/seasonal changes to the cliffs. Firstly the morphology of the 

beach fronting the cliffs (i.e., the slope of the beach, the volume of the beach and the 

elevation of the beach at the toe of the cliffs), and secondly the influence these 

parameters have on the resultant nearshore hydrodynamics, particularly wave 

breaking patterns and surf zone dissipation under extreme storm conditions.  It is these 

short-term processes that tend to be highly influential in determining the episodic 

nature of failure, a factor that will be prudent to consider as high-magnitude, low-

frequency events could become more frequent in the future with the risk of increase 

storminess associated with climate change (Cowell, 2006; Barros et al., 2014; Haigh 

et al., 2016).  
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Conclusions 

Monthly terrestrial laser scanner (TLS) surveys of coastal cliffs at two particularly 

vulnerable sites in SW England were conducted over a 1-year period, which included 

the most energetic winter (2013-2014) since 1948. One of the cliff sites was fronted 

by a gently-sloping dissipative beach with a relatively low beach-cliff junction (around 

MSL), whereas the other site was fronted by a steep reflective beach with a relatively 

high beach-cliff junction (around MHWS). Both sites experienced extreme wave 

conditions, but maximum wave energy levels at the reflective site (Hs = 8 m) were 

higher than at the dissipative site (Hs = 5.5 m); average winter wave conditions were 

similar (Hs < 2 m). At both sites, the 8-15 m cliffs are characterised by fractured meta-

sedimentary rocks capped with less resistant head deposits. 

A strong seasonal variability in cliff erosion was apparent with more than 90% of the 

cliff volumetric losses occurring during the winter months (December - March). Erosion 

volumes over the 1-year period were found to be twice as great at the cliff site fronted 

by the reflective beach (1.1 m yr-1) compared with at a dissipative beach (0.5 m yr-1). 

These cliff erosion rates are a factor 3-5 larger than the long-term average, testifying 

to the importance of extreme storm conditions to long-term cliff evolution. 

The larger erosion rate at the reflective site is partly attributed to the more energetic 

inshore wave conditions at this site; however, a very significant role is also played by 

the beach morphology through its influence on the delivery of wave energy to the base 

of the cliff. This role was explored using the numerical model XBeach-G forced with 

local conditions (waves, tides and beach morphology). 

The numerical model results demonstrate that under relatively modest wave 

conditions (Hs < 2 m), the elevation of the beach-cliff junction relative to the tide level 

is the most important factor in controlling the delivery of wave energy at its base 

(favouring more frequent inundation at the dissipative site). However, under storm 

wave conditions, the beach gradient, through its control on wave run-up, is the more 

important factor (favouring more frequent inundation at the reflective site), especially 

under extreme wave conditions. Simulating the maximum wave conditions 

experienced at both sites, the amount of wave energy reaching the base of the cliff 
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fronted by the reflective beach was more than 4 times higher than at the dissipative 

site. Simulating the same maximum wave conditions at both sites highlighted that even 

under the same forcing conditions, the cliffs fronted by a reflective beach were subject 

to waves 3.5 times more powerful than the dissipative beach. 

The results captured using a combination of remote sensing (TLS) and in-situ 

instrumentation (pressure sensors, wave buoys), accompanied by numerical 

modelling, show that site specific-investigations of extreme storms on coastal cliffs and 

the interaction of waves with the beach and cliffs are not only obtainable, but essential 

in understanding how these episodic extreme events affect cliffed coastlines in a 

longer term context. 
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